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Abstract

A graph G is locally irregular if every two adjacent vertices of G have different de-
grees. A locally irregular decomposition of G is a partition E1, ..., Ek of E(G) such that
each G[Ei] is locally irregular. Not all graphs admit locally irregular decompositions,
but for those who are decomposable, in that sense, it was conjectured by Baudon, Bens-
mail, Przyby lo and Woźniak that they decompose into at most 3 locally irregular graphs.
Towards that conjecture, it was recently proved by Bensmail, Merker and Thomassen
that every decomposable graph decomposes into at most 328 locally irregular graphs.

We here focus on locally irregular decompositions of subcubic graphs, which form
an important family of graphs in this context, as all non-decomposable graphs are
subcubic. As a main result, we prove that decomposable subcubic graphs decompose
into at most 5 locally irregular graphs, and only 4 when the maximum average degree is
less than 12

5 . We then consider weaker decompositions, where subgraphs can also include
regular connected components, and prove the relaxations of the conjecture above for
subcubic graphs.

1 Introduction

Throughout this paper, we deal with so-called locally irregular decompositions, which are
defined as follows. We consider undirected simple graphs only. A graph G is said locally
irregular if, for every edge uv of G, we have d(u) 6= d(v). The concept of locally irregular
graph arose in the context of neighbour-distinguishing edge-weightings, where one aims at
weighting the edges of a given graph so that a particular aggregate, computed from the
weighting, yields a proper vertex-colouring. The well-known 1-2-3 Conjecture, raised by
Karoński,  Luczak and Thomason [6], and its variants (see the survey [9] by Seamone), are
perhaps the most representative examples where locally irregular graphs arise naturally, as
the “best graphs” for these problems are precisely the locally irregular ones.

Still in the context of those weighting problems related to locally irregular graphs, there
are situations where, though a given graph G is not locally irregular, knowing that G
decomposes into a certain number of locally irregular graphs may have some consequences.
Here, by a decomposition of G, we mean an edge-partition E1, ..., Ek of E(G). Alternatively,
a decomposition of G may be regarded as an edge-colouring of G. A decomposition of G is
said locally irregular when all parts or colour classes induce locally irregular graphs. Locally
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irregular decompositions were formally introduced in [2] by Baudon, Bensmail, Przyby lo
and Woźniak, who noted that, in particular contexts, a graph admitting a particular locally
irregular decomposition agrees with the 1-2-3 Conjecture, or variants of it.

As a more general perspective, we are interested in determining, given a graph G, the
smallest number of locally irregular subgraphs that decompose G. Following the edge-
colouring point of view, we denote by χ′irr(G) that chromatic parameter, which we call the
irregular chromatic index (of G). Note that the irregular chromatic index is not defined for
all graphs, consider for instance any odd-length path or odd-length cycle, which cannot be
decomposed at all. From that point of view, we say that G is decomposable when χ′irr(G) is
defined. Otherwise, we call G exceptional.

One first important result in the study of locally irregular decompositions is the full
characterization of exceptional graphs, due to Baudon, Bensmail, Przyby lo and Woźniak [2].
So that we can state this characterization, we first need to formally define the following
family T of graphs. The definition is recursive:

1. The triangle K3 belongs to T .

2. Every other graph in T can be constructed by 1) taking an auxiliary graph H being
either an even-length path or an odd-length path with a triangle glued to one of its
ends, then 2) choosing a graph G ∈ T containing a triangle with at least one vertex,
say v, of degree 2 in G, and finally 3) identifying v with a vertex of degree 1 of H.

The full characterization of exceptional graphs is then the following.

Theorem 1.1 (Baudon, Bensmail, Przyby lo, Woźniak [2]). A connected graph G is ex-
ceptional if and only if G is either 1) an odd-length path, 2) an odd-length cycle, or 3) a
member of T .

Let us emphasize that all exceptional graphs are subcubic (i.e. have maximum degree
at most 3), and are of odd size (number of edges). This is of prime importance as our
investigations in this paper are exactly about locally irregular decompositions of subcubic
graphs.

Concerning decomposable graphs, the main conjecture is that they should admit de-
compositions into at most three locally irregular graphs.

Conjecture 1.2 (Baudon, Bensmail, Przyby lo, Woźniak [2]). For every decomposable graph
G, we have χ′irr(G) ≤ 3.

Conjecture 1.2 was verified for several classes of graphs, including decomposable trees (i.e.
trees not being an odd-length path), decomposable complete graphs (i.e. Kn with n ≥
4), and some classes of decomposable bipartite graphs and Cartesian products [2]. Using
probabilistic methods, Conjecture 1.2 has also been verified for regular graphs with degree
at least 107 [2], and for graphs with minimum degree at least 1010 [8] (by Przyby lo). Let
us further point out that the bound in Conjecture 1.2, if true, would be best possible, as
some decomposable graphs, just as e.g. decomposable complete graphs or cycles with length
congruent to 2 modulo 4, cannot be decomposed into two locally irregular graphs only. In
general, Baudon, Bensmail and Sopena [3] showed that determining the irregular chromatic
index of a given graph is an NP-complete problem.

At that moment, though, it was not known whether χ′irr is, in general, bounded above
by a constant. This was also not known in the particular case of decomposable bipartite
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graphs, for which we still do not know whether Conjecture 1.2 holds. These two questions
were later considered by Bensmail, Merker and Thomassen [4], who proved the following.

Theorem 1.3 (Bensmail, Merker, Thomassen [4]). For every decomposable graph G, we
have χ′irr(G) ≤ 328. Furthermore, if G is bipartite, then we have χ′irr(G) ≤ 10.

In this paper, we consider Conjecture 1.2 in the context of bounded-degree graphs,
giving a special focus on subcubic graphs. One first point for that is that it is still not
known whether decomposable subcubic graphs verify Conjecture 1.2. Another important
motivation is that subcubic graphs are intimately related to exceptional graphs, as all
exceptional graphs are subcubic. For these two reasons, it is interesting to understand how
locally irregular decompositions behave in subcubic graphs.

Our work is organized as follows. In Section 2, we start by recalling some arguments and
results from [4] that are used in our proofs, and which we also use to deduce a first upper
bound on the irregular chromatic index of decomposable bounded-degree graphs. In the
case of decomposable subcubic graphs G, this yields that χ′irr(G) ≤ 7 always holds. Through
a more involved proof, we decrease, in Section 3, this bound down to 5. In Section 4, we
further decrease this bound down to 4 for decomposable subcubic graphs with maximum
average degree less than 12

5 . We then consider, in Sections 5 and 6, two relaxed versions of
Conjecture 1.2 that were considered by Bensmail and Stevens [5], where one allows locally
irregular decompositions to also induce subgraphs with regular connected components. We
show that, in this context, the two relaxations of Conjecture 1.2 are true for subcubic
graphs. We end up this paper in Section 7, where we gather some possible directions for
future work.

Remark:

Right before the submission of the current paper, the authors have been notified of the
appearance, on arXiv [7], of a new paper by Lužar, Przyby lo and Soták. In that paper,
the bounds in Theorem 1.3 have been reduced to 220 and 7, respectively. It was also
proved that χ′irr(G) ≤ 4 holds for every decomposable subcubic graph G, which improves
our main results in Section 3, and partially those in Section 4. However, the results in
the current paper and [7] were obtained independently, and the proof arguments we use
are different from those from [7], and may thus be of interest for future works on locally
irregular decompositions. Furthermore, the questions we consider in Sections 5 and 6 are
not considered by the authors of [7].

2 Locally irregular decompositions of bounded-degree graphs

One first ingredient in the proof of Theorem 1.3 is a general reduction of Conjecture 1.2 to
graphs with even size. We generalize it in the following way, where, by a hereditary family
of graphs, we mean a family of graphs that is closed under taking subgraphs.

Theorem 2.1 (Bensmail, Merker, Thomassen [4]). Let G be a hereditary family of graphs.
Then, we have

max {χ′irr(G) : G ∈ G is decomposable} ≤ max {χ′irr(G) : G ∈ G has even size}+ 1.
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Hence, in order to exhibit constant upper bounds on the irregular chromatic index of de-
composable graphs among a class G, one may focus on the even-size graphs of G only. One
additional point for focusing on even-size graphs is that they are all decomposable. In
particular, when considering an even-size subgraph of a graph, we do not have to wonder
about whether it is exceptional or not.

The proof of Theorem 2.1 relies on the following two lemmas, which we use in the next
section.

Lemma 2.2 (Bensmail, Merker, Thomassen [4]). Let G be a connected graph with even
size. Then, for every vertex v of G, there is a path P of length 2 in G, such that P contains
v, and all connected components of G− E(P ) have even size.

Recall that, when referring to a claw, we mean the star K1,3 on 4 vertices.

Lemma 2.3 (Bensmail, Merker, Thomassen [4]). Let G be a decomposable connected graph
with odd size. Then, there is, in G, a claw H with 0 or 2 of its edges subdivided, such that
all connected components of G− E(H) have even size.

Clearly, the graph property “being of maximum degree at most k” is a hereditary prop-
erty. Thus, using Theorem 2.1 and Lemma 2.2, we can already state a general upper bound
on the irregular chromatic index of a decomposable graph with given maximum degree.
Throughout this paper, by a k-vertex (resp. k−-vertex, k+-vertex ), we refer to a vertex
with degree k (resp. at most k, at least k).

Observation 2.4. For every connected graph G with even size, we have χ′irr(G) ≤ 3∆(G)−
3.

Proof. We prove the claim by induction on |V (G)| + |E(G)|. As it can easily be verified
whenever G is small, we proceed with the inductive step. Let v be a ∆(G)-vertex of G.
According to Lemma 2.2, we can find, in G, a path P of length 2 such that P contains v,
and all connected components of G′ := G− E(P ) have even size. Since G′ is smaller than
G, all its connected components have even size, and ∆(G′) ≤ ∆(G), there exists a locally
irregular (3∆(G)− 3)-edge-colouring of G′. By that edge-colouring, there is necessarily, in
G, at least one of the 3∆(G)−3 colours, say α, which is not assigned to any edge incident to
the vertices of P . Hence, by assigning colour α to the edges of P , we get a locally irregular
(3∆(G)− 3)-edge-colouring of G, since a path of length 2 is locally irregular.

Corollary 2.5. For every decomposable graph G, we have χ′irr(G) ≤ 3∆(G)− 2.

3 Locally irregular decompositions of subcubic graphs

Concerning lower bounds on the maximum irregular chromatic index of a decomposable
subcubic graph, let us first mention that there are infinitely many subcubic graphs G ver-
ifying χ′irr(G) = 3. This is, in particular, the case for cycles with length congruent to 2
modulo 4 (see [2]). It is actually NP-complete to decide whether a given cubic graph G
verifies χ′irr(G) ≤ 2, implying that much more subcubic graphs, with a more general struc-
ture, can have irregular chromatic index 3. This follows from a result of Dehghan, Sadeghi
and Ahadi [1], who proved, in the context of the 1-2-3 Conjecture, that deciding whether a
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cubic graph has a neighbour-sum-distinguishing 2-edge-weighting is an NP-complete prob-
lem. This result implies exactly the claim above, as neighbour-sum-distinguishing 2-edge-
weightings and locally irregular 2-edge-colourings are equivalent notions in regular graphs
(see [2]).

We now turn our attention towards upper bounds on the irregular chromatic index of
decomposable subcubic graphs. According to Observation 2.4, we know that connected
subcubic graphs with even size have irregular chromatic index at most 6. From that, we
get, according to Corollary 2.5, that decomposable subcubic graphs have irregular chromatic
index at most 7. In this section, we decrease these two bounds to 4 and 5, respectively.
We actually focus on connected subcubic graphs with even size that are strictly subcubic,
meaning that they are not cubic. By proving that they have irregular chromatic index
at most 4, we are then able to prove the upper bound 5 on the irregular chromatic index
of both cubic graphs with even size, and decomposable (not necessarily strictly) subcubic
graphs with odd size.

Theorem 3.1. For every connected strictly subcubic graph G with even size, we have
χ′irr(G) ≤ 4.

Proof. Let G be a counterexample to the claim that is minimal in terms of |V (G)|+ |E(G)|.
In other words, we have χ′irr(G) > 4, and every smaller connected strictly subcubic graph
with even size has irregular chromatic index at most 4. Our proof consists in showing that
G cannot contain certain configurations, until we get to the point where G is shown to be
cubic, a contradiction.

Recall that a bridge of a graph refers to an edge whose deletion disconnects the graph.
We start off by showing that G cannot contain non-pendant bridges, where, by a pendant
bridge, we mean a bridge one of whose end is a 1-vertex. In other words, a pendant bridge
is a pendant edge, and a non-pendant bridge is a bridge whose deletion results into two
connected components having edges.

Claim 3.2. The graph G has no non-pendant bridge.

Proof. Assume, for a contradiction, that G has a non-pendant bridge, i.e. an edge uv such
that G− uv has two connected components Gu and Gv with |E(Gu)|, |E(Gv)| > 0. Further
assume that u belongs to Gu while v belongs to Gv. Since G has even size, we have that
|E(Gu)|+ |E(Gv)| is odd. We may hence assume that Gu has even size, while Gv has odd
size. Since Gu and Gv + uv are smaller than G, are strictly subcubic and of even size, we
have χ′irr(Gu), χ′irr(Gv + uv) ≤ 4 due to the minimality of G. Hence, there exist a locally
irregular 4-edge-colouring φu of Gu, and a locally irregular 4-edge-colouring φv of Gv + uv.
Since dGu(u) ≤ 2, and we can freely permute any two colours assigned by φu to the edges
of Gu, we can make sure that φu assigns colours among {1, 2} to the edges of Gu incident
to u. Similarly, since dGv+uv(u) = 1, and we can freely permute the colours assigned by φv
to the edges of Gv + uv, we can make sure that φv(uv) = 3. Clearly, φu and φv give rise to
a locally irregular 4-edge-colouring of G, a contradiction.

We now show that G cannot contain pendant bridges as well. In the upcoming proof,
and throughout this paper, whenever considering a subgraph obtained by removing edges,
we also removed its isolated vertices, if any.

Claim 3.3. The graph G has no 1-vertex.
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Proof. Assume the contrary, and let uv be an edge of G such that d(u) = 1. First assume
that d(v) = 2, and let w be the neighbour of v different from u. Note that the graph
G′ := G− uv − vw is a strictly subcubic graph with even size, and smaller than G; hence,
there exists a locally irregular 4-edge-colouring of G′, which we can easily extend to the
edges uv and vw (just colour those two edges with one of the at least two colours not
appearing at w in G′). This is a contradiction.

Hence assume that d(v) = 3, and let w1 and w2 denote the two neighbours of v different
from u. Consider the graph G′ := G−uv−vw1. Note that G′ is connected as otherwise vw1

would be a non-pendant bridge of G whose existence would contradict Claim 3.2. Hence G′

is a strictly subcubic graph with even size, and smaller than G. There hence exists a locally
irregular 4-edge-colouring of G′. By this edge-colouring, the vertices u, v and w1, because
dG′(u) = 0, dG′(v) = 1 and dG′(w1) ≤ 2, are incident to at most three different colours.
A non-used colour can hence be assigned to uv and vw1, resulting in a locally irregular
4-edge-colouring of G, again a contradiction.

We gather previous Claims 3.2 and 3.3 in the following way.

Claim 3.4. The graph G has no bridge.

Our goal now is to show that G has no 2-vertex. To that aim, we first show that G
cannot have small cycles, namely triangles (C3’s) and squares (C4’s).

Claim 3.5. The graph G has no triangle.

Proof. Assume the contrary, and let C := uvwu be a triangle of G. If one vertex, say u, of
C is a 2-vertex, then consider G′ := G− uv − uw. That graph is a strictly subcubic graph,
with even size and fewer vertices and edges than G, which hence admits a locally irregular
4-edge-colouring. Since dG′(v), dG′(w) ≤ 2, at most two different colours are assigned to the
edges incident to v and w in G′. This is because a locally irregular graph cannot include a
connected component isomorphic to K2. We can thus assign a non-used colour to uv and
uw, resulting in a locally irregular 4-edge-colouring of G, a contradiction.

Assume now that d(u) = d(v) = d(w) = 3. We note that if removing any of the 2-
paths vuw, uwv or uwv from G results in a connected graph, then we can deduce a locally
irregular 4-edge-colouring of the remaining graph, and having the property that at most
three colours are assigned to the at most four remaining edges incident to u, v and w. This
is again because a locally irregular graph cannot have a connected component isomorphic to
K2. Such a colouring can hence be extended to the removed 2-path using one of the non-used
colours, hence to G, a contradiction. Thus, removing any two edges among {vu, uw,wv}
disconnects G. But this contradicts Claim 3.4, as this implies that every edge not in C and
incident to C (there at three of them) is a bridge (either pendant or non-pendant). So C
cannot exist.

Claim 3.6. The graph G has no square.

Proof. Assume the contrary, and let C := uvwxu be a square of G. First assume that C has
at least one 2-vertex; without loss of generality, we may assume that d(u) = 2. Consider
the graph G′ := G − ux − uv; this graph is connected, has even size, and is smaller than
G. Therefore, it admits a locally irregular 4-edge-colouring. If one of the four colours is
not assigned to one of the at most four edges incident to x and v in G′, then we can obtain
a locally irregular 4-edge-colouring of G by assigning the non-used colour to ux and uv.
So we may assume that dG(v) = dG(x) = 3, and that all four edges incident to v and x
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in G′ are assigned different colours. But then, in the 4-edge-colouring, necessarily one of
wx and wv is isolated in the subgraph induced by its assigned colour, implying that this
subgraph is not locally irregular, thus that the 4-edge-colouring is not locally irregular, a
contradiction. So, necessarily, one of the four colours does not appear around x and v in
G′, and the previous case applies.

Assume now that d(u) = d(v) = d(w) = d(x) = 3. We denote by u′, v′, w′, x′, re-
spectively, the neighbour of u, v, w, x, respectively, which does not belong to C. Note that
G′ := G − ux − uv remains connected as otherwise uu′ would be a bridge in G (contra-
dicting Claim 3.4). Since G′ is of even size and is smaller than G, it admits a locally
irregular 4-edge-colouring φ. We show that φ can always be extended to a locally irregular
4-edge-colouring of G, a contradiction.

Similarly as in a previous case, we may assume that φ assigns each of the four colours to
at least one edge incident to u, v and x in G′. Note that there are exactly five such edges,
as G is simple and does not have triangles by Claim 3.5 (in particular, v′ 6= x). Assume,
without loss of generality, that φ(uu′) = 1. Note first that we cannot have φ(vw) = 1 or
φ(wx) = 1. Indeed, in such a situation (say φ(wx) = 1), so that all four colours appear
in the neighbourhood of u, v, x, one would need, without loss of generality, φ(xx′) = 2,
φ(vw) = 3 and φ(vv′) = 4. But then either wx is an isolated edge in the 1-subgraph1, or
vw is an isolated edge in the 3-subgraph, contradicting the fact that φ is locally irregular.

So we may assume that 1 6∈ {φ(vw), φ(wx)}. We consider two cases depending on
whether φ(vw) and φ(wx) are equal or not.

• Case 1: φ(vw) 6= φ(wx).

Without loss of generality, assume that φ(vw) = 3 while φ(wx) = 2, and also that
φ(xx′) = 4 (since colour 4 appears in the neighbourhood of u, v, x). Because the 2-
subgraph is locally irregular, we necessarily have φ(ww′) = 2, which implies, because
the 3-subgraph is locally irregular, φ(vv′) = 3. Therefore, if u′ is a 2-vertex in the
1-subgraph, then we can extend φ to G by setting φ(ux) = φ(uv) = 1. So assume u′

is a 3-vertex in the 1-subgraph. Analogously, if v′ is not a 3-vertex in the 3-subgraph,
then we can extend φ to G by setting φ(uv) = 3 and φ(ux) = 1. So assume v′ is a
3-vertex in the 3-subgraph. Now, if w′ is not a 3-vertex in the 2-subgraph, then we
can extend φ to G by setting φ(wv) = φ(wx) = 2, and φ(ux) = 1 and φ(uv) = 3. So
assume that w′ is a 3-vertex in the 2-subgraph. Again, φ can be extended to G by
setting φ(wv) = φ(wx) = 1, and φ(ux) = φ(uv) = 2.

• Case 2: φ(vw) = φ(wx).

We may assume that φ(vw) = φ(wx) = 2, and that φ(vv′) = 4 and φ(xx′) = 3
(because all four colours appear around u, v, x). As in the previous case, we may
assume that u′ is a 3-vertex in the 1-subgraph. If w is a 3-vertex in the 2-subgraph,
then φ can be extended to G by setting φ(ux) = 1 and φ(uv) = 2. So assume that w
is a 2-vertex in the 2-subgraph. Similarly, if x′ is a 3-vertex in the 3-subgraph, then
we can extend the colouring by setting φ(xu) = 3 and φ(uv) = 1. So assume that x′ is
a 2-vertex in the 3-subgraph. A similar argument shows that we may as well assume
that v′ is a 2-vertex in the 4-subgraph. Now consider the value of φ(ww′). On the

1Given any colour α assigned by an edge-colouring, when mentioning the α-subgraph, we refer to the
subgraph whose edges are the ones assigned colour α.
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one hand, if φ(ww′) = 1, then φ can be extended to G by setting φ(xw) = φ(xu) = 3,
and φ(vw) = φ(vu) = 4. On the other hand, if φ(ww′) 6= 1, then φ can be extended
to G by setting φ(ux) = φ(uv) = 2 and φ(wx) = φ(wv) = 1.

In each case, φ can be extended to a locally irregular 4-edge-colouring of G, a contra-
diction. So G cannot contain a square.

We now focus on the 2-vertices of G, which exist, since G is strictly subcubic and has
no 1-vertex (Claim 3.3).

Claim 3.7. The graph G has no neighbouring 2-vertices.

Proof. Assume G has two adjacent 2-vertices u and v, and let u′uvv′ be the induced path
of length 3 of G containing u and v. Here, we consider the graph G′ := G − u′u − uv.
This graph is connected, as otherwise u′u would be a bridge of G, contradicting Claim 3.4.
Furthermore, G′ has even size and is smaller than G. Hence, there exists a locally irregular
4-edge-colouring of G′. Since, in G′, the vertices u′ and v are a 2−-vertex and a 1-vertex,
respectively, that edge-colouring assigns at most three different colours to edges incident to
u′ and v in G′. So we can assign a non-used colour to u′u and uv, which results in a locally
irregular 4-edge-colouring of G, a contradiction.

Claim 3.8. The graph G has no 3-vertex adjacent to two 2-vertices.

Proof. Assume, for contradiction, that G has a 3-vertex v adjacent to two 2-vertices u1, u2
and another 2+-vertex w. Consider the graph G′ := G− vu1 − vu2. If G′ is not connected,
then necessarily w belongs to the same connected component as one of u1 and u2 (as,
otherwise, vw would be a bridge in G, contradicting Claim 3.4). Actually, w belongs to the
same connected component as only one of u1 and u2, as otherwise G′ would be connected.
Assume without loss of generality that w and u2 belong to the same connected component
of G′, while u1 belongs to another connected component. But then vu1 is a bridge in G,
which contradicts Claim 3.4.

So G′ is necessarily connected. Furthermore, it has even size and is smaller than G.
Hence, there exists a locally irregular 4-edge-colouring of G′. Since dG(u1) = dG(u2) = 2,
by that edge-colouring, at most three different colours are assigned to the edges incident to
v, u1 and u2 in G′. There is thus a non-used colour that can be assigned to vu1 and vu2,
resulting in a locally irregular 4-edge-colouring of G. This is a contradiction.

We are now ready to show that G cannot contain 2-vertices as well, hence showing that
G cannot exist, as we assumed G to be strictly subcubic.

Claim 3.9. The graph G has no 2-vertex.

Proof. Assume the contrary, and let v be a 2-vertex of G, and u1 and u2 be the two
neighbours of v in G. Because G has no triangle by Claim 3.5, the vertices u1 and u2 are
not joined by an edge. Furthermore, since G has no 1-vertex by Claim 3.3, nor neighbouring
2-vertices by Claim 3.7, we have d(u1) = d(u2) = 3. So let w1, w2 denote the two neighbours
of u1 different from v, and w3, w4 denote the two neighbours of u2 different from v. Since
G has no square by Claim 3.6, we have N(u1) ∩N(u2) = {v}.

Consider the graph G′ := G − w1u1 − w4u2 − u1v − u2v. Assume first that G′ is
connected. Since G′ is strictly subcubic, smaller than G, and is of even size, there exists
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a locally irregular 4-edge-colouring φ of G′. We extend φ to G, so that a contradiction is
obtained.

Since dG′(w1) ≤ 2 and dG′(u1) = 1, the vertices w1 and u1 are incident to at most three
edge colours by φ, namely the colours assigned to u1w2 and to the at most two edges incident
to w1 in G′. So there is a colour α1 ∈ {1, 2, 3, 4} such that, when assigning colour α1 to
w1u1 and u1v, those two edges induce a path of length 2 in the α1-subgraph. Analogously,
there is a colour α2 ∈ {1, 2, 3, 4} such that, when assigning colour α2 to w4u2 and u2v, those
two edges induce a path of length 2 in the α2-subgraph. If α1 6= α2, then we get a locally
irregular 4-edge-colouring of G by assigning colour α1 to w1u1 and u1v, and colour α2 to
w4u2 and u2v.

Assume thus that α1 = α2. Let β1 := φ(u1w2). Recall that β1 6= α1. We may assume
that β1 is not assigned to any edge incident to w1 in G′, as otherwise there would be another
colour, different from α2, that can be assigned to w1u1 and u1v, and the previous extension
strategy could be applied. We note that if w2 is a 2-vertex in the β1-subgraph of G′ induced
by φ, then a correct extension of φ is obtained by assigning colour β1 to w1u1 and u1v,
and colour α2 to w4u2 and u2v. Analogously, we can deduce a correct extension when w3

is a 2-vertex in the β2-subgraph induced by φ, where β2 := φ(u2w3) (unless β2 appears
on an edge incident to w4, in which case there would be another colour, different from α1,
available to colour w4u2 and u2v). Therefore, we may assume that w2 is a 3-vertex in the
β1-subgraph induced by φ, and w3 is a 3-vertex in the β2-subgraph induced by φ. But,
then, a locally irregular 4-edge-colouring of G is obtained by assigning colour β1 to u1w1,
colour β2 to u2w4, and colour α1 to vu1 and vu2.

We are now left with the case where G′ is not connected. Recall that G has no bridge
(Claim 3.4). Because of the degrees of v, of the ui’s and of the wi’s in G, the graph G′ has at
most four connected components. Note further that it cannot be that one of these connected
components contains only one of the wi’s, since no edge uiwj is a bridge. Therefore, G′

cannot include three or four connected components. So G′ has exactly two connected
components C1 and C2, each of which contains exactly two of the wi’s. Furthermore, if one
of C1 and C2 contains w1 and w2 only, then that would mean that u1v and vu2 are bridges
in G. In other words, there are, essentially, only two possible configurations for C1 and C2

(note that every other case for C1 and C2 is equivalent to one of the two below, up to a
relabelling of the wi’s):

• Configuration 1: Component C1 includes w1 and w3, while C2 includes w2 and w4.

• Configuration 2: Component C1 includes w1 and w4, while C2 includes w2 and w3.

Since |E(G)| − |E(G′)| = 4, the graph G′ has even size, and thus |E(C1)| and |E(C2)|
have the same parity. If both C1 and C2 have even size, then, from locally irregular 4-edge-
colourings of C1 and C2 (which exist, as C1 and C2 are strictly subcubic graphs with even
size being smaller than G), we directly obtain a locally irregular 4-edge-colouring of G′,
which we can extend to G following the same extension scheme as the one described when
G′ was assumed to be connected.

Assume thus that C1 and C2 both have odd size. Our final goal is, based on all infor-
mation we have deduced so far, to decompose G into G1 and G2 such that:

1. G1 and G2 have even size,

2. G1 and G2 are smaller than G, and
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3. V (G1)∩V (G2) = {x, y}, where each of x and y has incident edges in G1, and incident
edges in G2.

In other words, we want to decompose G into two smaller graphs G1 and G2 with even size,
having only two common vertices. This will ensure that locally irregular 4-edge-colourings
of G1 and G2 can be combined, in order to obtain a locally irregular 4-edge-colouring of G.

We obtain G1 and G2 in the following way, depending on whether C1 and C2 form
Configuration 1 or 2:

• In case C1 and C2 form Configuration 1, we consider G1 := C1 + w1u1 + u1v + vu2
and G2 := C2 + u2w4.

• Otherwise, i.e. C1 and C2 form Configuration 2, we consider G1 := C1 + w1u1 and
G2 := C2 + u1v + vu2 + u2w4.

In both cases, the described decomposition fulfils the three requirements above. In partic-
ular, in the decomposition we get for Configuration 1, we get V (G1) ∩ V (G2) = {u1, u2},
where dG1(u1) = 2, dG2(u1) = 1 and dG1(u2) = 2, dG2(u2) = 1. For Configuration 2, we get
V (G1) ∩ V (G2) = {u1, w4}, where dG1(u1) = 1, dG2(u1) = 2 and dG1(w4) ≤ 2, dG2(w4) = 1.

By the induction hypothesis, the graphs G1 and G2 admit locally irregular 4-edge-
colourings φ1 and φ2, respectively. We now permute some pairs of colours assigned by
φ1 and φ2 so that, when applied to G, these two edge-colourings yield a locally irregular
4-edge-colouring of G.

Note that permuting any two colours of a locally irregular edge-colouring indeed results
in a locally irregular edge-colouring. First assume that C1 and C2 form Configuration 1.
We permute colours assigned by φ2 only, in the following way. Assume there are at most
two distinct colours α1, α2 assigned by φ1 to the edges incident to u1 in G1. If u1w2 is
assigned a colour β1 by φ2 such that β1 6= α1, α2, then we do not modify φ2. Otherwise, we
permute, in φ2, colour β1 and another colour not in {α1, α2} so that this property holds.
Assume thus that, indeed, β1 6= α1, α2, and now consider the at most two distinct colours
α3, α4 assigned by φ1 to the edges incident to u2 in G1, and the colour β2 assigned to u2w4

by φ2. If β2 6= α3, α4, then we are done. Otherwise, we permute, in φ2, colour β2 with a
colour in {1, 2, 3, 4} \ {β1, α3, α4}. Now φ1 and φ2 can be safely combined in order to get a
locally irregular 4-edge-colouring of G.

Lastly suppose that C1 and C2 form Configuration 2. Let α1 := φ1(w1u1), and let β1, β2
denote the at most two colours assigned by φ2 to the edges incident to u1 in G2. Similarly,
let β3 := φ2(u2w4), and let α2, α3 denote the at most two colours assigned by φ1 to the
edges incident to w1 in G1. We start by permuting, if necessary, the colour α1 and another
colour of φ1, so that α1 6= β1, β2. If β3 6= α2, α3, then we are done; so assume this is not the
case. If, in φ2, the colour β3 can be permuted with another colour not in {α2, α3, β1, β2},
then we permute β3 and that colour in φ2, so that φ1 and φ2 now yield a locally irregular
4-edge-colouring of G. Otherwise, it means that {α2, α3, β1, β2} = {1, 2, 3, 4}. In that case,
we permute, in φ2, colours β1 and another colour not in {α1, β1, β2}, so that β1 and β3
can eventually be permuted. Then φ1 and φ2, when combined, result in a locally irregular
4-edge-colouring of G.

So G cannot have 1-vertices nor 2-vertices. This is a contradiction since G is strictly
subcubic. It follows that G cannot exist.
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We now use Theorem 3.1 to derive corollaries for decomposable subcubic graphs with
odd size, and cubic graphs with even size.

Corollary 3.10. For every connected decomposable strictly subcubic graph G with odd size,
we have χ′irr(G) ≤ 5.

Proof. According to Lemma 2.3, one can find, in G, a claw H with 0 or 2 of its edges
subdivided such that G′ := G − E(H) has connected components with even size only.
All connected components of G′ are strictly subcubic. So, every connected component of
G′ is a strictly subcubic graph with even size. Hence, there exists a locally irregular 4-
edge-colouring of G′ according to Theorem 3.1. We can extend it to a locally irregular
5-edge-colouring of G by assigning colour 5 to all edges of H, which is locally irregular.

Corollary 3.11. For every connected cubic graph G, we have χ′irr(G) ≤ 5.

Proof. If G has odd size, then the proof can be conducted similarly as the proof of Corol-
lary 3.10. So assume G has even size. Then, according to Lemma 2.2, one can find, in G,
a path P with length 2 such that all connected components of G′ := G − E(P ) have even
size (just apply the lemma with any vertex). Again, all connected components of G′ are
strictly subcubic and of even size. So, similarly as in the proof of Corollary 3.10, we can
deduce a locally irregular 4-edge-colouring of G′ (from Theorem 3.1), which we can extend
to the edges of P using colour 5, hence to G.

We summarize Theorem 3.1 and Corollaries 3.10 and 3.11 in the following result, which
improves Corollary 2.5 for subcubic graphs.

Theorem 3.12. For every decomposable subcubic graph G, we have χ′irr(G) ≤ 5.

4 Locally irregular decompositions of subcubic graphs with
maximum average degree less than 12

5

In this section, we focus on decomposable graphs with maximum average degree less than
12
5 , where the maximum average degree of a given graph G is

mad(G) := max

{
2|E(H)|
|V (H)|

, H is a subgraph of G

}
.

More precisely, we again focus on connected subcubic graphs with even size, and prove the
following, which is our main result in this section.

Theorem 4.1. For every connected subcubic graph G with even size and mad(G) < 12
5 , we

have χ′irr(G) ≤ 3.

Recall that the girth g(G) of a graph G is the length of its shortest cycle. As every

planar graph G satisfies mad(G) < 2g(G)
g(G)−2 , the following corollary can easily be derived

from Theorem 4.1:

Corollary 4.2. For every connected planar subcubic graph G with even size and girth
g(G) ≥ 12, we have χ′irr(G) ≤ 3.
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Since edge removal cannot increase the maximum average degree of a graph, Theorem 4.1
can be combined with Theorem 2.1, which yields the following (improving Theorem 3.12
for some classes of decomposable subcubic graphs):

Theorem 4.3. For every decomposable subcubic graph G with mad(G) < 12
5 , we have

χ′irr(G) ≤ 4.

Before proceeding with the proof of Theorem 4.1, let us introduce a few definitions and
notations that we use throughout. A 3k-vertex is a 3-vertex adjacent to exactly k 2-vertices.
A bad 2-vertex is a 2-vertex adjacent to another 2-vertex, while a good 2-vertex is a 2-vertex
adjacent to two 3-vertices. A light 3-vertex is a 3-vertex adjacent to a 1-vertex, while a
heavy 3-vertex is a 3-vertex adjacent to no 2−-vertex. A bad 3-vertex is a 3-vertex adjacent
to two bad 2-vertices. A vertex is called deficient if it is a 2-vertex (bad or good) or a light
3-vertex.

Proof of Theorem 4.1. The proof is done by induction. Assuming there exists a minimum
counterexample H to the claim, we prove that H cannot exist. To that aim, we go through
two steps. The first step consists in proving the non-existence of some set S of subgraphs in
H. Based on the resulting structural properties of H, we then, through a second step, use
the discharging technique in order to obtain a contradiction to the fact that H has small
maximum average degree. More precisely, during this second step, we first define a weight
function ω : V (H) → R with ω(v) := d(v) − 12

5 . An important observation is that, by our
hypothesis on the maximum average degree of H, the total sum of weights must be strictly
negative, since ∑

v∈V (H)

ω(v) =
∑

v∈V (H)

(
d(v)− 12

5
· |V (H)|

)
and ∑

v∈V (H)

d(v) ≤ |V (H)| ·mad(H) <
12

5
· |V (H)|.

Next, we define discharging rules to redistribute weights among vertices, resulting, once the
discharging process is finished, in a new weight function ω∗. During the discharging process,
the total sum of weights is kept fixed. Nevertheless, by the non-existence of S, it will follow
that ω∗(v) ≥ 0 for all v ∈ V (H). This will lead to the following contradiction

0 ≤
∑

v ∈V (H)

ω∗(v) =
∑

v ∈V (H)

ω(v) < 0,

contradicting the existence of H.

Structural properties

Let H be a counterexample to Theorem 4.1 minimizing |E(H)| + |V (H)|. So, in other
words, the graph H has even size, verifies mad(H) < 12

5 and χ′irr(H) > 3, and every proper
subgraph H ′ of H with even size verifies χ′irr(H

′) ≤ 3. In particular, if we consider a
subgraph H ′ := H − E for some subset E ⊆ E(H) such that all connected components of
H ′ have even size, we get χ′irr(H

′) ≤ 3.
We start off by showing that H, because it is a minimal counterexample to Theorem 4.1,

cannot contain certain structures.
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Claim 4.4. The graph H satisfies the following:

1. H does not contain a non-pendant bridge.

2. H does not contain a 1-vertex adjacent to a 2-vertex.

3. H does not contain a 3-vertex adjacent to a 1-vertex and a 2−-vertex.

4. H does not contain a path uvw where u, v, w are 2-vertices.

5. H does not contain two adjacent light 3-vertices.

6. H does not contain a 3-vertex adjacent to three 2-vertices.

7. H does not contain a 3-vertex adjacent to a bad 2-vertex and to two deficient vertices.

8. H does not contain two adjacent 3-vertices, such that one of them is adjacent to two
bad 2-vertices, while the other one is adjacent to one deficient vertex.

Proof. We consider each of these structural properties separately.

1. It can easily be checked that the proof of Claim 3.2 can be mimicked in the current
context, and still applies, despite we are restricting our attention to three colours only.

2. Assume H has three vertices u, v, w, such that uv and vw are edges of H, d(u) = 1 and
d(v) = 2. Consider H ′ := H−uv−vw. Since H ′ has even size, verifies mad(H ′) < 12

5 ,
and is smaller than H, it admits a locally irregular 3-edge-colouring. Since dH′(w) ≤ 2,
there are at most two colours assigned, by that edge-colouring, to the edges incident
to w in H ′. So there is at least one non-used colour that we can freely assign to uv
and vw, resulting in a new path with length 2 (hence, a locally irregular one) in the
subgraph induced by that colour. The resulting 3-edge-colouring of H is hence locally
irregular, so χ′irr(H) ≤ 3, a contradiction.

3. Assume H has a 3-vertex v adjacent to a 1-vertex u1 and a 2−-vertex u2. Consider
H ′ := H − vu1 − vu2. We note that H ′ remains connected as otherwise vu2 would be
a non-pendant bridge in H, contradicting Claim 4.4.1. So H ′ has even size, verifies
mad(H ′) < 12

5 , and is smaller than H. It hence admits a locally irregular 3-edge-
colouring. Now, because dH′(v) = 1 and dH′(u2) ≤ 1, there are, by that edge-
colouring, at most two different colours assigned to the edges incident to v and u2 in
H ′. So we can freely extend this locally irregular 3-edge-colouring to H by assigning
to vu1 and vu2 one colour non-assigned to any edge incident to v or u2 in H ′. This is
a contradiction.

4. We consider H ′ := H−uv−vw. Note that H ′ remains connected as otherwise all four
edges incident to u, v, w would be bridges of H, contradicting Claim 4.4.1 or 4.4.2.
Now, a locally irregular 3-edge-colouring of H ′ can be extended to H by assigning
a same colour to uv and vw that does not appear around u or w in H ′. This is a
contradiction.

5. Assume H has two adjacent light 3-vertices v1 and v2. Let u1 and u2, respectively,
denote the 1-vertex adjacent to v1 and to v2, respectively. Let further w denote the
third neighbour of v1 different from u1 and v2. By Claim 4.4.3, we know that d(w) = 3.
Consider H ′ := H − v1v2 − v2u2. Again, H ′ is connected as otherwise v1v2 would be
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a non-pendant bridge in H, contradicting Claim 4.4.1. Thus, there exists a locally
irregular 3-edge-colouring of H ′. To see that it can be extended to v1v2 and v2u2,
hence to H, we just note that, by that edge-colouring, necessarily u1v1 and v1w are
assigned the same colour. This is because dH′(u1) = 1 and dH′(v1) = 2, and a locally
irregular graph cannot include a connected component isomorphic to K2. So, by the
edge-colouring of H ′, there are at most two different colours assigned to the edges
incident to v1 and v2. Therefore, a non-used colour can freely be assigned to v1v2 and
v2u2, resulting in a locally irregular 3-edge-colouring of H, a contradiction.

6. AssumeH has a 3-vertex v whose three neighbours u1, u2, u3 are 2-vertices. Let further
w1, w2, w3, respectively, denote the neighbour of u1, u2, u3, respectively, different from
v. Consider H ′ := H−vu2−vu3. First, we claim that H ′ remains connected. Assume
the contrary. Note that the connected component C containing v must also contain
one of u2 and u3 as otherwise vu1 would be a non-pendant bridge in H, contradicting
Claim 4.4.1. So C contains v and, say, u2, while it does not contain u3. But then
vu3 has to be a non-pendant bridge in H, contradicting Claim 4.4.1. So H ′ is indeed
connected.

Because H ′ has even size, verifies mad(H ′) < 12
5 , and is smaller than H, there is a

locally irregular 3-edge-colouring φ of H ′. We extend φ to H, in the following way.
First, if one of the three colours does not appear in the neighbourhood of u2, u3 and
v, then we can freely assign that colour to both vu2 and vu3. So, without loss of
generality, we may assume φ(u1v) = 1, φ(u2w2) = 2 and φ(u3w3) = 3. Because φ
is locally irregular, necessarily we have φ(u1w1) = φ(u1v) = 1. In particular, u1 is a
2-vertex in the 1-subgraph induced by φ. So we can extend φ to H by just assigning
colour 1 to vu2 and vu3. This is correct as v then becomes a 3-vertex in the 1-subgraph
while its neighbours are 2−-vertices. Hence, we get a contradiction.

7. The proof of this claim is a bit tedious as it cannot be treated using a common
argument for all cases. So, we basically have to consider all possible combinations of
deficient vertices. For the sake of legibility, we describe, for each of these cases, the
edges which should be removed from H (resulting in H ′), and how to extend a locally
irregular 3-edge-colouring φ of H ′ to H. In particular, checking whether H ′ remains
connected can be done similarly as in the previous claim.

Let v be a 3-vertex of H, and u1 be a bad 2-vertex adjacent to v. We denote by
u2 and u3 the two deficient neighbours of v different from u1. Recall that u2 and u3
cannot both be 2-vertices as otherwise v would contradict Claim 4.4.6. So, there are,
essentially, two cases to consider:

(a) Both u2 and u3 are light 3-vertices. Consider H ′ := H − vu2 − vu3. If a colour
of φ is not assigned to any of the edges incident to u1, u2, u3 in H ′, then we
assign that colour to vu2 and vu3. Note further that, for each of u1, u2, u3, its
two incident edges in H ′ are assigned a same colour by φ (as otherwise it would
not be locally irregular). So we may assume that the two edges incident to u1
are assigned colour 1, the two edges incident to u2 are assigned colour 2, and the
two edges incident to u3 are assigned colour 3. Then φ can be extended to H by
assigning colour 1 to vu2 and vu3.

(b) The vertex u2 is a light 3-vertex while u3 is a 2-vertex. Consider H ′ := H −
vu1 − vu2. Again, if a colour by φ does not appear around v, u1 and u2, then
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we assign that colour to the two removed edges. Otherwise, we again get the
property that, for each of u2, u3 and the neighbour u′1 of u1 different from v,
the two incident edges in H ′ are assigned the same colour. So, without loss of
generality, we may assume that the two edges incident to u′1 in H ′ are assigned
colour 1, the two edges incident to u2 are assigned colour 2, and the two edges
incident to u3 are assigned colour 3. Then φ can be extended to H ′ by assigning
colour 3 to vu1 and vu2.

8. In the previous case, we have highlighted the fact that, if uv is an edge of H such
that v is deficient, then, in a locally irregular edge-colouring of a subgraph H ′ of H
not containing uv, the at most two edges incident to v in H ′ are assigned the same
colour.

Assume H has two adjacent 3-vertices v1 and v2 such that v1 has a deficient neighbour
u1, while v2 is adjacent to two bad 2-vertices u2 and u3. We further denote by
w the neighbour of v1 different from u1 and v2. Due to the fact that u2 and u3
are bad 2-vertices, the only possible triangle in H[u1v1, v1v2, v2u2, v2u3] is formed
by v2, u2, u3. If this triangle exists, then we consider H ′ := H − u3u2 − u2v2, and
deduce a locally irregular 3-edge-colouring of H ′, which can easily be extended to
H. So assume that H[u1v1, v1v2, v2u2, v2u3] has not triangle, and consider H ′ :=
H − u1v1 − v1v2 − v2u2 − v2u3. First assume that H ′ remains connected. Then H ′

has even size, satisfies mad(H) < 12
5 , and is smaller than H. It hence admits a locally

irregular 3-edge-colouring, which we extend to H as follows. The idea is to colour, if
possible, u1v1 and v1v2 with a same colour, and v2u2 and v2u3 with a same colour.
Note that dH′(u1) ≤ 2 and dH′(v1) = 1; there is thus a non-used colour α that can
freely be assigned to u1v1 and v1v2. Similarly, there is also a non-used colour α′ that
can be assigned to v2u2 and v2u3. We now note that, even if α = α′, we get a locally
irregular 3-edge-colouring of H by assigning colour α to v1u1 and v1v2, and colour α′

to v2u2 and v2u3.

Lastly, assume that H ′ is not connected. The rest of the proof now goes quite similarly
as the proof of Theorem 3.1. Using similar arguments, it can be checked that H ′ has
exactly two connected components C1 and C2. In particular, each of the Ci’s contains
two of v1, u1, u2, u3 (note that if dH(w) = 1, then the configuration can easily be
treated by removing the edges v2u2 and v2u3 off H). If C1 and C2 both have even
size, then induction can be invoked, locally irregular 3-edge-colourings of C1 and
C2 yield a locally irregular 3-edge-colouring of H ′, which can be extended to H as
previously. So assume that C1 and C2 both have odd size. Similarly as in the proof
of Theorem 3.1, it can be checked that, under all those structural properties, H can
be decomposed into two graphs H1 and H2, such that V (H1) ∩ V (H2) = {v1, v2},
and v1 and v2 are 2-vertices in, say, G1, and 1-vertices in G2. Since v1v2 cannot be a
non-pendant bridge by Claim 4.4.1, the two cases to consider, in order to construct
H1 and H2, are the following:

• C1 includes u1 and u2 (while C2 includes v1 and u3): we add u1v1, v1v2 and v2u2
to C1 to obtain H1, and add v2u3 to C2 to obtain H2.

• C1 includes u1 and u3 (while C2 includes v1 and u2): we add u1v1, v1v2 and v2u3
to C1 to obtain H1, and add v2u2 to C2 to obtain H2.
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Then H1 and H2, which have even size, verify mad(H1),mad(H2) < 12
5 , and are

smaller than H, admit locally irregular 3-edge-colourings φ1 and φ2 (where φi is that
of Hi), respectively. Note that, in H1, if we have φ1(v1v2) = α1, then α1 is also
assigned to one of the two edges adjacent to v1v2 in H1. In other words, by φ1,
there are only two distinct colours α1, α2 assigned to the edges incident to v1 or v2.
Furthermore, we have, without loss of generality, that v1 is only incident to edges
assigned colour α1, while v2 is incident to one edge assigned colour α1, and one edge
assigned colour α2.

We would now like to permute some of the colours assigned by φ2, so that φ1 and φ2
yield a locally irregular 3-edge-colouring of H. Recall that V (H1)∩ V (H2) = {v1, v2}
and that dH2(v1) = dH2(v2) = 1. We start by possibly permuting two colours assigned
by φ2, so that the edge incident to v2 in H2 is assigned a colour β different from α1 and
α2. We then finish the permutation process, by, if needed, permuting the two colours
by φ2 different from β, so that the edge incident to v1 in H2 is assigned a colour
different from α1. Clearly, three colours are sufficient in order to obtain a correct
permutation verifying all these constraints. So we end up with a locally irregular
3-edge-colouring of H, a contradiction.

To lighten the upcoming discharging process, we will not work directly on H but rather
on a subgraph H− of H. More precisely, H− is the graph obtained from H by removing
all 1-vertices of H, i.e. H− := H − {v ∈ V (H), dH(v) = 1}. Clearly, H− is connected and
mad(H−) < 12

5 . Furthermore, from the structural properties of H exhibited in Claim 4.4,
one can easily derive the following properties of H−.

Claim 4.5. According to Claim 4.4, the graph H− satisfies the following:

1. δ(H−) ≥ 2 (Claims 4.4.2 and 4.4.3).

2. H− does not contain a path uvw where u, v, w are 2-vertices (Claims 4.4.3, 4.4.4 and
4.4.5).

3. H− does not contain a 33-vertex adjacent to at least one bad 2-vertex (Claims 4.4.3,
4.4.5, 4.4.6 and 4.4.7).

4. A bad 2-vertex of H− is also a bad 2-vertex of H (Claims 4.4.3 and 4.4.5).

Discharging procedure

To each vertex v of H−, we assign an initial charge w(v) := dH−(v) − 12
5 . We then carry

out the discharging procedure in two steps:

Step 1. We here just apply, in H−, the following rule:

(R0) Every heavy 3-vertex gives 1
5 to each adjacent bad 3-vertex.

Once Step 1 is finished, a new weight function ω′ is produced. We proceed then with
Step 2.

Step 2. We here apply, in H−, the following two rules:

(R1) Every 3-vertex gives 2
5 to each adjacent bad 2-vertex.
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(R2) Every 3-vertex gives 1
5 to each adjacent good 2-vertex.

Recall that we denote by ω∗ the resulting weight function. Let v ∈ V (H−) be a k-vertex.
By Claim 4.5.1, we have k ≥ 2. Now, consider the following cases:

• k = 2. Observe that ω(v) = −2
5 . Suppose v is a bad 2-vertex. By Claim 4.5.2, the

vertex v is adjacent to a 3-vertex. Hence, by (R1), we have ω∗(v) = −2
5 + 2

5 = 0. If v
is a good 2-vertex, then ω∗(v) = −2

5 + 2× 1
5 = 0 by (R2).

• k = 3. Observe that ω(v) = 3
5 . To simplify the analysis, we distinguish two cases:

– Suppose first that v is adjacent to a bad 2-vertex u1. By Claim 4.5.3, all neigh-
bours of v cannot be 2-vertices, so v is adjacent to at most two 2-vertices (in-
cluding u1). If u1 is the only 2-vertex neighbouring v, then, by (R1), we have
ω∗(v) ≥ 3

5−1× 2
5 = 1

5 > 0. Now assume v is adjacent to a second 2-vertex u2. If u2
is a good 2-vertex, then, by (R1) and (R2), we have ω∗(v) ≥ 3

5−1× 2
5−1× 1

5 = 0.
Now, if u2 is a bad 2-vertex, then the third neighbour (different from u1 and u2)
of v is a heavy 3-vertex, as otherwise H would contain, according to Claim 4.5.4,
the configuration described in Claim 4.4.8. So, by (R0), we have ω′(v) = 4

5 .
Hence, by (R1), we get ω∗(v) = 4

5 − 2× 2
5 = 0.

– Finally, if v is not adjacent to a bad 2-vertex, then ω∗(v) ≥ 3
5 − 3 × 1

5 = 0 by
(R0) and (R2).

Therefore, H− cannot exist and consequently H does not exist either. This completes
the proof.

5 K2-irregular decompositions of subcubic graphs

In this section, and in Section 6 as well, we focus on two relaxations of Conjecture 1.2 for
subcubic graphs considered by Bensmail and Stevens [5]. In particular, we completely verify
these two relaxations for subcubic graphs.

The idea is to study how easier it is, for proving Conjecture 1.2, to allow any locally
irregular decomposition to also include additional regular components. In this section, we
focus on K2-irregular decompositions (or, analogously, K2-irregular edge-colourings), which
are decompositions in which every part induces connected components that are either locally
irregular or isomorphic to K2. In this definition, it should be understood that, in every
subgraph induced by a part of the decomposition, there may be locally irregular connected
components, and some connected components isomorphic to K2 as well. For a given graph
G, we denote by χ′K2−irr(G) the smallest number of colours in a K2-irregular edge-colouring
of G. Note that χ′K2−irr(G) is defined for every graph G as every proper edge-colouring is
K2-irregular.

Clearly, we have χ′K2−irr(G) ≤ χ′irr(G) for every decomposable graph G. Hence, Con-
jecture 1.2, if true, would imply that χ′K2−irr(G) ≤ 3 holds for every graph G, unless G is
exceptional. One may thus wonder whether even χ′K2−irr(G) ≤ 2 is true for every graph
G. This is actually not the case, as, for example, χ′K2−irr(K4) = 3. So, in the context of
K2-irregular edge-colourings, the conjecture that is analogous to Conjecture 1.2 should be
the next one, which stands as a relaxation of Conjecture 1.2.

Conjecture 5.1. For every graph G, we have χ′K2−irr(G) ≤ 3.
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In the following result, we show that Conjecture 5.1 admits an easy proof in the context
of subcubic graphs. Recall that this result remains best possible even in this context because
of the complete graph K4.

Theorem 5.2. For every subcubic graph G, we have χ′K2−irr(G) ≤ 3.

Proof. We prove the claim by induction on |V (G)| + |E(G)|. As the claim can easily be
verified whenever G is small, we proceed with the general case. Consider any vertex v of
G and denote by u1, ..., uk its neighbours, where k ≤ 3. Set G′ := G − {vu1, ..., vuk}.
Since G′ is smaller than G, there exists a K2-irregular 3-edge-colouring of G′. Since
dG′(u1), ..., dG′(uk) ≤ 2, there are, by the edge-colouring, at most two different colours
assigned to the edges incident to each ui in G′. For each vui, let αi denote a colour not
assigned to an edge incident to ui in G′.

Extending the 3-edge-colouring of G′ to a K2-irregular 3-edge-colouring of G can then
be done by assigning, for every i ∈ {1, ..., k}, colour αi to vui, for the following reasons.
First of all, because, for each ui, edge vui has been assigned a colour not incident to ui in
G′, no conflict involving two vertices of G′ may arise. This is because the degrees of the
ui’s in the 1-, 2-, and 3-subgraphs of G′ that contain them are not altered by the extension.
Then, since each ui is a 1-vertex in the αi-subgraph induced by the resulting edge-colouring
of G, it cannot be that v and ui are involved in a conflict: the only situation where v and
ui have the same degree in the αi-subgraph is when this degree is exactly 1, in which case
v and ui belong to a component isomorphic to K2 in the αi-subgraph. Thus, we necessarily
end up with a K2-irregular 3-edge-colouring of G.

6 Regular-irregular decompositions of subcubic graphs

In this section, we focus on regular-irregular decompositions (or, analogously, regular-irregular
edge-colourings), which are more general than K2-irregular decompositions considered in
Section 5. Here, we allow every subgraph induced by a part of a decomposition to have con-
nected components being either locally irregular or regular. So, K2-irregular decompositions
are nothing but regular-irregular decompositions where one requires all induced regular sub-
graphs to be 1-regular. For a given graph G, we denote by χ′reg−irr(G) the smallest number
of colours in a regular-irregular edge-colouring of G. Since we have χ′reg−irr(G) ≤ χ′K2−irr(G)
for every graph G, again every graph is decomposable in that manner. Note further that if
G is regular, then χ′reg−irr(G) = 1.

Regular-irregular decompositions were considered by Bensmail and Stevens [5], who
conjectured the following.

Conjecture 6.1 (Bensmail, Stevens [5]). For every graph G, we have χ′reg−irr(G) ≤ 2.

Conjecture 6.1 is known to hold for a few classes of graphs, including trees and some
other classes of bipartite graphs [5]. We here give further evidence to the conjecture by
showing it to hold for subcubic graphs as well.

Theorem 6.2. For every subcubic graph G, we have χ′reg−irr(G) ≤ 2.

Proof. The proof consists in edge-colouring with colours red and green two edge-disjoint
subgraphs C and F of G, in the following way:

1. We consider, as C, a collection of vertex-disjoint cycles of G, and assign colour, say,
red, to all edges of C.
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2. Set F := G − E(C). Then, we edge-colour F in a regular-irregular way with colours
red and green, in such a way that all edges in F being adjacent, in G, to edges of C
are assigned colour green.

If F can be edge-coloured as described, then we note that the connected components of the
red subgraph induced by the edge-colouring of C are disjoint, in G, from the connected com-
ponents of the red subgraph induced by the edge-colouring of F . So the 2-edge-colourings
of C and F yield a regular-irregular 2-edge-colouring of G.

Start from C being empty, and, until this procedure cannot be repeated, pick any cycle
C of G−E(C) and move the edges of C to C. Once this process stops, the following holds,
basically because G is subcubic.

Claim 6.3. The subgraph F := G−E(C) is a forest. Furthermore, for every vertex v of G
having incident edges in C and incident edges in F , we have dC(v) = 2 and dF (v) = 1.

Assign colour red to all edges in C. When referring to a leaf edge of F , we mean an edge
that is incident to a leaf of F . We note that there are, in F , some leaves that are special
in the sense that they have both incident edges in C (two edges) and in F (one leaf edge).
We refer to these leaves as frontier leaves, and derive this concept to frontier leaf edges,
which are leaf edges of F whose at least one end is a frontier leaf. Note that a connected
component of F can be isomorphic to K2, in which case this connected component is a
frontier leaf edge which potentially joins two frontier leaves.

Following the explanations above, we assign colour green to all frontier leaf edges of
F . Note that F might have non-frontier leaf edges. We assign colour green to these edges
as well. It now remains to show that the non-coloured (i.e. non-leaf) edges of F can be
assigned colours red and green, without modifying the pre-colouring we have described, in
a regular-irregular way. In other words, we now want to prove the following.

Claim 6.4. Every subcubic tree T admits a regular-irregular 2-edge-colouring, such that all
leaf edges are assigned colour 1.

Proof. All along this proof, we see T as a tree whose leaf edges have been pre-assigned
colour 1, and we extend this pre-colouring until a regular-irregular 2-edge-colouring is at-
tained.

The proof is by induction on the size of T . As base cases, we note that the claim is true
whenever |E(T )| ≤ 3. Indeed, if T has diameter at most 2, then T is a star on at most
three edges being all assigned colour 1. The 1-subgraph is then exactly T , which is either
regular (one edge) or locally irregular (two or three edges). On the other hand, if T has
diameter 3, then T is the path of length 3 whose two end-edges are assigned colour 1. We
here get a regular-irregular 2-edge-colouring (with the desired additional property) of T by
assigning colour 2 to the middle-edge.

Assume thus that the claim holds whenever |E(T )| is smaller than some value, and
consider the next value of |E(T )|. To begin with, if ∆(T ) ≤ 2, then T is a path whose two
end-edges are assigned colour 1. If the length of T is odd, then we obtain the desired regular-
irregular 2-edge-colouring of T by assigning colours 1 and 2 alternatively, from one end-edge
to the other. When the length of T is even, the claimed edge-colouring can be obtained by
applying this colouring scheme starting from the second edge of T . In particular, the first
two edges of T get assigned colour 1 and thus induce a path of length 2, which is locally
irregular, in the 1-subgraph.
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We may thus assume that ∆(T ) = 3 since T is subcubic. By a pendant path of T , we
refer to a maximal path u1u2...uk of T such that u1 is a leaf, all internal vertices u2, ..., uk−1
are 2-vertices, and uk is a 3-vertex. Since T has 3-vertices, there are at least three pendant
paths in T . If T has a pendant path P with length at least 3, then the desired regular-
irregular 2-edge-colouring of T can be obtained in the following way. Let P := u1...uk
where d(u1) = 1 and d(uk) = 3. Due to the length of P , we have k ≥ 4. We consider
T ′ := T − u1u2 − u2u3 and assign colour 1 to u3u4 in T ′. Since T ′ is subcubic, smaller
than T , and has all its leaf edges assigned colour 1, there is, by the induction hypothesis,
a regular-irregular 2-edge-colouring of T ′ which is as claimed. This edge-colouring can be
extended to the claimed regular-irregular 2-edge-colouring of T by assigning colour 2 to
u2u3 and colour 1 to u1u2.

We may thus assume that all pendant paths of T have length 1 or 2. If T has only one
vertex v with d(v) = 3, then T is a subdivided claw all of whose leaf edges are assigned
colour 1. We here extend the pre-colouring by just assigning colour 2 to all non-coloured
edges of T . Note that these edges are edges that are incident to v and belong to pendant
paths with length 2. The resulting edge-colouring is clearly regular-irregular since the 1-
and 2-subgraphs include stars only.

Now assume that T has at least two 3-vertices, and let r denote any of them. We
designate r as the root of T , which defines, in the usual way, a (virtual) orientation of T
from its root to its leaves. Following that orientation, we say that a vertex v 6= r of T is
a multifather if v has exactly two children (and is hence a 3-vertex as v also has a father).
A multifather of T is said last if all of its descendants are 2−-vertices. In other words, a
last multifather is a 3-vertex with two pendant paths attached (which are of length 1 or 2).
Furthermore, a last multifather is said deepest if it is at maximum distance from r in T .

We first claim that if T has a deepest last multifather v such that at least one of
its two attached pendant paths P1 and P2 has length 2, then we can deduce the desired
regular-irregular 2-edge-colouring of T . This follows from the following arguments. First
assume that P1 := u1u2v and P2 := u′1u

′
2v have length 2. In that case, we consider

T ′ := T − u1u2 − u2v − u′1u
′
2 − u′2v. Assuming f(v) denotes the father of v in T , we

assign colour 1 to vf(v) in T ′. Since T ′ is subcubic, smaller than T , and has all of its
leaf edges assigned colour 1, we can deduce a regular-irregular 2-edge-colouring of T ′ which
is as required. This edge-colouring can be extended to T by assigning colour 2 to vu2
and vu′2 (and still assigning colour 1 to u1u2 and u′1u

′
2). Now assume that P2 := u′1v has

length 1 (while P1 is as previously). We here consider T ′ := T − u1u2 − u2v − u′1v in
which vf(v) is assigned colour 1, and a regular-irregular 2-edge-colouring of T ′ (with the
additional property). We now extend that edge-colouring to T . If, by assigning colour 2
to u2v (and still assigning colour 1 to u1u2 and u′1v), we do not get a regular-irregular
edge-colouring of T , that is only because, in the resulting 1-subgraph, f(v) and v are 2-
vertices. In that situation, the desired regular-irregular 2-edge-colouring of T is obtained
by assigning colour 1 to u2v.

Hence, we may assume that P1 := u1v and P2 := u′1v have length 1. Note that if
f(v) = r, then, by definition of a deepest last multifather, every vertex of T is at distance
at most 2 from r. In that situation, again, by assigning colour 2 to all non-leaf edges of T ,
we directly get a regular-irregular 2-edge-colouring which is as desired. So assume f(v) 6= r,
meaning that f(v) has a father f(f(v)) in T . In case f(v) is a 2-vertex, i.e. is not a
multifather, we consider T ′ := T − vu1 − vu′1 − vf(v), in which the edge f(v)f(f(v)) is
assigned colour 1. Here, a regular-irregular 2-edge-colouring of T is obtained by assigning
colour 2 to vf(v) and colour 1 to vu1 and vu′1.
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When d(f(v)) = 3, there are, according to all assumptions we have made so far, three
possibilities concerning the child v′ of f(v) different from v: either 1) v′ is a leaf, 2) v′ has
one child w1 being a leaf, or 3) v′ is a deepest last multifather with two children w1 and w′1
that are leaves.

In case 1), we consider T ′ := T − vu1 − vu′1 − vf(v). According to the induction
hypothesis, T ′ admits a regular-irregular 2-edge-colouring which is as desired. Recall that
v′f(v) is assigned colour 1 by that colouring. On the one hand, if f(v)f(f(v)) is assigned
colour 1, then we can extend the colouring to T by assigning colour 2 to vf(v) and colour 1
to vu1 and vu′1. On the second hand, if f(v)f(f(v)) is assigned colour 2, then we get a
correct extension by assigning colour 1 to all of vf(v), vu1 and vu′1.

In case 2), we consider T ′ := T − vu1 − vu′1 and assign colour 1 to the leaf edge vf(v)
of T ′. Again, according to the induction hypothesis, we can find a regular-irregular 2-edge-
colouring of T ′ which is as desired. Note that if f(v) is not a 3-vertex in the 1-subgraph
induced by that edge-colouring, then we can extend the edge-colouring to T by assigning
colour 1 to both vu1 and vu′1. So we may assume that all three edges incident to f(v) in T ′

are assigned colour 1. In that case, by assigning colour 1 to vu1 and vu′1, and modifying the
colour of vf(v) and v′f(v) to 2, we get a 2-edge-colouring of T which is regular-irregular
and as desired. In particular, the connected component of the 1-subgraph that contains
f(v) remains locally irregular, or becomes a K2.

Finally, in case 3), we again consider T ′ := T − vu1 − vu′1 in which the leaf edge vf(v)
is assigned colour 1. Note that f(v) cannot be a 3-vertex in the 1-subgraph induced by any
given regular-irregular 2-edge-colouring of T ′ since otherwise f(v) and v′ would be adjacent
3-vertices in the 1-subgraph. So, necessarily, f(v) is a 2−-vertex in the 1-subgraph, and the
edge-colouring can be extended to T by assigning colour 1 to vu1 and vu′1.

Thus, a regular-irregular 2-edge-colouring of T with the desired additional property
always exists. This concludes the proof.

Following Claim 6.4, there is thus a regular-irregular edge-colouring of F with colours
red and green, such that all frontier leaf edges are green. Together with the edges of C being
assigned colour red, this yields the claimed regular-irregular 2-edge-colouring of G, hence
our conclusion.

7 Conclusion

In this work, we have studied locally irregular decompositions in subcubic graphs. Although
we did not manage to prove Conjecture 1.2 for decomposable subcubic graphs, we have
showed that they decompose into at most 5 locally irregular subgraphs, which improves
by 2 the straight upper bound given by Corollary 2.5.

One first direction for future work could be to try pushing this bound further down.
As pointed out in the introduction, our bound has been recently improved down to 4 by
Lužar, Przyby lo and Soták [7]. The next step would thus be to prove Conjecture 1.2 for
decomposable subcubic graphs, or at least subclasses of decomposable subcubic graphs.
We actually made a first step towards this direction when we considered subcubic graphs
with bounded maximum average degree, and proved the conjecture for some of them. As
examples, let us mention that the cases of subcubic bipartite graphs and subcubic planar
graphs sound quite appealing to us. It might be interesting studying how locally irregular
decompositions behave in these graphs.
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Another direction for future work could be to consider locally irregular decompositions
of graphs with larger, but fixed, maximum degree. Recall that we have provided an upper
bound on their irregular chromatic index in Corollary 2.5. As a first step, it could be
interesting to investigate how lower this bound can be pushed down for decomposable
graphs with maximum degree 4. More generally, it could also be interesting to improve the
method in the proof of Observation 2.4, in order to obtain better bounds on the irregular
chromatic index of bounded-degree graphs.
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