
HAL Id: hal-01398231
https://hal.science/hal-01398231v2

Submitted on 16 May 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Space and time dimensions of algebras with applications
to Lorentzian noncommutative geometry and quantum

electrodynamics
Nadir Bizi, Christian Brouder, Fabien Besnard

To cite this version:
Nadir Bizi, Christian Brouder, Fabien Besnard. Space and time dimensions of algebras with applica-
tions to Lorentzian noncommutative geometry and quantum electrodynamics. Journal of Mathemat-
ical Physics, 2018, 59 (6), pp.062303. �10.1063/1.4986228�. �hal-01398231v2�

https://hal.science/hal-01398231v2
https://hal.archives-ouvertes.fr


Space and time dimensions of algebras with application to Lorentzian
noncommutative geometry and quantum electrodynamics
Nadir Bizi, Christian Brouder, and Fabien Besnard

Citation: Journal of Mathematical Physics 59, 062303 (2018); doi: 10.1063/1.5010424
View online: https://doi.org/10.1063/1.5010424
View Table of Contents: http://aip.scitation.org/toc/jmp/59/6
Published by the American Institute of Physics

Articles you may be interested in
Families of spectral triples and foliations of space(time)
Journal of Mathematical Physics 59, 063507 (2018); 10.1063/1.5021305

Series solutions of Laguerre- and Jacobi-type differential equations in terms of orthogonal
polynomials and physical applications
Journal of Mathematical Physics 59, 063508 (2018); 10.1063/1.5027158

From phase space to multivector matrix models
Journal of Mathematical Physics 59, 062302 (2018); 10.1063/1.4986228

Framed M-branes, corners, and topological invariants
Journal of Mathematical Physics 59, 062304 (2018); 10.1063/1.5007185

SL(3, C) structure of one-dimensional Schrödinger equation
Journal of Mathematical Physics 59, 062106 (2018); 10.1063/1.4994125

Generalized Fock spaces and the Stirling numbers
Journal of Mathematical Physics 59, 063509 (2018); 10.1063/1.5035352

http://oasc12039.247realmedia.com/RealMedia/ads/click_lx.ads/www.aip.org/pt/adcenter/pdfcover_test/L-37/920663169/x01/AIP-PT/COMSOL_JCPArticleDL_WP_042518/comsol_JAD.JPG/434f71374e315a556e61414141774c75?x
http://aip.scitation.org/author/Bizi%2C+Nadir
http://aip.scitation.org/author/Brouder%2C+Christian
http://aip.scitation.org/author/Besnard%2C+Fabien
/loi/jmp
https://doi.org/10.1063/1.5010424
http://aip.scitation.org/toc/jmp/59/6
http://aip.scitation.org/publisher/
http://aip.scitation.org/doi/abs/10.1063/1.5021305
http://aip.scitation.org/doi/abs/10.1063/1.5027158
http://aip.scitation.org/doi/abs/10.1063/1.5027158
http://aip.scitation.org/doi/abs/10.1063/1.4986228
http://aip.scitation.org/doi/abs/10.1063/1.5007185
http://aip.scitation.org/doi/abs/10.1063/1.4994125
http://aip.scitation.org/doi/abs/10.1063/1.5035352


JOURNAL OF MATHEMATICAL PHYSICS 59, 062303 (2018)

Space and time dimensions of algebras with application
to Lorentzian noncommutative geometry and quantum
electrodynamics

Nadir Bizi,1 Christian Brouder,1,a) and Fabien Besnard2
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An analogy with real Clifford algebras on even-dimensional vector spaces suggests
assigning an ordered pair (s, t) of space and time dimensions (or equivalently an
ordered pair (m, n) of metric and KO dimensions) modulo 8 to any algebraic structure
(that we call CPT corepresentation) represented over a Hilbert space by two self-
adjoint involutions and an anti-unitary operator having specific commutation relations.
It is shown that this assignment is compatible with the tensor product: the space and
time dimensions of the tensor product of two CPT corepresentations are the sums of
the space and time dimensions of its factors, and the same holds for the metric and KO
dimensions. This could provide an interpretation of the presence of such algebras in
PT -symmetric Hamiltonians or the description of topological matter. This construction
is used to build an indefinite (i.e., pseudo-Riemannian) version of the spectral triple
of noncommutative geometry, defined over a Krein space and classified by the pair
(m, n) instead of the KO dimension only. Within this framework, we can express the
Lagrangian (both bosonic and fermionic) of a Lorentzian almost-commutative spectral
triple. We exhibit a space of physical states that solves the fermion-doubling problem.
The example of quantum electrodynamics is described. Published by AIP Publishing.
https://doi.org/10.1063/1.5010424

I. INTRODUCTION

Clifford algebras are at the heart of the description of matter not only because fermions
(spinors) are their irreducible representations, but also because they classify topological insulators
and superconductors.1,2 They are also used as a template for deeper structures, such as K-theory3,4

or noncommutative geometry (NCG),5 which pervade physics from topological matter to disordered
systems and the standard model of particles.

The main aim of this paper is to describe a pseudo-Riemannian analog of noncommutative
geometry, but on the way we put forward a procedure to assign a space dimension and a time
dimension to some algebraic structure that we define now. We need the following:

• A complex Hilbert space H.
• A self-adjoint involution χ (i.e., χ2 = 1) defining the parity of operators: an operator a on H

is even if χaχ = a and odd if χaχ = �a. For example, χ can be the chirality operator or the
inversion symmetry.

• A second self-adjoint involution η, which can be the flat-band Hamiltonian sign H6 or a
fundamental symmetry.

• An anti-linear (charge conjugation) map J such that J†J = 1 and J2 = ε = ±1.

a)Electronic mail: christian.brouder@upmc.fr
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• Specific commutation or anticommutation relations between χ, η, and J defined by three signs
(ε ′′, κ, κ′′) introduced in Eqs. (3)–(5).

In a Clifford algebra C`(p, q) such that p + q is even, the four signs (ε , ε ′′, κ, κ′′) determine
a pair of space and time dimensions (s, t) modulo 8 in a unique way. We propose to assign the
same dimensions (s, t) to any algebra satisfying the same relations between χ, η, and J. This is
similar to the way Atiyah related the KO-dimension to p � q mod 8 in Clifford algebras.3 These two
dimensions solve the question whether indefinite spectral triples have a notion corresponding to the
KO-dimension.7

Such an assignment is meaningful because it is compatible with the tensor product: the dimen-
sions corresponding to the signs of the (graded) tensor product A1⊗̂A2 of two such algebras are the
sum of the dimensions of A1 and A2 mod 8.

When we apply this construction to a spectral triple of noncommutative geometry, χ is the usual
chirality operator, η is a fundamental symmetry defining a Krein-space structure on H, and J is the
usual charge conjugation. In the case of an almost-commutative spectral triple, the space and time
dimensions of the commutative (manifold) triple are the physical ones and space and time dimensions
are also assigned to the finite triple.

The paper starts with a description of χ, η, and J in a Clifford algebra, which sets up the cor-
respondence between commutation relations and space-time dimensions. Then, this correspondence
is shown to hold for more general algebras by proving that it is compatible with the graded tensor
product of algebras. In Sec. IV, we introduce Krein spaces, which are the natural generalizations
of Hilbert spaces associated with spinors on pseudo-Riemannian manifolds. Section V defines the
corresponding generalized spectral triples, which we call indefinite spectral triples. This framework
is then applied to define the spectral triple of Lorentzian quantum electrodynamics (QED) and its
Lagrangian.

II. AUTOMORPHISMS OF CLIFFORD ALGEBRAS

We investigate the commutation relations of three operators in Clifford algebras over vector
spaces of even dimension 2`. They are simple algebras whose irreducible representation is S 'C2` .

The Clifford algebra C`(p, q), with p + q = 2`, is the real generated by 2` matrices
γj over S such that γiγj + γjγi = 2ε jδij, where p coefficients ε j are equal to +1 and q are
equal to �1.

An indefinite inner product on a complex vector space V is a non-degenerate Hermitian form
(i.e., a sesquilinear form on V which satisfies (v , u)= (u, v)). It is indefinite because we do not assume
that (v , v) > 0 if v , 0. It was shown8–10 that S can be equipped with two indefinite inner products
(·,·)+ and (·,·)

�

such that

(γjφ,ψ)± =±(φ, γjψ)±, (1)

for every γj, and every elements φ andψ of S. These two inner products are unique up to multiplication
by a real factor, and they are invariant under the action of Spin(p, q)+, the connected component of
the identity in the spin group Spin(p, q). Moreover, S can be equipped with two charge conjugations
J±, which are anti-linear maps such that J±γj = ±γjJ±.

To give a concrete representation of the indefinite inner products and the charge conjugations,
we equip the complex vector space S with its standard (positive definite) scalar product 〈·, ·〉. By
using results scattered in the literature,8,11–15 we can state the following. In all representations used
in practice, the gamma matrices satisfy γ†j = ε jγj = γ

−1
j , where † denotes the adjoint with respect to

the scalar product, and γj = ζjγj, where the overline denotes the complex conjugation and ζ j is +1
(γj is real) or �1 (γj is imaginary). Shirokov showed15 that these representations can be classified
by the number of their symmetric gamma matrices (i.e., such that γT

j = γj) modulo 4, which is equal
to ` + ζ mod 4, where ζ can take the value 0 or 1. Both cases are useful in practice. For example,
the most common representations of C`(1, 3) are the Dirac, Majorana, and chiral gamma matrices.16

The number of symmetric matrices of these representations is 2, 3, and 2, corresponding to ζ = 0, 1,
and 0.
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Then, it can be shown that the chirality matrix χ = i(p�q)/2γ1. . .γ2` anticommutes with all γj

and satisfies χ† = χ, χ2 = 1, and χ = (−1)ζ χ. To construct the indefinite inner products, we define
linear operators η± (called fundamental symmetries) such that (φ,ψ)± = 〈φ, η±ψ〉, η

†
± = η±, and η2

± = 1.
From Eq. (1), η±γ

†

j η± =±γj. These fundamental symmetries are unique up to a sign and are built
as follows. Let Ms be the product of all self-adjoint gamma matrices and Mas be the product of the
anti-self-adjoint ones. Then

η+ = iq(q−1)/2 χqMas,

η− = ip(p+1)/2 χpMs.

To construct the charge conjugations J±, let ni be the number of imaginary gamma matrices and
N be their product. Then

J+ = i(1−ζ )(p−q)/2 χni NK ,

J− = i(1−ζ )(p−q)/2+ζ χni+1NK ,

where K stands for complex conjugation. The relation ζ = ni + (p � q)/2 mod 2 holds. The charge
conjugations J± satisfy J±γj =±γjJ±, J†±J± = 1, and J± commutes with K. These conditions determine
J+ and J

�

uniquely up to a sign.
In every Clifford algebra C`(p, q) with p + q even, we can choose J = J+ or J = J

�

and η = η+

or η = η
�

. This makes four possible conventions, which we call cardinal conventions, for which we
have

J2 = ε , (2)

J χ = ε ′′ χJ , (3)

Jη = ε κηJ , (4)

η χ = ε ′′κ′′ χη, (5)

where ε = (�1)n(n+2)/8, ε ′′ = (�1)n/2, κ = (�1)m(m+2)/8, and κ′′ = (�1)m/2, for some integers m and n
modulo 8 (see Table I). Note that ε and ε ′′ are the same functions of n as κ and κ′′ are of m. These
signs were defined so that ε and ε ′′ agree with Connes’ KO-dimension tables.5,17 More precisely, n
agrees with Connes’ KO-dimension, while m is a new dimension, which we call metric dimension.

In physics, the Dirac operator is written as D = iγµ∇µ in the so-called West-coast convention18

and D = γµ∇µ in the East-coast one. Charge-conjugation symmetry requires JD = DJ, and the
reality of the fermionic Lagrangian implies that D is self-adjoint with respect to the indefinite inner
product. Thus, the West-coast convention corresponds to J = J

�

and η = η+, while the East-coast
one corresponds to J = J+ and η = η

�

.19 This is related to the signature of the metric. Indeed, in
Minkowski spacetime, we use plane wave solutions of the (massive) Dirac equation ψ(x)= ueikµxµ .
Compatibility with the dispersion relation k2 =m2

e , where me is the fermion mass, implies the metric
(+, �, �, �) for the West-coast convention and (�, +, +, +) for the East-coast one.19

In Euclidean space, we can be interested in the real solutions ψ(x)= uekµxµ . The metric (�, �, �,
�) corresponding to J = J

�

and η = η
�

is often used, and we call it the North-coast convention because
Euclid lived on the coast of North Africa. The remaining possibility is J = J+ and η = η+ that we call
the South-coast convention. The values of these dimensions in terms of the cardinal conventions are
given in Table II. Related tables can be found in the literature.20–22

In Lorentzian spacetime, we need plane waves to describe scattering experiments. Therefore, only
the West- and East-coast conventions are allowed. It is interesting to note that, for both conventions,
the dimensions n and m are the same. Indeed, in the West-coast convention, (p, q) = (1, 3) and

TABLE I. Signs ε , κ and ε ′′, κ′′ in terms of the metric and KO dimensions
m and n.

m, n 0 2 4 6

κ, ε 1 �1 �1 1
κ′′, ε ′′ 1 �1 1 �1
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TABLE II. Metric, KO-dimension (m, n), and charge conjugation, funda-
mental symmetry (J, η) for the four cardinal conventions. The dimensions
m and n are to be understood modulo 8.

Convention m n J η

West-coast p + q p � q J
�

η+

East-coast p + q q � p J+ η
�

North-coast � p � q p � q J
�

η
�

South-coast � p � q q � p J+ η+

TABLE III. (t, s) where t is the number of time dimensions and s is the
number of space dimensions s as a function of m and n. The general solution
is (t + 8j, s + 8k), where j and k are integers. The relation between (p, q)
and (t, s) is p = t, q = s (West coast); p = s, q = t (East coast); p = �s, q = �t
(North coast); and p = �t, q = �s (South coast).

n = 0 2 4 6

m = 0 (0,0) (4,4) (1,7) (5,3) (2,6) (6,2) (3,5) (7,1)
2 (1,1) (5,5) (2,0) (6,4) (3,7) (7,3) (0,2) (4,6)
4 (2,2) (6,6) (3,1) (7,5) (4,0) (0,4) (1,3) (5,7)
6 (3,3) (7,7) (4,2) (0,6) (5,1) (1,5) (6,0) (2,4)

n = p � q = 6 mod 8, while for the East-coast convention (p, q) = (3, 1) and n = q � p = 6 mod
8. In other words, the KO dimension n is the number of time dimensions t minus the number of
space dimensions s, while m is their sum t + s whatever the convention is. It is therefore tempting to
interpret the dimensions m and n in terms of time and space dimensions by solving n = t � s mod 8 and
m = t + s mod 8. This associates a space dimension and a time dimension with any Clifford algebra.

By inverting the relation between (s, t) and (m, n), we can associate two pairs of space and time
dimensions (j, k) modulo 8 with every pair (m, n) (see Table III). Indeed, if (j, k) is a solution of
j � k = n mod 8 and j + k = m mod 8, then (j + 4, k + 4) is also a solution. This corresponds to the
Clifford algebra isomorphism C`(s, t + 8) ' C`(s + 8, t) ' C`(s + 4, t + 4).23 The relation between
(s, t) and (p, q) for the four conventions is given in the caption of Table III.

III. GENERALIZATION

We generalize the previous results by defining a CPT corepresentation to be a quadruple
S = (H, χ, η, J), where H is a complex Hilbert space equipped with two self-adjoint involutions
χ and η (i.e., χ† = χ, η† = η, and χ2 = η2 = 1) and an anti-unitary operator J that satisfy Eqs. (2)–(5)
for some signs ε , ε ′′, κ, and κ′′. We coined the name CPT corepresentation because a representation
involving anti-linear operations is called a corepresentation24 and because J, χ, and η generate the
same group as the lift of C, P, and T operations to the spinor bundle.

By using the chirality operator χ, we can write H=H+ ⊕ H−, where χv = ±v for v ∈H±. An
element v of H± is said to be homogeneous, and its parity is |v | = 0 if v ∈H+ and |v | = 1 if v ∈H−.
The parity of a linear or antilinear map T on H is |T | = 0 if χT χ = T and |T | = 1 if χT χ = �T. From
relations (3) and (5), we see that ε ′′ = (�1)|J | and κ′′ = (�1)|η |+|J |.

The graded tensor product ⊗̂ of operators is defined by (T1⊗̂T2)(φ1⊗φ2)= (−1) |T2 | |φ1 |T1φ1⊗T2φ2

when φ1 and φ2 are homogeneous. It is the natural tensor product of Clifford algebras, thanks to
Chevalley’s relation,25

C`(p1, q1)⊗̂C`(p2, q2)=C`(p1 + p2, q1 + q2), (6)

which shows that the graded tensor product is indeed compatible with space and time
dimensions.

The graded tensor product T1⊗̂T2 is the same operator as the non-graded tensor product
T1 χ

|T2 |

1 ⊗ T2. For example, the graded Dirac operator of the tensor product D=D1⊗̂1 + 1⊗̂D2 is
the same operator as the one given by Connes, D = D1 ⊗ 1 + χ1 ⊗ D2.



062303-5 Bizi, Brouder, and Besnard J. Math. Phys. 59, 062303 (2018)

Let us consider two CPT corepresentations S1 = (H1, χ1, η1, J1) and S2 = (H2, χ2, η2, J2) with
signs determined by (m1, n1) and (m2, n2), respectively. We now want to define a graded tensor
product S1⊗̂S2 = (H, χ, η, J) which is also a CPT corepresentation. We naturally have H=H1 ⊗H2.
We claim that we should define

χ = χ1⊗̂ χ2, (7)

J = J1 χ
|J2 |

1 ⊗̂J2 χ
|J1 |

2 , (8)

η = i |η1 | |η2 |η1 χ
|η2 |

1 ⊗̂η2 χ
|η1 |

2 . (9)

These formulas can be derived by treating the case where H1 and H2 are the spinor spaces of two
Clifford algebras. If {γi} and {γ′j } are generators of C`(p1, q1) and C`(p2, q2), respectively, then
{γi⊗̂1, 1⊗̂γ′j } are generators of C`(p1 + p2, q1 + q2) by the isomorphism (6). It is easily checked that
χ given above is self-adjoint, squares to 1, and anti-commutes with the gamma matrices γi⊗̂1 and
1⊗̂γ′i . We conclude by invoking uniqueness (up to a sign) of the chirality operator. Similarly, if J1

and J2 are chosen to anti-commute with gamma matrices (so they are (J1)− and (J2)−), then J given
by Eq. (8) is an anti-unitary map that defines J

�

up to a phase. Finally, if (η1)+ and (η2)+ are inserted
into Eq. (9), then η is a self-adjoint involution that defines the unique indefinite inner product (up to
a sign9) on H such that the γi⊗̂1 and the 1⊗̂γ′i are Krein-self-adjoint (see Sec. IV).

The first remarkable property of this tensor product is that it holds for any cardinal convention
although we derived it for the West-coast one. In other words, Eq. (8) with (J1)+ and (J2)+ gives J+

and Eq. (9) with (η1)− and (η2)− gives η
�

. The second property is that it can be used to define the
tensor product of two CPT corepresentations. In that general case, the tensor product is associative
and symmetric, the charge conjugation satisfies

J(T1⊗̂T2)J−1 = J1T1J−1
1 ⊗̂J2T2J−1

2

for arbitrary linear operators T1 and T2, and the scalar and Krein products on H=H1 ⊗ H2 are
explicitly given by

〈φ1 ⊗ φ2,ψ1 ⊗ ψ2〉= 〈φ1,ψ1〉1〈φ2,ψ2〉2

and
(φ1 ⊗ φ2,ψ1 ⊗ ψ2)= i |η1 | |η2 |(φ1,ψ1)1(φ2, χ |η1 |

2 ψ2)2.

The first formula is by definition, and the second formula comes from the definition of η in Eq. (9).
This ensures the Kasparov identities

(T1⊗̂T2)× = (−1) |T1 | |T2 |T×1 ⊗̂T×2 ,

(T1⊗̂T2)† = (−1) |T1 | |T2 |T†1 ⊗̂T†2

for the tensor product of two linear operators and

(T1⊗̂T2)× = (−1) |η1 | |η2 |+ |T1 | |T2 |T×1 ⊗̂T×2 ,

(T1⊗̂T2)† = (−1) |T1 | |T2 |T†1 ⊗̂T†2

for the tensor product of two antilinear operators.
The last remarkable property of the tensor product of CPT corepresentations is that it is additive

for the dimension pairs (m, n) and (s, t). It can be checked that χ and η are self-adjoint involutions
and J is an anti-unitary map, which satisfy Eqs. (2)–(5) for the signs of some dimensions (m, n).
Indeed, we first observe through an explicit calculation that the signs associated with S1⊗̂S2 only
depend on the signs associated with S1 and S2: ε = (−1) |J1 | |J2 |ε1ε2 (where (−1) |J1 | |J2 | = (1 + ε ′′1 +
ε ′′2 − ε

′′
1 ε
′′
2 )/2), ε ′′ = ε ′′1 ε

′′
2 , κ = (−1)( |η1 |+ |J1 |)( |η2 |+ |J2 |)κ1κ2, and κ′′ = κ′′1 κ

′′
2 . Then, the additivity of

the dimensions of CPT corepresentations follows from the fact that it holds for Clifford algebras
[see Eq. (6)].

These space and time dimensions can be used to classify topological insulators and supercon-
ductors with symmetries, as well as for the investigation of PT -symmetric Hamiltonians, because of
the presence of a Krein-space structure,26–28 to which we now turn because it is crucial to generalize
spectral triples to pseudo-Riemannian manifolds.
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IV. KREIN SPACES

We already introduced Hilbert spaces H (with a scalar product denoted as 〈·, ·〉), which are
equipped with a fundamental symmetry (i.e., a self-adjoint operator η such that η2 = 1) defining an
indefinite inner product (φ, ψ) = 〈φ, ηψ〉. In the mathematical literature, such a space is called a Krein
space. Baum8 showed that the spinor bundle of a pseudo-Riemannian manifold is naturally equipped
with the structure of a Krein space. Her work was extended by Strohmaier to noncommutative
geometry.29

Substituting an indefinite inner product for a scalar product has a striking physical consequence:
the possible existence of states with negative “probabilities” (i.e., such that (ψ, ψ) < 0). These states
were first met in physics by Dirac in 1942 in his quantization of electrodynamics.30 He interpreted
negative-probability states as describing a hypothetical world.31 Negative-probability states have now
become familiar in physics through their role in the Gupta-Bleuler and Becchi-Rouet-Stora-Tyutin
(BRST) quantizations of gauge fields.

In most applications, the indefinite inner product (·, ·) is natural (i.e., uniquely defined, up to
a scalar factor, by some symmetry conditions) and the scalar product 〈·, ·〉 is somewhat arbitrary.
In a Lorentzian manifold, the indefinite inner product is defined by the Lorentzian metric and the
scalar product corresponds to the Wick rotation following some choice of a time-like direction (see
Ref. 32 for a precise definition). Krein spaces are a natural framework for gauge field theories33–35

and Lorentzian spectral triples.7,29,32,36–39

We present now some essential properties of operators on Krein spaces. If K is a Krein space
and T :K→K is a linear operator, its Krein-adjoint T× is defined by (T×x, y) = (x, Ty) for x and y in
K. If T is unbounded, we need to take care of its domain, as described in detail in Ref. 40. A linear
operator T is Krein-self-adjoint if T× = T and Krein-unitary if T×T = TT× = 1.

An anti-linear map (i.e., a map T :K→K such that T (αx + βy)= αTx + βTy) has a
Krein-adjoint T× usually defined by (y, T×x) = (x, Ty). It is Krein-anti-unitary if, furthermore,
T×T = TT× = 1.

Any fundamental symmetry η is Krein self-adjoint. The relation between the Krein adjoint T×

and the Hilbert adjoint T† with respect to the scalar product of H is T† = ηT×η.
In physical applications, the Krein adjoint is the most natural. For example, the Dirac operator on

a pseudo-Riemannian manifold is Krein-self-adjoint. In Gupta-Bleuler quantization, the Krein adjoint
of a covariant operator is covariant. In gauge field theory, the BRST charge is Krein self-adjoint. The
Hilbert adjoint depends on the choice of a fundamental symmetry, in particular it is not covariant
in Gupta-Bleuler quantization and the BRST approach. We can now define an indefinite spectral
triple.

V. INDEFINITE SPECTRAL TRIPLE

After some pioneering studies,41–50 many papers were devoted to the extension of noncommu-
tative geometry to Lorentzian geometry.7,29,32,36–38,51–81 Inspired by these references, we define an
even-dimensional real indefinite spectral triple to be as follows:

1. A ∗-algebra A represented on a Krein space K equipped with a Hermitian form (·, ·) and a
fundamental symmetry η. We assume that the representation satisfies π(a∗) = π(a)×.

2. A chirality operator χ, i.e., a linear map on K such that χ2 = 1 and χ† = χ (where the adjoint
χ† is defined by χ† = η χ×η). The algebra commutes with χ.

3. An antilinear charge conjugation J such that J†J = 1.
4. A set of signs (ε , ε ′′, κ, κ′′) describing relations (2)–(5) between χ, η, and J.
5. A Krein-self-adjoint Dirac operator D, which satisfies JD = DJ and χD = �Dχ.

The name indefinite spectral triple was also used by Van den Dungen and Rennie with a slightly dif-
ferent meaning.74 The hypothesis π(a∗) = π(a)× is a simplifying assumption, which is well adapted
to particle physics applications, but which need not be true when discrete structures replace mani-
folds.82 We refer the reader to Refs. 29, 32, 68, and 74 for the functional analytic aspects of indefinite
spectral triples. If we compare with Connes’ spectral triples, we see that we have an additional object
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(the fundamental symmetry η) and two additional signs, κ and κ′′. Because of this more complex
structure, the KO-dimension n is no longer enough to classify indefinite spectral triples and we need
both m and n. The classification carried out in Sec. III holds also for indefinite spectral triples because
they are particular cases of CPT corepresentations.

Let (A1,H1, D1, J1, χ1, η1) and (A2,H2, D2, J2, χ2, η2) be two real even-dimensional indefinite
spectral triples. If the tensor products defined in Sec. III are supplemented with

A=A1⊗̂A2,

D=D1⊗̂1 + 1⊗̂D2,

π = π1⊗̂π2,

it can be checked that we obtain a real even-dimensional indefinite spectral triple (in particular, D is
Krein-self-adjoint, commutes with J, and anticommutes with χ).

The extension of this tensor product to odd-dimensional indefinite spectral triples seems difficult,
if one considers the complexity of the Riemannian case.83–88 Note that Farnsworth also advocated
the use of a graded tensor product.87

We define now the indefinite spectral triple encoding models of particle physics.

VI. PARTICLE PHYSICS MODELS

Particle physics models (QED, electroweak, standard model) are described by an almost com-
mutative spectral triple, i.e., the tensor product of the spectral triple S1 of a manifold M and a finite
dimensional spectral triple S2.

Connes and Lott89 derived the fermionic and gauge Lagrangians of the standard model in Rie-
mannian space. In Lorentzian spacetime, Van den Dungen found the fermionic Lagrangian, but the
gauge Lagrangian is considered to be an open problem.7 Surprisingly, the problem was already solved
in Elsner’s outstanding M.S. thesis47 (see also Refs. 90–92), where many aspects of noncommutative
geometry (e.g., Connes differential algebra, curvature, bosonic and fermionic Lagrangians) are gen-
eralized to the case where the Hilbert space is replaced by a vector space equipped with a sesquilinear
form. Indefinite spectral triples clearly fit into that framework. When the base manifold M is not
compact, Elsner defines a family of bosonic Lagrangians An = ∫Un

√
|g|dxLb(x), where the relatively

compact open sets Un form an exhausting family covering M and Lb =−ReTr(θ×θ) is the Lagrangian
density. The real part is required because the algebra is real.47 The two-form θ in Connes’ differential
algebra is the curvature of the gauge potential ρ, and the trace is

Tr(M1 ⊗ M2)=Tr1(M1)Tr2(M2),

where Tr1 is the trace over the spinor fibre over M and Tr2 is the trace over the finite dimensional
Krein space K2.

The family of open sets ensures that, for any compactly supported variation, there is an n0 such
that Un contains the support of the variation for every n > n0 and the variation of An is well defined.
This is compatible with the NCG point of view because Van Suijlekom proved the conceptually
important fact that any noncommutative geometry can be considered as an algebra bundle over a
Hausdorff base space.93 We calculate Lb for QED in this paper and for the standard model in a
forthcoming publication. We use the fermionic Lagrangian Lf = (Ψ, (D + A + JAJ−1)Ψ).7,47,52 Note
that in the Riemannian NCG Lagrangian the first Ψ is replaced by JΨ.17

An important and long-standing problem is that only physical states Ψ must be used in the
fermionic Lagrangian, while the trace Tr is over the whole space K1 ⊗ K2. Lizzi et al.43 pointed
out that their bosonic Lagrangian over physical states is different from Lb and not physically
valid (it contains CPT -symmetry violating terms). We discuss now this so-called fermion doubling
problem.

VII. FERMION DOUBLING PROBLEM

In this section, we consider a four-dimensional Lorentzian manifold M and the finite dimen-
sional space is written as the sum K2 =KL ⊕ KR ⊕ KR ⊕ KL of left and right particles and their
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antiparticles. A pseudo-orthonormal basis of these spaces is denoted by pj
L, pj

R, pjc
R = J2pj

R, and

pjc
L = J2pj

L, respectively. In QED j = 1, because the electron is the only particle, in the standard
model j = 1, . . ., 24 (three generations of neutrinos, electrons, up and down quarks with three
colors). The name of the fermion doubling (or quadrupling) problem comes from the fact that a
state in K1 ⊗ K2 corresponding to a particle p can be written as a linear combination of ψ ⊗ pL,
ψ ⊗ pR, ψ ⊗ pc

L, and ψ ⊗ pc
R. Since ψ ∈K1 = Γ(M, S) is a four-dimensional (Dirac) spinor, each par-

ticle with its antiparticle is described by a 16-dimensional vector instead of a four-dimensional one.
It was also observed that the fermion doubling problem is different in Lorentzian and Riemannian
signatures.94

To solve the problem, we call Vphys the set of states of the form Ψ = (1 + J)Ψ0, where

Ψ0 =
∑

j

ψ
j
L ⊗ pj

L + ψj
R ⊗ pj

R,

where ψj
L and ψj

R are two-dimensional Weyl fermions (obtained as χ±1ψ where χ±1 = (1 ± χ1)/2).
This solution is a variation of those proposed by Lizzi et al.43 and Elsner et al.47,92

The degrees of freedom are reduced to four for each particle (two forψj
L⊗pj

L and two forψj
R⊗pj

R).
The antiparticle states do not correspond to additional degrees of freedom because they are obtained
by applying J to the particle states.47,95 These physical states can be singled out by the requirement
that they are invariant under all Krein-unitary operators commuting with J and χ. They satisfy the
Weyl condition Ψ = χΨ96 and the Majorana condition Ψ = JΨ, first proposed by Barrett52 (when J2

= 1). If one requires only invariance under the gauge group and local Lorentz transformations, more
general physical states are possible.

Lizzi et al.43 noticed that left-handed particles (for the Lorentz group) ψL must also be left-
handed particles pL for the gauge group to be physically meaningful. In Grand Unified Theories
(GUT), where each particle p also appears in four varieties: pL, pR, pc

L, and pc
R,97 the identification

of the spinor and gauge variables is so obvious that it is implicit and a state like ψL ⊗ pL is simply
denoted by pL.

We can now define the trace of M = M1 ⊗ M2 over physical states as

Tr′M =
∑

k,j,P=L/R

〈(1 + J)Ψkj
P , (M1 ⊗ M2)(1 + J)Ψkj

P 〉,

whereΨkj
P = ek

P ⊗ pj
P and ek

P is a basis of two-component spinors ψP. Note that Tr and Tr′ are different
because Tr has sums over states which are not in Vphys, such as ψL ⊗ pR.

This choice of physical states solves the fermion doubling problem because, although Tr and
Tr′ are generally not proportional, Re Trθ×θ = 2 Re Tr′θ×θ for the indefinite spectral triples of QED
and the standard model. This will be clear for QED and will be discussed for the standard model in
a forthcoming paper.

We can restate this result as follows. We have two natural indefinite inner products on the
space of operators. The first one, (A, B) = Re Tr(A×B), is determined by the invariance under
Krein-unitary transformations, and the second one, (A, B)′ = Re Tr′(A×B), is determined by the
set Vphys of physical states. It is important to check that both properties are consistent for physical
models.

VIII. INDEFINITE SPECTRAL TRIPLE OF QED

The NCG model of QED in Riemannian spacetime was described by Van den Dungen and Van
Suijlekom98 and in Lorentzian space by Van den Dungen,7 who did not include antiparticles and the
charge conjugation operator. The manifold spectral triple consists of a Lorentzian 4D manifold M,
a Dirac operator D1 = iγµ∇µ, where ∇µ is the covariant derivative (including the spin connection),
and the Krein space Γ(M, S).8 In the chiral representation of the gamma matrices,16 the operators
are
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χ1 =

(
−1 0
0 1

)
, η1 =

(
0 1
1 0

)
, J1 = i

(
0 σ2

−σ2 0

)
K ,

where K means the complex conjugation and σ2 is the Pauli matrix. We use the same algebra
A=C ⊕C as van den Dungen7 and the Krein space K2 =C4 with basis states (eL, eR, ec

R, ec
L). The

representation of (a, b) ∈A and the operators are, in terms of Pauli matrix σ1, σ2, and σ3,

π2(a, b)= *
,

a1 0

0 b1
+
-
, χ2 =−*

,

σ3 0

0 σ3
+
-
,

η2 = *
,

−σ3 0

0 σ3
+
-
, J2 = *

,

0 ε2σ
1

σ1 0
+
-
K ,

$ = *
,

1 0

0 −1
+
-
, D2 = im

(
−σ2 0
0 σ2

)
.

To compare the fermionic Lagrangian on particles and antiparticles, we use the relation
(JΨ, DJΨ) = ε κ(Ψ, DΨ). We determine ε κ by computing the dimensions of the total spectral triple.
For the manifold spectral triple, (m1, n1) = (4, 6) because its KO dimension p � q mod 6 is n1 = 647

and its metric dimension p + q is 4. For the finite spectral triple, (m2, n2) = (2, 2) if ε2 = �1 and
(m2, n2) = (6, 6) if ε2 = 1. In the literature, it is generally assumed that n2 = 6, but n2 = 2 is also valid
for QED (we shall see that n2 = 2 is required for the standard model). The total spectral triple has
now dimensions (m, n) = (6, 0) if ε2 = �1 and (m, n) = (2, 4) if ε2 = 1. In both cases, ε κ = 1, which
implies (JΨ, DJΨ) = (Ψ, DΨ). Thus, we can also define the fermionic Lagrangian over the particle
states only.

The physical Lagrangian for QED with a massive electron is

L=−1
4

FµνFµν + (ψ,
(
iγµ(∇µ + iqAµ) − m

)
ψ),

where q < 0 is the electron charge and Fµν = ∂µAν � ∂νAµ. Note that our notation (ψ, ψ ′) is usually
written as ψψ ′ in the physics literature.

The Dirac operator corresponding to this triple is

D(A)=D − qγµAµ ⊗ $,

where
−qAµ = i

∑
j

(
π(aj)∂µπ(bj) + J2π(aj)∂µπ(bj)J

−1
2

)
is self-adjoint. The curvature is

θ =−
iq
2

∑
µν

(γµγν − gµν)Fµν ⊗ $,

and the bosonic Lagrangian is
Lb =−8q2FµνFµν .

The prefactor of Lb is not correct. This problem was elegantly solved47,90,99 by choosing a positive
definite z which commutes with π(A), Jπ(A)J−1, and D to redefine the trace as Trz(M) = Tr(zM). In
the case of QED, a solution of the constraints is z = ρ1 ⊗ 1, where ρ > 0. We can now define the
Lagrangian

LCLE =Re Trz(θ
×θ) +

1
2

(Ψ, D(A)Ψ),

which we call the Connes-Lott-Elsner (CLE) Lagrangian since it was originally proposed by Connes
and Lott in the Riemannian case and then extended by Elsner to general signatures. Observe that,
since noncommutative 2-forms are defined modulo the junk,100 the expression Trz(θ×θ) does not
have an immediate meaning. In the Riemannian case, this problem is solved by projecting θ onto the
orthogonal of the junk. This solution can be applied in general signature if and only if the restriction
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of the indefinite inner product to the junk is non-degenerate. Remarkably, this property holds in QED
as well as in the standard model.47,101

The QED bosonic Lagrangian becomes Lb =−8ρq2FµνFµν , and we can choose ρ = 1/(32q2) to
obtain the physical bosonic Lagrangian. The fermionic Lagrangian Lf =

1
2 (Ψ, D(A)Ψ) with

Ψ= (1 + J)(χ+
1ψ ⊗ eR + χ−1ψ ⊗ eL)

becomes
Lf = (ψ,

(
iγµ(∇µ + iqAµ) − m

)
ψ),

and the CLE-Lagrangian exactly coincides with the physical one in Lorentzian spacetime.
To complete this section, we remark that particles and antiparticles have the same mass and

opposite currents. In textbook QED, these properties are achieved through the anticommutativity
of the normal product of fermion operators.16 In our framework, this property can follow from the
fundamental symmetry. Indeed, by using J1γ

µ = �γµJ1 and (γµ)× = γµ, we get

〈JΨ, ηJΨ〉= 〈Ψ, ηΨ〉,

〈JΨ, η(γµ ⊗ 1)JΨ〉=−〈Ψ, η(γµ ⊗ 1)Ψ〉,

which means that the mass is conserved and the current is reversed by charge conjugation. We did
not use any anticommutation relation.

IX. CONCLUSION

A particularly appealing aspect of noncommutative geometry is that the internal (fibre) and exter-
nal (manifold) degrees of freedom are put into a common geometric framework. Real Clifford algebras
can also unify spacetimes and finite objects since they describe spinors on pseudo-Riemannian man-
ifolds as well as finite geometries.102 Therefore, it is not surprising that real Clifford algebras can be
used to define the space and time dimensions of an algebra representing (in a generalized sense) a
possibly noncommutative spacetime. The present paper is a precise formulation of this idea, and the
main ingredient of the definition of a time dimension is the fundamental symmetry η which allows
for a kind of Wick rotation of spacetime.

The Lorentzian distance has now received a satisfactory noncommutative geometric interpreta-
tion,53,79,103–108 and an index theorem was proved for Lorentzian manifolds.109

What remains to be done to get a complete Lorentzian noncommutative geometry is to find a
Lorentzian analog of the spectral action giving the Lagrangian of gauge fields coupled with gravity.
The fermionic and gauge Lagrangian of particle physics models were given here for Lorentzian
spacetimes, but the derivation of the full spectral action is still a difficult open problem.

For applications to topological insulators, it would be desirable to extend these results to the case
of odd-dimensional algebras. An interpretation of CPT corepresentations in the context of twisted
equivariant topological K-theory was recently given by Gomi (private communication).
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