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Abstract

An analogy with real Clifford algebras on even-dimensional vector spaces suggests to assign a space dimension and
a time dimension (modulo 8) to an algebra (represented over a complex Hilbert space) containing two self-adjoint
involutions and an anti-unitary operator with specific commutation relations.

It is shown that this assignment is compatible with the tensor product, in the sense that a tensor product of such
algebras correspond to the addition of the space and time dimensions. This could provide an interpretation of the
presence of such algebras in PT -symmetric Hamiltonians or the description of topological matter.

This construction is used to build the tensor product of Lorentzian (and more generally pseudo-Riemannian)
spectral triples, defined over a Krein space. The application to the standard model of particles suggests the identity
of the time and space dimensions of the total (manifold+finite algebra) spectral triple. It also suggests the emergence
of the pseudo-orthogonal group SO(4, 6) in a grand unified theory.
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1. Introduction

Clifford algebras are at the heart of the descrip-
tion of matter not only because fermions (spinors)
are their irreducible representations, but also be-
cause they classify topological insulators and su-
perconductors [1,2]. They are also used as a tem-
plate for deeper structures, such asK-theory [3,4] or
noncommutative geometry [5], that pervade physics
from topological matter to disordered systems and
the standard model of particles.
The main aim of this paper is to develop a pseudo-

Riemannian analogue of noncommutative geometry,
but on the way we put forward a procedure to assign

Email address: nadir.bizi@impmc.upmc.fr (Nadir Bizi).

a space dimension and a time dimension to a class
of algebras. What we need is
– A complex Hilbert space H.
– A self-adjoint involution γ (i.e. γ2 = 1) defining
a Z2-grading of operators: an operator a on H
is even if γaγ = a and odd if γaγ = −a. For
example, γ can be the chirality operator or the
inversion symmetry.

– A second self-adjoint involution η, which can be
the flat-band Hamiltonian signH or a fundamen-
tal symmetry.

– A unitary anti-linear map J (i.e. J†J = 1) such
that J2 = ±1.

– Specific commutation or anticommutation re-
lations between γ, η and J to be described in
Eqs. (1) to (4).
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In a Clifford algebra Cℓ(s, t) such that s+ t is even,
these relations determine s + t mod 8 and s − t
mod 8 in a unique way. We propose to assign the
same dimensions s + t mod 8 and s − t mod 8 to
any algebra satisfying the same relations between γ,
η and J . This is similar to the way Atiyah related
the KO-dimension to s− t mod 8 in Clifford alge-
bras [3].
Such an assignment is meaningful because it is

compatible with the tensor product: the relations
obtained in the (graded) tensor product A1⊗̂A2 of
two such algebras correspond to the sum of the space
and time dimensions of A1 and A2 modulo 8.
When we apply this to a spectral triple of noncom-

mutative geometry, γ is the usual chirality operator,
η is a fundamental symmetry defining a Krein-space
structure and J is the usual charge conjugation. Our
approach allows us to assign a space-time dimen-
sion to the finite algebra of the almost-commutative
spectral triple of the standard model of particles. By
following Barrett’s idea [6] we reach the conclusion
that the full spectral triple has the same number of
space and time dimensions (modulo 8).
The paper starts with a description of γ, η and J in

a Clifford algebra, which sets up the correspondence
between commutation relations and space-time di-
mensions. Then, this correspondence is shown to
hold for more general algebras by proving that it is
compatible with the graded tensor product of alge-
bras. In section 4, we introduce Krein spaces, which
is the natural generalization of Hilbert spaces to
pseudo-Riemannian manifolds. Section 5 defines the
corresponding generalized spectral triples, that we
call indefinite spectral triples. This framework is then
applied to define the spectral triple of the Lorentzian
standard model.

2. Automorphisms of Clifford algebras

We investigate the commutation relations of three
operators in Clifford algebras over even-dimensional

vector spaces. Let Cℓ(s, t) be the real Clifford alge-
bra generated by the gamma matrices γ1, . . . , γs+t

such that γi anticommutes with γj if i 6= j, γ2i = −1
for i = 1, . . . , t and γ2i = 1 for i = t + 1, . . . , s + t.
Since we assume that d = s+ t is even, the dimen-
sion of the irreducible spinor representationS of this
Clifford algebra is 2d/2.
First, we consider the chirality γ = i(s−t)/2γ1 . . . γd,

which satisfies γ2 = 1 and γ† = γ. It implements
the main automorphism of the Clifford algebra in

@
@m
n

0 2 4 6

0 (1,1,1,1) (-1,-1,1,-1) (-1,1,1,1) (1,-1,1,-1)

2 (1,1,-1,-1) (-1,-1,-1,1) (-1,1,-1,-1) (1,-1,-1,1)

4 (1,1,-1,1) (-1,-1,-1,-1) (-1,1,-1,1) (1,-1,-1,-1)

6 (1,1,1,-1) (-1,-1,1,1) (-1,1,1,-1) (1,-1,1,1)

Table 1
Signs (ǫ, ǫ′′, κ, κ′) in terms of n = s− t mod 8 and m = s+ t

mod 8.

@
@m
n

0 2 4 6

0 (0,0) (4,4) (1,7) (5,3) (2,6) (6,2) (3,5) (7,1)

2 (1,1) (5,5) (2,0) (6,4) (3,7) (7,3) (0,2) (4,6)

4 (2,2) (6,6) (3,1) (7,5) (4,0) (0,4) (1,3) (5,7)

6 (3,3) (7,7) (4,2) (0,6) (5,1) (1,5) (6,0) (2,4)

Table 2
(s mod 8, t mod 8) in terms of n = s− t mod 8 and m =
s + t mod 8.

the sense that γuγ = u (resp. γuγ = −u) if u is the
product of an even (resp. odd) number of gamma
matrices.
Second, we define the fundamental symmetry to

be η = i(t+1)/2γ1 . . . γt if t and s are odd, while
η = is/2γt+1 . . . γd if t and s are even [7] (see also

Ref. [8]). It satisfies η† = η, η2 = 1 and γi = ηγ†i η.
It implements the reversion anti-automorphism (i.e.
γi1 . . . γik 7→ γik . . . γi1) by u 7→ ηu†η.
Third, we define a charge conjugation J as fol-

lows. In the complexification Cℓ(d) of Cℓ(s, t), we
can define a canonical real structure c by c(λu) =
λ̄u, where u ∈ Cℓ(s, t) and λ̄ is the complex conju-
gate of the complex number λ. There is also an an-
tilinear operator K on S such that c(u) = KuK−1.
The charge conjugation is the operator defined by
J = γK. It is anti-unitary (i.e. J is anti-linear and
J†J = 1). There is a unique determination ofK and
J (up to a phase) such that

J2 = ǫ, (1)

Jγ = ǫ′′γJ, (2)

Jη = ǫκηJ, (3)

ηγ = κ′γη, (4)

where the signs (ǫ, ǫ′′, κ, κ′) are given in terms of
n = s− t mod 8 and m = s+ t mod 8 in Table 1.
The signs can be expressed in terms of the dimen-
sions (m,n) by ǫ = (−1)n(n+2)/8, ǫ′′ = (−1)n/2, κ =
(−1)m(m+2)/8 and κ′ = (−1)(m+n)/2.
The charge conjugation operator J was defined

so that ǫ and ǫ′′ agree with Connes’ KO-dimension
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tables [5,9]. Related tables can be found in the lit-
erature [10–12].
By inverting the relation between (s, t) and

(m,n), we can associate two pairs of space and time
dimensions (j, k) modulo 8 to every pair (m,n).
Indeed, if (j, k) is a solution of j − k = n mod 8
and j + k = m mod 8, then (j + 4, k + 4) is also
a solution. This corresponds to the Clifford alge-
bra isomorphism Cℓ(s, t + 8) = Cℓ(s + 8, t) =
Cℓ(s + 4, t + 4) [13]. The results are gathered in
Table 2. Note that η commutes with γ and J if and
only if m = n, i.e. s = 0 mod 2 and t = 0 mod 4.
More formally, Table 1 defines a bijection ψ be-

tween the set Σ = (Z/2)4 of quadruple of signs and
the additive subgroup (2Z/8) × (2Z/8) which con-
tains the couples (m,n). This subgroup is clearly
isomorphic to (Z/4) × (Z/4), the isomorphism be-
ing (m,n) 7→ (m2 mod 4; n

2 mod 4). Table 2 also
describes an isomorphism. To understand it, let us
call H the subgroup of (Z/8)× (Z/8) generated by
the element (4, 4). Then the entries of Table 2 are

cosets lying in (Z/8)×(Z/8)
H . There are 16 such cosets

which can be written in a unique way in the form
kα + k′α′ where α is the coset containing (1, 1), α′

is the coset containing (1,−1), and k, k′ are integers
mod 4. Let us call G ≃ (Z/4) × (Z/4) the group
they form. Then Table 2 exactly describes the group
isomorphism θ : (2Z/8)× (2Z/8) → G given in for-
mula by (m,n) 7→ m

2 α + n
2α

′, where m/2 and n/2
are well-defined mod 4. In the sequel we will write
φ for the bijection θ ◦ ψ which directly associates a
quadruple of signs to the corresponding element in
G.
It would seem that γ and η could be interchanged

by exchanging ǫ′′ and ǫκ. However, this is not really
the case because γ is used to define the parity (grad-
ing) of an operator acting on the spinor space S (in
particular of an element of the Clifford algebra) and
this grading will determine the graded tensor prod-
uct of algebras.

3. Generalization

We generalize the previous results by defining a
mod-8-spacetime representation to be a quadruple
S = (H, γ, η, J), whereH is a complex Hilbert space
equipped with two self-adjoint involutions γ and
η (i.e. γ2 = η2 = 1) and an anti-unitary opera-
tor J that satisfy Eqs. (1) to (4) for some signs
ǫ, ǫ′′, κ and κ′. We denote σ(S) = (ǫ, ǫ′′, κ, κ′).
The map φ associates space and time dimensions

to each mod-8-spacetime representation. However,
as for the Brauer-Wall group [14], this assignment
can only be meaningful if it is compatible with the
graded tensor product that we define now.
By using the chirality operator γ, we can write

H = H+ ⊕ H−, where γv = ±v for v ∈ H±. An
element v of H± is said to be homogeneous and its
parity is |v| = 0 if v ∈ H+ and |v| = 1 if v ∈ H−.
The parity of a linear or antilinear map T on H is
|T | = 0 if γTγ = T and |T | = 1 if γTγ = −T . From
relations (2) and (4) we see that ǫ′′ = (−1)|J| and
κ′ = (−1)|η|.
The graded tensor product ⊗̂ of operators is de-

fined by (T1⊗̂T2)(φ1⊗φ2) = (−1)|T2||φ1|T1φ1⊗T2φ2
when φ1 and φ2 are homogeneous. It is the natural
tensor product of Clifford algebra theory thanks to
Chevalley’s relation [15]:

Cℓ(s1, t1)⊗̂Cℓ(s2, t2) =Cℓ(s1 + s2, t1 + t2),

which shows that the graded tensor product is in-
deed compatible with space and time dimensions.
Let us consider two mod-8-spacetime representa-

tions S1 = (H1, γ1, η1, J1) and S2 = (H2, γ2, η2, J2)
with signs determined by (m1, n1) and (m2, n2), re-
spectively. Then, the graded tensor product S =
S1⊗̂S2 is the mod-8-spacetime representation de-
fined by the Hilbert space H = H1 ⊗ H2 and the
operators

γ = γ1⊗̂γ2,

J = γ
|J2|
1 J1⊗̂γ

|J1|
2 J2 = J1γ

|J2|
1 ⊗̂J2γ

|J1|
2 ,

η = i|η1||η2|γ
|η2|
1 η1⊗̂γ

|η1|
2 η2 = i|η1||η2|η1γ

|η2|
1 ⊗̂η2γ

|η1|
2 .

The peculiar form of η is due to its interpretation
as a fundamental symmetry, which will be dis-
cussed in section 5. Then, it can be checked that γ
and η are self-adjoint involutions and J is an anti-
unitary map, which satisfy Eqs (1) to (4) for the
signs of some dimensions (m,n). Indeed, we first
observe through an explicit calculation that the
signs associated to S1⊗̂S2 only depend on the signs
associated to S1 and S2: ǫ = (−1)|J1||J2|ǫ1ǫ2 (where
(−1)|J1||J2| depends only on ǫ′′1 and ǫ′′2 because
(−1)|J1||J2| = (1 + ǫ′′1 + ǫ′′2 − ǫ′′1ǫ

′′
2)/2), ǫ

′′ = ǫ′′1ǫ
′′
2 ,

κ = (−1)(|η1|+|J1|)(|η2|+|J2|)κ1κ2 and κ′ = κ′1κ
′
2.

Now let A1 and A2 be two Clifford algebras such
that σ(Ai) = σ(Si), i = 1, 2. Then : φ(σ(S1⊗S2)) =
φ(σ(A1 ⊗ A2)) since σ(S1 ⊗ S2) only depends on
σ(S1) = σ(A1) and σ(S2) = σ(A2). However the
space and time dimensions are additive for Clif-
ford algebras, hence φ(σ(A1 ⊗ A2)) = φ(σ(A1)) +
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φ(σ(A2)) = φ(σ(S1))+φ(σ(S2)). Thus this additive
property extends to all mod-8-spacetime represen-
tations as m = m1 +m2 mod 8 and n = n1 + n2

mod 8. Moreover, this tensor product is associative
and symmetric.
Extending this classification to odd-dimensional

spaces appears non-trivial, let alone because the
main automorphism of an odd-dimensional Clifford
algebra is not inner [11] (in other words, there is no
γ).
These space and time dimensions can be used to

classify topological insulators and superconductors
with symmetries, as well as for the investigation of
PT -symmetric Hamiltonians, because of the pres-
ence of a Krein-space structure to which we now
turn [16–18], because it is crucial to generalize spec-
tral triples to pseudo-Riemannian manifolds.

4. Krein spaces

It was noticed by Helga Baum [19] that the spinor
bundle of a pseudo-Riemannian manifold is natu-
rally equipped with the structure of a Krein space.
This was generalized by Alexander Strohmaier to
noncommutative geometry [20]. Before introducing
Krein spaces, we define a Hermitian form on a com-
plex vector space as a sesquilinear form which satis-
fies the same properties as a scalar product, except
for positive-definiteness which is replaced by non-
degeneracy: if (x, y) = 0 for all y, then x = 0.
Substituting a Hermitian form for a scalar prod-

uct has a striking physical consequence: the possi-
ble existence of states with negative norms. These
states were first met in physics by Dirac in 1942 in
his quantization of electrodynamics [21]. He inter-
preted negative-norm states as describing a hypo-

thetical world [22]. Negative-norm states have now
become familiar in physics through their role in
the Gupta-Bleuler and Becchi-Rouet-Stora-Tyutin
(BRST) quantizations of gauge fields.
Dirac’s approach was elaborated by Pauli [23],

who introduced an operator η such that 〈x, y〉 =
(x, ηy) is a scalar product. A vector space with a
Hermitian form and such an operator η is called a
Krein space and η is called a fundamental symme-

try in mathematics. In most applications, the Her-
mitian product (·, ·) is natural and the scalar prod-
uct 〈·, ·〉 coming from η is somewhat arbitrary. In a
Lorentzianmanifold, the scalar product corresponds
to theWick rotation following some choice of a time-
like direction (see Ref. [24] for a precise definition).

Krein spaces are a natural framework for gauge
field theories [25–27] and Lorentzian spectral
triples [20,24,28–31].
We present now some essential properties of op-

erators on Krein spaces but, true to the physics tra-
dition, we do not describe their functional analytic
properties. If K is a Krein space, a linear opera-
tor T : K → K has a Krein-adjoint T× defined by
(T×x, y) = (x, T y) for every x and y in K. A linear
operator is Krein-self-adjoint if T× = T and Krein-
unitary if T×T = TT× = 1.
An anti-linear map (i.e. a map T : K → K such

that T (αx+βy) = αTx+βTy) has a Krein-adjoint
T× defined by (y, T×x) = (x, T y). It is Krein-anti-
unitary if, furthermore, T×T = TT× = 1.
Any fundamental symmetry η is Krein self-

adjoint. It enables us to define the adjoint of T with
respect to the scalar product: T † = ηT×η. Note that
η is self-adjoint if η2 = 1. In physical applications
the Krein adjoint is the most natural. For example,
the Dirac operator on a pseudo-Riemannian man-
ifold is Krein-self-adjoint. In Gupta-Bleuler quan-
tization the Krein adjoint is covariant. In gauge
field theory, the BRST charge is Krein self-adjoint.
The Hilbert adjoint depends on the choice of a fun-
damental symmetry, it is not covariant in Gupta-
Bleuler quantization and the BRST approach.
We can now define an indefinite spectral triple.

5. Indefinite spectral triple

There are many papers dealing with the extension
of noncommutative geometry to Lorentzian geome-
try [6,20,24,28–51]. Inspired by these references, we
define an even-dimensional real indefinite spectral
triple to be:
(i) A ∗-algebra A represented on a Krein space

K equipped with a Hermitian form (·, ·) and
a fundamental symmetry η such that η2 =
1. We assume that the representation satisfies
π(a∗) = π(a)×.

(ii) A chirality operator γ, i.e. a linear map on K
such that γ2 = 1 and γ† = γ (where the ad-
joint γ† is defined by γ† = ηγ×η). The algebra
commutes with γ.

(iii) An antilinear charge conjugation J , such that
J†J = 1.

(iv) A set of signs (ǫ, ǫ′′, κ, κ′) describing relations
(1) to (4) between γ, η and J .

(v) A Dirac operator D, which is Krein-self-
adjoint and satisfies JD = DJ and γD =

4



−Dγ.
We refer the reader to the above references for the
functional analytic aspects of indefinite spectral
triples. If we compare with Connes’ spectral triples,
we see that we have an additional object (the fun-
damental symmetry η) and two additional signs:
κ and κ′. Because of this more complex structure,
the KO-dimension n = s − t mod 8 is no longer
enough to classify indefinite spectral triples and we
need both m and n to classify them. Although a
Clifford algebra is not an indefinite spectral triple,
the classification carried out in section 3 holds also
for indefinite spectral triples.
More precisely, Let (A1,K1, D1, J1, γ1, η1) and

(A2,K2, D2, J2, γ2, η2) be two real even-dimensional
indefinite spectral triples. Supplement the tensor
products defined in section 3 with

A=A1⊗̂A2,

K=K1 ⊗K2,

D=D1⊗̂1 + 1⊗̂D2,

π = π1⊗̂π2.

To define a Hermitian form (·, ·) on K in terms of
the Hermitian forms (·, ·)1 and (·, ·)2 on K1 and K2,
we consider the example where K1 and K2 are the
spinor spaces of two Clifford algebras. Then, we use
Robinson’s theorem [52], which states that there is a
unique Hermitian form (up to a real scalar factor) on
the space of spinors such that the γµ matrices gen-
erating the Clifford algebra are Krein-self-adjoint.
If we impose that γµ⊗̂1 and 1⊗̂γν are Krein-self-
adjoint for every generator γµ (resp. γν) of the first
(resp. the second) Clifford algebra, we obtain the
following Hermitian form on the tensor product:

(φ1 ⊗ φ2, ψ1 ⊗ ψ2) = i|η1||η2|(φ1, ψ1)1(φ2, γ
|η1|
2 ψ2)2.

Since this definition depends only on |η1|, |η2| and
γ2, we can extend it to any mod-8-spacetime rep-
resentation. The formula for η in the tensor prod-
uct of two mod-8-spacetime representations is due
to the compatibility of the fundamental symmetry
with this Hermitian form. This ensures

〈φ1 ⊗ φ2, ψ1 ⊗ ψ2〉= 〈φ1, ψ1〉1〈φ2, ψ2〉2,

and implies the Kasparov identities [53]

(T1⊗̂T2)
× = (−1)|T1||T2|T×

1 ⊗̂T×
2 ,

(T1⊗̂T2)
† = (−1)|T1||T2|T †

1 ⊗̂T
†
2 ,

for the tensor product of two linear operators and

(T1⊗̂T2)
× = (−1)|η1||η2|+|T1||T2|T×

1 ⊗̂T×
2 ,

(T1⊗̂T2)
† = (−1)|T1||T2|T †

1 ⊗̂T
†
2 ,

for the tensor product of two antilinear operators.
It can be checked that this tensor product is

indeed a real even-dimensional indefinite spectral
triple (i.e. D× = D and D commutes with J and
anticommutes with γ).
The extension of this tensor product to odd-

dimensional indefinite spectral triples seems dif-
ficult, if one considers the complexity of the Rie-
mannian case [54–58]. Note that Farnsworth also
advocates the use of a graded tensor product [58].

6. Lorentzian Standard Model

The fermionic Lagrangian of the Lorentzian Stan-
dard Model was obtained by Koen van den Dungen
who defined Lorentzian spectral triples similar to
ours [31], although the tensor product is not treated
in detail and the classification is not carried out.
The noncommutative version of the standard

model that we consider includes right-handed neu-
trinos, which can explain the observed neutrino
masses via the seesaw mechanism and the baryon
asymmetry of the universe via leptogenesis [59].
Barrett pointed out that, to get rid of the fermion

quadrupling problem, the total KO-dimension n of
the spectral triple of the standard model has to be
zero [6]. Within our classification, this means that
the total space dimension of the model is the same
as its total time dimension (modulo 8). Since our
spacetime corresponds to (s, t) = (3, 1), we have
n1 = 3 − 1 = 2 and the KO-dimension of the finite
part has to be nF = 0 − 2 = 6 mod 8, which is in-
deed the correct dimension to get a seesaw mecha-
nism [6].
In the spectral triple proposed by Dungen:

η =





1 0

0 −1



 , γ =





γF 0

0 −γF



 , J =





0 1

1 0



 c,

where c stands for complex conjugation. Note that
Dungen’s finite spectral triple is not standard be-
cause J and D do not commute, but our classifi-
cation still holds in that case. The signs are com-
puted to be (ǫ, ǫ′′, κ, κ′)F = (1,−1,−1, 1). Thus,
(mF , nF ) = (2, 6) and (sF , tF ) = (0, 2) or (4, 6)
modulo 8. As a consequence, the total space-time
dimensions of the standard model are (s, t) = (3, 3)
or (7, 7) modulo 8.

5



The result s = 7, t = 7 has a nice physical inter-
pretation because it corresponds to the Clifford al-
gebra Cℓ(7, 7) = Cℓ(3, 1)⊗̂Cℓ(4, 6). Since Cℓ(3, 1)
describes the Lorentz manifold, Cℓ(4, 6) could be
relevant for the finite part of the standard model
algebra. Indeed, it was argued that SO(4, 6), an in-
variance group of Cℓ(4, 6), is as good as SO(10) as
a grand unification group, because the chiral spin
representations of SO(10) and SO(4, 6) both trans-
form as 16 = (2,4)+(2′,4) and 16 = (2,4)+(2′,4)
under the regular subgroup SO(4)×SO(6) [60]. As
is well known, this generates the physical represen-
tations of the standard model. In other words, our
framework suggests that the correct grand unifica-
tion group could be SO(4, 6) instead of SO(10).
On partly aesthetical ground, Maraner already

observed that spacetime coupled to matter might
have an equal number of space and time dimen-
sions [60]. In Maraner’s approach, several signatures
are possible: (s, t) = (13, 1), (9, 5) or (7, 7). Our re-
sults enable us to select the group SO(7, 7). As a side
remark, SO(7, 7) plays a role in string theory [61] as
an invariance group of G2/U(2) [62].

7. Conclusion

A particularly appealing aspect of noncommuta-
tive geometry is that the internal (fibre) and ex-
ternal (manifold) degrees of freedom are put into
a common geometric framework. Real Clifford al-
gebras can also unify spacetimes and finite objects
since they describe spinors on pseudo-Riemannian
manifolds as well as finite geometries [63]. Therefore,
it is not suprising that real Clifford algebras can be
used to define the space and time dimensions of an
algebra representing (in a generalized sense) a possi-
bly noncommutative spacetime. The present paper
is a precise formulation of this idea and the main in-
gredient of the definition of a time dimension is the
fundamental symmetry η which allows for a kind of
Wick rotation of spacetime.
The main remaining difficulty in the definition

of a noncommutative geometric version of the
Lorentzian standard model is the determination of
the bosonic spectral action. We would like to sug-
gest a possible approach to this problem. In the case
of a compact Riemannian manifold, the spectral
action is invariant under the huge group of unitary
operators U on the Hilbert space L2(M,S) ⊗ HF ,
such that UJ = JU and Uγ = γU [9]. The spectral
action is then obtained in terms of a sum of inte-

grals of Lagrangian densities multiplied by powers
of the cutoff Λ. We conjecture that the same result
can be obtained by looking for the Lagrangian den-
sities that are invariant under the huge group and
have a dimension corresponding to a specific power
of Λ. The advantage of this second point of view is
that it can be immediately adapted to the pseudo-
Riemannian and non-compact cases. We defer this
question to a forthcoming paper.
For applications to topological insulators, it

would be desirable to extend these results to the
case of odd-dimensional algebras. We already men-
tioned that this is not straightforward, but a pos-
sible direction might be to establish a connection
with the generalized Brauer-Wall groups [64] or
Salingaros vee-groups [65–68].
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