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Enrico Natalizio2 Isabelle Fantoni2 Vincent Frémont2

Abstract— We present a scheme for multi-sensor data fusion
applications, called Relative Pose based Redundancy Removal
(RPRR), that efficiently enhances the wireless channel utiliza-
tion in bandwidth-constrained operational scenarios for RGB-
D camera equipped visual sensor networks. Pairs of nodes
cooperatively determine their own relative pose, and by using
this knowledge they identify the correlated data related to the
common regions of the captured color and depth images. Then,
they only transmit the non-redundant information present
in these images. As an additional benefit, the scheme also
extends the battery life through reduced number of packet
transmissions.

Experimental results confirm that significant gains in terms
of wireless channel utilization and energy consumption would
be achieved when the RPRR scheme is used in visual sensor
network operations.

I. INTRODUCTION

Visual sensor networks (VSNs) [1] allow the capture,
processing and transmission of per-pixel color information
from a variety of viewpoints. Low-cost RGB-D sensors, such
as Microsoft Kinect [2], also add depth data to the collected
information, and have attracted the interest of research com-
munity as a new way of capturing real-world scenes. The
inclusion of RGB-D sensors makes VSNs to be capable of
collecting color and depth data in cost-effective ways, and
can significantly enhance the performance of applications
such as immersive telepresence or mapping [3], environment
surveillance [4], or object recognition and tracking [5] as
well as opening the possibilities for new and innovative ap-
plications [6]. The value of VSN applications becomes even
more important especially in places inaccessible to humans
such as search and rescue operations after earthquakes or
nuclear accidents. An illustrative scenario is shown in Fig.
1.

However, RGB-D sensors inevitably generate vast
amounts of visual and depth data. The volume of data will
be even larger when multiple camera sensors observe the
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Fig. 1: An indoor mapping and exploration scenario showing
the Monash University’s RGB-D sensor equipped experi-
mental mobile robots “eyeBugs” [7], [8]. The robots form
a mobile ad hoc network and exchange information for
performing various tasks.

same scene from different viewpoints and exchange/gather
their measurements to obtain a better understanding of the
environment. As a result, collected images will inevitably
contain a significant amount of correlated and redundant
information. Transmission of all the captured data will lead
to unnecessarily high transmission load. As the sensors will
most likely be communicating in ad hoc networking con-
figurations, communication bandwidth will be at a premium
[9], error-prone and not suitable for frequent data delivery
in large quantities. Moreover, wireless transceivers consume
a significant part of the available battery power [10], and
limited capacity of on-board power sources should also be
considered. Consequently, transmission of visual and depth
information in resource-constrained VSN nodes must be
carefully controlled and minimized as much as possible.

In the next section we discuss the leading approaches
that have been proposed to address this problem. Then,
we present a brief overview of the RPRR framework in
Section III. Detailed description of each stage can be found in
Section IV. Experimental results are presented and analyzed
in Section V, followed by our concluding remarks.

II. RELATED WORKS

A number of solutions can be found in the research
literature that intend to remove or minimize the correlated



data for transmission in VSNs. They can be broadly classified
into three groups:

1) optimal camera selection,
2) collaborative compression and transmission, and
3) distributed source coding.
The optimal camera selection algorithms [11], [12], [13]

attempt to group the camera sensors with overlapping fields-
of-view (FoVs) into clusters and only activate the sensor
which can capture the image with the highest number of
feature points. These algorithms operate under the assump-
tion that the images captured by a small number of camera
sensors in one cluster are good enough to represent the
information of the scene/object. However, the occlusions in
FoVs may cause significant differences between the images
captured by cameras with very similar sensing directions.
Therefore, the assumption is not realistic and this kind of
approach is not applicable in many situations.

The collaborative compression and transmission methods
[14], [15], [16] jointly encode the captured multi-view im-
ages. Only the uncorrelated visual content is delivered in the
network after being jointly encoded by some recent coding
techniques (for example, Multiview Video Coding (MVC)
[17]). However, at least one node in the network is required
to have the full set of images captured by the other sensors
in order to perform image registration. Therefore, redundant
information cannot be removed completely and still needs
to be transmitted at least once. Moreover, as color images
do not contain the full 3-D representation of a scene, these
methods introduce distortions and errors when the relative
poses (location and orientation) between sensors are not
pure rotation or translation, or the scenes have complex
geometrical structures and occlusions.

Distributed Source Coding (DSC) algorithms [18], [19],
[20] are another group of promising approaches that can
be used to reduce the redundant data in multiview VSN
scenarios. Each DSC encoder operates independently, but at
the same time, relies on joint decoding operations at the sink
(remote monitoring station). However, the side information
must be predicted as accurately as possible. The correlation
structure can hardly be identified at the decoder side without
an accurate knowledge of the network topology and the
poses of the sensors. These are the main disadvantages that
prevent DSC algorithms from being widely implemented. A
detailed discussion on multi-view image compression and
transmission schemes in VSNs is presented in [21].

The algorithms mentioned above focus only on color
(RGB) information. Only a very limited number of stud-
ies have been reported [22], [23] so far that use RGB-
D sensors in VSNs, as their use in VSNs has not yet
become widespread. Our extensive review of the research
literature has identified that no earlier studies have been
published that attempt to develop an efficient coding system
considering both color and depth information for optimizing
the bandwidth and energy usage for wireless communications
in VSNs equipped with RGB-D sensors. In this paper we
focus on this issue, and present a novel approach to the
development of a comprehensive solution for minimizing

Fig. 2: Operational overview of the RPRR framework: (i)
sensors cooperatively estimate their relative pose (ii) identify
redundant sections of the scenery through forward prediction
and backward check operations (iii) perform image coding
and data transmission, and finally (iv) data fusion and image
reconstruction is done at the remote monitoring station.
Details of each stage can be found in Section IV.

the transmission of redundant RGB-D data in VSNs. Our
framework, called Relative Pose based Redundancy Removal
(RPRR), efficiently removes the redundant information cap-
tured by each sensor before transmission. We designed the
RPRR framework particularly for RGB-D sensor equipped
VSNs which anticipate that they will work in situations
with severely limited communication bandwidth as support
systems for disaster management or rescue and recovery
operations.

In the RPRR framework, the characteristics of depth
images, captured simultaneously with color data, are used to
achieve the desired efficiency. Instead of using a centralized
image registration technique [24], which requires one node
to have full knowledge of the images captured by the others
to determine the correlations, we propose a new approach
based on relative pose estimation between pairs of RGB-D
sensors [25] and 3-D image warping technique [26]. The
method we propose locally determines the color and depth
information, which can only be seen by one sensor but not
the others. Consequently, each sensor is required to transmit
only the uncorrelated information to the remote monitoring
station.

III. SYSTEM OVERVIEW

Here, we first provide a brief overview of the hardware and
software components of the mobile RGB-D sensors we use,
then present a summary of the operation of the framework



Fig. 3: eyeBug [7], [8], the mobile RGB-D sensor we use
in our experiments. The color and depth data generated by
the Kinect sensor is processed on a BeagleBoard-xM [27]
computer running the GNU/Linux operating system.

as shown in Fig. 2. Details of each subsystem are presented
in Section IV.

A. eyeBug: A Mobile RGB-D Sensor

The RPRR framework was implemented and tested by
using the data captured by an experimental VSN platform
developed in Monash University’s Wireless Sensor and
Robot Networks Laboratory (WSRNLab) [28]. The platform
consists of multiple mobile RGB-D sensors named “eyeBug”
(Fig. 3). EyeBugs were created for computer vision and
robotics research, such as multi-robot SLAM or scene recon-
struction. We selected the Microsoft Kinect as the RGB-D
sensor, due to its low cost and wide availability. We placed
a Kinect vertically at the center of the top board of each
eyeBug. The value of each depth pixel represents the distance
information in millimeters. Invalid depth pixel values are
recorded as zero, indicating that the RGB-D sensor could not
estimate the depth information of that point in the 3-D world.
A BeagleBoard-xM single-board computer [27] is used for
image processing tasks. A USB WiFi adapter is connected to
the BeagleBoard to provide communication between robots.

B. Relative Pose Based Redundancy Removal (RPRR)
Framework

In a mobile VSN tasked with mapping a region using
RGB-D sensors, it is highly possible that multiple sensors
will observe the same scene from different viewpoints. Con-
sequently, scenery captured by the sensors with overlapping
FoVs will have a significant level of correlated information.
Here, our goal is to efficiently extract and encode the
uncorrelated RGB-D information, and avoid transmitting the
same surface geometry and color information repeatedly.

Consider the two sensors, a and b, of this VSN with over-
lapping FoVs. Let Za and Zb denote a pair of depth images
returned by sensors, and Ca and Cb are the corresponding

color images. In the encoding procedure, we first estimate
the location and orientation of one sensor relative to the
other. In the second step, before encoding the depth and color
images into a bitstream, the disparities between the RGB-
D information captured by the two sensors are determined.
To achieve this, forward prediction/backward check and
block-based update using the relative pose information are
performed to generate a prediction of Zb in sensor a and
to determine the depth information which only exists in
Zb but not in Za. Then, only the uncorrelated information
in Zb is encoded and transmitted. As both the color and
depth images are registered, only the color information in Cb

corresponding to the uncorrelated depth information needs
to be transmitted. Therefore, the redundancy in the RGB-D
information is removed in the encoding process. A high-level
overview of the process flow is shown in Fig. 2.

The information carried in the received bitstream is de-
coded and recovered. Then, to deal with the under-sampling
issue [29], and to enhance the quality of the reconstructed
color and depth images, we propose a number of post-
processing approaches. A detailed explanation of each step
is provided in the next section.

IV. IMPLEMENTATION DETAILS OF THE RPRR
FRAMEWORK

In this section, we present the major functional blocks
and algorithms of the RPRR framework: Relative pose es-
timation, forward/backward prediction, block-based update,
the lossless differential coding scheme, and post-processing
operations.

A. Relative Pose Estimation

The relative pose between RGB-D sensors a and b can be
represented by a transformation matrix, Mab in SE(3),

Mab =

[
R t

0 0 0 1

]
(1)

where R is a 3×3 rotation matrix and t is a 3×1 translation
vector.

The ICP-BD algorithm, published in one of our earlier
papers [25], determines the relative pose at a consistent
real world scale through explicit registration of surface
geometries extracted from two depth images. The registration
problem is solved iteratively by minimizing a cost function,
in which error metrics are defined based on the bidirectional
point-to-plane geometrical relationship.

The cooperating beam-based sensor model [30] with ICP
algorithm reduces the adverse effects in point cloud matching
for situations where two views of a scene are partially
seen by the sensors. Moreover, this algorithm only requires
sensors to exchange a very small amount of depth infor-
mation, which makes it bandwidth efficient, and so fits the
requirements of VSNs.

B. Forward Prediction/Backward Check and Block-based
Update

1) Forward Prediction: Let pe = [x; y; z; 1]T denote a
real world point in Euclidean space. Given the intrinsic



parameters of the RGB-D sensor, pe can be directly derived
from the corresponding pixel in depth image as

pe ≡
1

z

[
x y z 1

]
≡
[
i−ic
fx

j−jc
fy

1 1
z

]T
, (2)

where (i, j) denotes the pixel coordinates in the depth image,
(ic,jc) is the principal point and (fx,fy) is the focal length
of the camera. We define that pe can be observed by both
homogeneous mobile RGB-D sensor a and b. The projections
of pe are located at pixel coordinates (ia, ja) and (ib, jb)
on the depth images Za and Zb, respectively. Under the
assumption that the world coordinates system is equal to the
mobile sensor coordinate system, the depth pixel (projection)
at (ia, ja) in Za can establish a relationship between the
depth pixel at (ib, jb) in Zb as follows,[

ib−ic
fx

jb−jc
fy

1 1
zb

]T
= Mab

[
ia−ic
fx

ja−jc
fy

1 1
za

]T
(3)

Therefore, with the accurate relative pose information Mab,
sensor a can predict a depth image Z∗

b , which is virtually
captured at sensor b’s viewpoint, by applying Eq. 3 on each
pixel in Za.

In this process, it can happen that two or more different
depth pixels are warped to the same pixel coordinate in Z∗

b .
This over-sampling issue happens because some 3-D world
points are occluded by the other ones at the new viewpoint.
In order to solve this problem, we always compare the depth
values of the pixels warped to the same coordinate. The
pixel with the closest range information to the camera always
overwrites the other pixels. As the depth image is registered
to the color image, the color pixels in Ca can also be mapped
along with the depth pixels to generate a virtual color image
C∗

b .
Then all of the captured images and virtual images are

decomposed into 8 × 8 macro blocks. In the virtual depth
image, some blocks have no depth information. This is
because none of the pixels in Za can be warped to these
regions. It indicates the blocks with the same coordinates in
Zb and Cb contain the information that can only be observed
by sensor b while it cannot be seen by sensor a. Therefore,
after sensor a transmits these block coordinates to sensor b,
sensor b will record these block coordinates as a set, Bf ,
and only needs to transmit the RGB-D information in these
blocks of Zb and Cb to the remote monitoring station.

An example of this process is shown in Fig. 4. In this
example, the regions containing the depth information that
can only be observed by Zb are outlined in yellow.

2) Backward Check and Block-Based Update: Although
the forward prediction can detect the uncorrelated informa-
tion in the images captured by the other sensor in most
circumstances, it may fail to operate correctly in situations
when some points are occluded by the objects that can
only be seen by sensor b, but which cannot be observed
by sensor a. A typical scenario is shown in Fig. 5. In
this case, as the cylinder cannot be observed by sensor
a, it will incorrectly treat the background (shown as the
dashed rectangle) as the surface that can be observed by

Fig. 4: An intuitive example of forward prediction. The depth
image Z∗

b is predicted from Za as the image captured by
sensor b virtually. The uncorrelated information in Zb is
outlined in yellow.

Fig. 5: The rectangular surface area in the background in the
FoV of sensor b is occluded by the cylinder in the foreground.

sensor b. However, the surface of the cylinder is included in
Zb, which occludes the background from the viewpoint of
sensor b. Therefore, the forward prediction cannot accurately
determine the uncorrelated depth and color information in
such a situation.

In order to resolve this problem, we introduce a backward
check mechanism. Similar to the warping process from
sensor a to b, in the backward check process, sensor b can
also generate virtual images Z∗

a and C∗
a, which are virtually

captured at sensor a’s viewpoint. The warping process in the
backward check can be described as[

ia−ic
fx

ja−jc
fy

1 1
za

]T
= M−1

ab

[
ib−ic
fx

jb−jc
fy

1 1
zb

]T
.

(4)
Pixels at (ib, jb) in Zb can be mapped to (ia, ja) in Z∗

a. In
this process, the pixels representing the range information
of the surface of the cylinder will move out of the image
coordinate range and will not be shown in Z∗

a. Sensor
b needs to transmit the image blocks which contain the
information of the cylinder surface which cannot be seen
by sensor a. Therefore, sensor b requires to determine the
blocks including pixels in Zb that move out of the image
range in the backward check process. The set of these block
coordinates is Bb. Then, sensor b will derive the universe of
the block coordinate sets Bf and Bb as Boverall = Bf ∪Bb.



The blocks of Boverall in Zb and Cb contain the information
which can only be observed by sensor b.

Therefore, each sensor can easily determine the uncorre-
lated RGB-D information by using only the relative pose
information, and consequently avoid transmitting/receiving
and comparing complete color and depth images: sensor a
sends the complete captured color and depth images, while
sensor b sends only the information in Boverall to the remote
monitoring station. As we show later in the paper, this leads
to significant bandwidth saving.

C. Post-Processing at Decoder Side

After the removal of the redundant information, the uncor-
related color/depth information is compressed to improve the
efficiency of the communication channel usage. For this pur-
pose, the depth data is encoded by entropy coding scheme.
For RGB color data, we use the Progressive Graphics File
(PGF) scheme presented in [31].

At the decoder side, the received bitstream is decoded
with the same look-up tables used at the encoder side. After
the color and depth images captured by sensor a have been
decoded, we use these decoded images to predict the depth
and color images captured by sensor b.

The 3-D image warping process (Eq. 3) may introduce
some visual artifacts in the synthesized view, such as cracks
and ghosting artifacts [32]. Cracks are small disocclusions,
and mostly occur due to under-sampling. Ghosts are artifacts
due to the projection of pixels that have background depth
and mixed foreground/background color. Various methods
[33], [34] have been proposed in the literature to prevent
these artifacts. We adopt the recovery scheme proposed in
[35] and an adaptive median filter to remove the cracks and
ghosts artifacts respectively.

V. EXPERIMENTAL RESULTS AND PERFORMANCE
EVALUATION

In this set of experiments, we evaluated the performance of
the RPRR framework by using two mobile RGB-D sensors
of our VSN platform. Color and depth images were captured
in four different scenes, as shown in Fig. 6. In this set-up,
sensor a transmits entire captured color and depth images
to a central station (receiver). Then, sensor b is required to
transmit only the uncorrelated color and depth information
that cannot be observed by sensor a. At the receiver, the color
and depth images captured by sensor b are reconstructed us-
ing the information transmitted by two sensors. As the entire
color and depth images captured by sensor a are compressed
and transmitted to the receiver, we only had to evaluate the
reconstruction quality of the images captured by sensor b.
The depth images are usually complementary to the color
images in many applications, and in our framework the color
images are reconstructed according to depth image warping.
The reconstructed color images are necessarily related to
the reconstructed depth images. If the color images can be
accurately reconstructed, the reconstructed depth images are
also precise. Therefore, in this set of experiments we focused
on evaluating the quality of the reconstructed color images.

A. Subjective Evaluation

The image blocks transmitted by sensor b are shown in the
third row of Fig. 6. The fourth row of the figure illustrates
the images reconstructed by using them.

It can be seen that the images captured by sensor a have
been warped and stitched to generate the reconstructed color
images captured by sensor b. In the reconstructed images
of scene 2 and 4, we also observe significant color changes
over the stitching boundary. This is because the illumination
is inconsistent in the scene and the images captured by the
sensors have different levels of brightness. Generally, it is
clear that the reconstructed images preserve the structural
information of the original images accurately.

B. Objective Evaluation

Even though many approaches have been proposed to
compress multi-view images, they cannot be applied to our
system. These approaches either require the transmitter to
have knowledge of the full set of images or only work on
cameras with very small motion differences. In contrast, in
our case, each sensor only has its own captured image, and
the motion difference between two visual sensors is very
large. To the best of our knowledge, this is the first distributed
framework to efficiently code and transmit images captured
by multiple RGB-D sensors with large pose differences, and
so, we do not have any work to compare ours against. For
this reason, we can only compare the performance of our
framework with the approaches which compress and transmit
images independently.

By adjusting the compression ratio of the coding scheme,
RPRR framework can vary its coding performance. The
performance was evaluated according to the following two
aspects: reconstruction quality and compression ratio. We
measured the Peak-Signal-to-Noise-Ratio (PSNR) between
the reconstructed and original images captured by sensor b
with different compression ratios. The results are shown in
Fig. 7.

Fig.7 shows that the RPRR framework can achieve much
higher compression ratios than the independent transmission
scheme. When the image quality of the reconstructed images
are the same (as measured by PSNR values), the average
compression ratio achieved by the RPRR framework is
174.6% higher than the independent transmission scheme.
However, it should be noted that, the PSNR upper bounds
achieved by RPRR framework have limits. It is because the
reconstruction quality depends on the depth image accuracy
and correlations between color images. Since the depth
images generated by a Kinect sensor is not accurate enough,
the displacement distortion of depth images, especially the
misalignment around the object edges, introduces noise in
the reconstruction process. Another reason is the incon-
sistent illumination between the color images captured by
two sensors. Even if the forward prediction/backward check
process establishes the correct correspondences between two
color pixels according to the transformation between depth
images, the values of these two color pixels can be very
different due to the various brightness levels in two images.



(a) Scene 1 (b) Scene 2 (c) Scene 3 (d) Scene 4

(e) Scene 1 (f) Scene 2 (g) Scene 3 (h) Scene 4

(i) Scene 1 (j) Scene 2 (k) Scene 3 (l) Scene 4

(m) Scene 1 (n) Scene 2 (o) Scene 3 (p) Scene 4

Fig. 6: A demonstration of the scheme over four sets of images: First and second rows show the images captured by sensors
a, and b respectively. In the third row, image blocks transmitted by sensor b are shown (here black regions denote the image
blocks that are not transmitted). The fourth row shows the reconstructed images at the receiver side using the data sent by
sensor b.

Although the structures of the scenes are preserved nicely in
the reconstructed color images, distinct color changes over
the stitching boundaries are shown in Fig. 6 (n) and (p).
This is the reason that the reconstructed images in Scene 3
have the highest PSNR while the reconstructed images in
Scene 2 have the lowest PSNR. These characteristics lead to
low PSNR upper bounds of the reconstructed color images.
A number of methods [36], [37] have been proposed to
overcome this drawback, however the time-complexity of
these methods prevents them from being implemented on
computationally-constrained sensors. Consequently, we can

say that the RPRR framework is suitable for implementation
of the applications with very limited bandwidth which re-
quire very high compression ratios. This is because when
the compression ratio increases, the quality of the color
image reconstructed by RPRR decreases more slowly than
the quality of the image compressed by the independent
transmission scheme. Due to the large amount of captured
color/depth data and limited bandwidth, our proposed RPRR
framework suits the needs of VSNs equipped with RGB-D
sensors.
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Fig. 7: Comparisons of PSNR (dB) achieved by compressing
the images at various levels by using the RPRR framework
against transmitting them independently.

C. Evaluation of Energy Consumption and Amount of Trans-
mitted Data

Also, the limited battery capacity of mobile sensors places
limits on their performance, a data transmission scheme
while attempting to reduce the transmission load, must not
have a significant negative impact on the overall energy
consumption. In this section, we present our experimental
measurements and evaluation regarding the overall energy
consumption and amount of transmitted data of the RPRR
framework collected on our eyeBug mobile visual sensors to
demonstrate this aspect.

The overall energy consumption of the RPRR framework
can be measured by

ER
overall = Eprocessing + Eencoding + Esending

= VoIptp + VoIete + VoIsts (5)

in which Vo denotes the sensor’s operating voltage, and
Ip, Ie, and Is represent the current drawn from the battery
during processing, encoding, and sending operations. tp, te,
and ts are the corresponding operation times required for
these procedures.

The overall energy consumption when images are trans-
mitted independently can be measured as,

EI
overall = Eencoding + Esending

= VoIete + VoIsts. (6)

Note that, the operation times te and ts are different in the
two transmission schemes as the image sizes change after
removing the redundant information.

Our sensor operates at 15 V, and the current levels remain
fairly constant during each operation. We measured them as
follows: Ip = 0.06 A, Ie = 0.06 A, and Is = 0.12 A.
Our experiments show that in the RPRR framework, due to
different compression ratios, the transmission time varies be-
tween 32 and 42 ms, and the operational time for processing
and encoding remains between 509 between 553 ms. The

overall energy consumption of the RPRR scheme changes
between 480 and 520 mJ, depending on the compression
ratio. The corresponding values for the independent scheme
are between 918 and 920 mJ. The data clearly show that the
RPRR framework leads to the consumption of much lower
battery capacity than the independent transmission scheme.
It cuts the overall energy consumption of the sensor nearly
by half. In the RPRR framework, the energy consumption for
two sensors are asymmetric, and if sensor a always transmits
complete images, its energy will be quickly drained. A
simple method to prolong the network lifetime is for the two
sensors to transmit complete images alternately. The current
consumed by an eyeBug in idle status is 650 mA. According
to the experimental results above, the theoretical operational
time of RPRR on two eyeBugs with 2500 mAh 3-cell (11.1
V) LiPo batteries is around 5.2 hours. In this period, around
32400 color and depth image pairs can be transmitted to the
remote monitoring station.

VI. DISCUSSION AND CONCLUDING REMARKS

In this paper, we introduced a multi-sensor data fusion
framework that efficiently removes the redundant visual
information captured by the RGB-D sensors of a mobile
VSN. In our work, we considered a multiview scenario in
which pairs of sensors observe the same scene from different
viewpoints. By taking advantage of the unique opportunities
offered by depth images, our scheme identifies the correlated
regions between the images captured by these sensors using
only the relative pose information. Then, only the informa-
tion related to the uncorrelated regions is transmitted. This
approach significantly reduces the amount of information
transmitted compared with sending two individual images in-
dependently. In addition, through our experimental platform
we demonstrated that the scheme’s computational resource
requirements are quite modest, and it can run on battery-
operated sensor nodes. The experimental results confirm that
the compression ratio achieved by the RPRR framework is
nearly twice the independent transmission scheme, and it
accomplishes this result while almost halving the energy
consumption of the independent transmission scheme on
average.

The RPRR framework is the first attempt to remove the
redundancy in the color and depth information observed by
VSNs equipped with RGB-D sensors. Our scheme, however,
operates only on pairs of mobile sensors at this stage. A
relatively straightforward extension of the RPRR framework
for networks with large number of RGB-D sensors could
be by selecting one sensor as “the reference” one that
transmits complete images (like sensor a in Fig. 2) while
the other sensors transmit only the uncorrelated information
(like sensor b in Fig. 2). However, this approach will not
be sufficient to eliminate all the redundant information and
further refinements are possible. In the next stage of our
research efforts we will concentrate on developing a more
sophisticated method which will use feature matching algo-
rithms to assign sensors with overlapping FoVs to the same
subgroups to apply RPRR on sensors in the same subgroup.



We expect that this method will remove redundancies very
effectively in VSNs consisting of a large number of RGB-D
sensors.
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