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GROWTH OF QUOTIENTS OF GROUPS ACTING BY

ISOMETRIES ON GROMOV HYPERBOLIC SPACES

STÉPHANE SABOURAU

Abstract. We show that every group G with no cyclic subgroup of fi-
nite index that acts properly and cocompactly by isometries on a proper
geodesic Gromov hyperbolic space X is growth tight. In other words,
the exponential growth rate of G for the geometric (pseudo)-distance
induced by X is greater than the exponential growth rate of any of its
quotients by an infinite normal subgroup. This result unifies and ex-
tends previous works of Arzhantseva-Lysenok and Sambusetti using a
geometric approach.

1. Introduction

In this article, we investigate the asymptotic geometry of some discrete
groups (G, d) endowed with a left-invariant metric through their exponential
growth rate. The exponential growth rate of (G, d), also called entropy or
critical exponent, is defined as

ω(G, d) = lim sup
R→+∞

log cardBG(R)

R
(1.1)

where BG(R) is the ball of radius R formed of the elements of G at distance
at most R from the neutral element e. (Some authors define the exponential
growth rate of (G, d) as the exponential of ω(G, d).) The quotient group Ḡ =
G/N of G by a normal subgroup N inherits the quotient distance d̄ given
by the least distance between representatives. The distance d̄ is also left-
invariant. Clearly, we have ω(Ḡ, d̄) ≤ ω(G, d). The metric group (G, d) is
said to be growth tight if

ω(Ḡ, d̄) < ω(G, d) (1.2)

for any quotient Ḡ of G by an infinite normal subgroup N � G. In other
words, (G, d) is growth tight if it can be characterized by its exponential
growth rate among its quotients by an infinite normal subgroup. Observe
that if the normal subgroup N is finite, then the exponential growth rates
of G and Ḡ clearly agree.

The notion of growth tightness was first introduced by R. Grigorchuk
and P. de la Harpe [GrH97] for word metrics on finitely generated groups.
In this context, A. Sambusetti [Sa02b] showed that every nontrivial free
product of groups, different from the infinite dihedral group, and every
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amalgamated product of residually finite groups over finite subgroups are
growth tight with respect to any word metric. In another result, G. Arzhant-
seva and I. Lysenok [AL02] gave an affirmative answer to the question
about growth tightness of word hyperbolic groups posed by R. Grigorchuk
and P. de la Harpe [GrH97]. More precisely, they proved that every non-
elementary word hyperbolic group is growth tight for any word metric. Re-
cently, W. Yang [Ya] extended this result to non-elementary relatively hyper-
bolic groups (and more generally to groups with nontrivial Floyd boundary),
still for any word metric. On the other hand, it is not difficult to check that
the direct product F1×F2 of two free groups of rank at least 2 is not growth
tight for the word metric induced by the natural basis of F1 × F2 obtained
from two free basis of F1 and F2, cf. [GrH97].

Applications of growth tightness to geometric group theory in connection
with the Hopf property and the minimal growth of groups can be found
in [GrH97, Sa01, AL02, Sa02a, Sa02b, Sa04, CSS04].

Word metrics are not the only natural metrics which arise on groups.
For instance, let G be the fundamental group of a closed Riemannian man-
ifold (M, g) with basepoint x0. The group G acts properly and cocom-

pactly by isometries on the Riemannian universal cover (M̃, g̃) of (M, g).
The distance on G induced by g between two elements α, β ∈ G, denoted
by dg(α, β), is defined as the length of the shortest loop based at x0 rep-
resenting α−1β ∈ G = π1(M,x0). Every quotient group Ḡ = G/N by a
normal subgroup N � G is the deck transformation group of the normal
cover M̄ = M̃/N of M . The quotient distance d̄g on Ḡ agrees with the
distance dḡ on Ḡ induced by the lift ḡ on M̄ of the Riemannian metric g
on M (here, we take for a basepoint on M̄ any lift of x0). Furthermore, the
exponential growth rate of (Ḡ, dḡ) agrees with the one of the Riemannian
cover (M̄, ḡ) defined as

ω(M̄, ḡ) = lim
R→+∞

log volBḡ(R)

R

where Bḡ(R) is the ball of radius R in M̄ centered at the basepoint (the limit
exists since M is compact). In other words, we have ω(Ḡ, dḡ) = ω(M̄, ḡ).
Note that the exponential growth rates of Ḡ and M̄ do not depend on the
choice of the basepoint. By definition, the exponential growth rate of the
Riemannian universal cover (M̃, g̃) is the volume entropy of (M, g).

In [Sa08], A. Sambusetti proved the following Riemannian analogue of
G. Arzhantseva and I. Lysenok’s result [AL02].

Theorem 1.1 ([Sa08]). Every Riemannian normal cover M̄ of a closed neg-

atively curved Riemannian manifold M , different from the universal cover M̃ ,
satisfies ω(M̄) < ω(M̃).

As pointed out in [Sa08], even though the fundamental group of M is
a word hyperbolic group in the sense of Gromov, its geometric distance is
only quasi-isometric to any word metric. Since the exponential growth rate
of the fundamental group of M (hence, apriori, its growth tightness) is not
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invariant under quasi-isometries, it is not clear how to derive this theorem
from its group-theoretical counterpart.

Clearly, this theorem does not extend to nonpositively curved manifolds:
the product of a flat torus with a closed hyperbolic surface provides a simple
counterexample. In [Sa04], A. Sambusetti asks if growth tightness holds for
any Riemannian metric, without curvature assumption, on a closed nega-
tively curved manifold. We affirmatively answer this question in a general
way unifying different results on the subject, cf. Theorem 1.3.

The following classical definitions will be needed to state our main result.

Definition 1.2. A metric space X is proper if all its closed balls are compact
and geodesic if there is a geodesic segment joining every pair of points of X.
Following E. Rips’s definition, a geodesic metric space X is δ-hyperbolic if
each side of a geodesic triangle of X is contained in the 4δ-neighborhood
of the union of the other two sides (we refer to Section 4 for the original
definition of δ-hyperbolicity). A geodesic metric space is Gromov hyperbolic
if it is δ-hyperbolic for some δ ≥ 0. A group G is elementary if it contains
a (finite or infinite) cyclic subgroup of finite index. A group G acts properly
on a metric space X if for any compact set K ⊂ X, there are only finitely
many α ∈ G such that α(K) intersects K. A group G acts cocompactly on
a metric space X if the quotient space X/G is compact.

Let G be a group acting by isometries on a metric space X = (X, | · |)
with origin O. The distance on X induces a left-invariant pseudo-metric d
on G given by

d(α, β) = |α(O)β(O)| (1.3)

for every α, β ∈ G, where |xy| represents the distance between a pair of
elements x, y ∈ X. The notion of exponential growth rate for G = (G, d)
extends to the pseudo-distance d and does not depend on the choice of the
origin O.

In this article, we consider a non-elementary group G acting properly
and cocompactly by isometries on a proper geodesic δ-hyperbolic metric
space X. This implies that G is finitely generated. Furthermore, its Cayley
graph with respect to any finite generating set is quasi-isometric to X and
so is Gromov hyperbolic. Thus, G is a word hyperbolic group in the sense of
Gromov. In particular, the exponential growth rate of G is positive for the
(pseudo)-metric induced by the distance on X and any word distance since
non-elementary hyperbolic groups have non-abelian free subgroups. Note
also in this case that the limit-sup (1.1) is a true limit, cf. [Co93].

We can now state our main result.

Theorem 1.3. Let G be a non-elementary group acting properly and cocom-
pactly by isometries on a proper geodesic δ-hyperbolic metric space X. Then
G is growth tight for the (pseudo)-metric induced by the distance on X.

A quantitative version of this result can be found in the last section. Note
that the exponential growth rate of a quotient group Ḡ of G can vanish. In
this case, the relation (1.2) is clearly satisfied.
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Theorem 1.3 yields an alternative proof of the growth tightness of non-
elementary word hyperbolic groups in the sense of Gromov for word metrics,
cf. [AL02]. Indeed, every word hyperbolic group in the sense of Gromov acts
properly and cocompactly by isometries on its Cayley graph (with respect
to a given finite generating set) which forms a proper geodesic Gromov
hyperbolic space.

Since the universal cover of a closed negatively curved n-manifold M
is a Gromov hyperbolic space, we recover Theorem 1.1 as well by taking
G = π1(M) and X = M̃ . Actually, Theorem 1.3 allows us to extend this
result in three directions as it applies to

• Riemannian metrics on M without curvature assumption (and even
to Finsler metrics);
• manifolds with a different topology type than M , such as the non-

aspherical manifolds M#(S1 × Sn−1) or M#M0, where M0 is any
simply connected closed n-manifold different from Sn;
• intermediate covers and more generally covering towers, whereas

Theorem 1.1 only deals with the universal cover of M , see the fol-
lowing corollary for an illustration.

Corollary 1.4. Let M̂ be a Riemannian normal cover of a closed Riemann-
ian manifold M . Suppose that M̂ is Gromov hyperbolic and that its boundary
at infinity contains more than two points. Then every Riemannian normal
cover M̂ → M̄ →M with M̂ 6= M̄ satisfies ω(M̄) < ω(M̂).

Obviously, Corollary 1.4 applies when M is diffeomorphic to a closed
locally symmetric manifold of negative curvature. One may wonder if the
conclusion holds true when M is diffeomorphic to a closed irreductible higher
rank locally symmetric manifold of noncompact type. This question finds
its answer in Margulis’ normal subgroup theorem [Ma91]. Indeed, in the
higher rank case, the only normal covers of M are either compact (their
exponential growth rate is zero) or are finitely covered by the universal

cover M̃ of M (their exponential growth rate agrees with the exponential

growth rate of M̃).
In [DPPS11, §5.1], building upon constructions of [DOP00], the authors

show that there exists a noncompact complete Riemannian manifold M
with pinched negative curvature and finite volume which does not satisfy
the conclusion of Corollary 1.4 even for M̂ = M̃ . This shows that we cannot
replace the Gromov hyperbolic space X by a relatively hyperbolic metric
space in Theorem 1.3.

Finally, we mention that the gap between the exponential growth rates
of G and Ḡ can be arbitrarily small. For free groups, this follows from [Sh99],
see also [Ta05, Lemma 3]. Even for word hyperbolic groups in the sense of
Gromov, this is also true. Indeed, it has recently been established in [Cou]
that the exponential growth rate of the periodic quotient G/Gn of a non-
elementary torsion-free word hyperbolic group G is arbitrarily close to the
exponential growth rate of G, for every odd integer n large enough. Here,
Gn represents the (normal) subgroup generated by the n-th powers of the
elements of G.
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The strategy used to prove Theorem 1.3 follows and extends the approach
initiated by A. Sambusetti and used in [Sa01, Sa02a, Sa02b, Sa03, Sa04,
Sa08, DPPS11]. However, the nature of the problem leads us to adopt a
more global point of view, avoiding the use of any hyperbolic trigonometric
comparison formula, which cannot be extended in the absence of curvature
assumption and without a control of the topology of the spaces under con-
sideration. We present an outline of the proof in the next section.

Notation 1.5. Given A,B,C ≥ 0, it is convenient to write A ' B ± C for
B − C ≤ A ≤ B + C.

Acknowledgments. The author is grateful to the referee for his or her
detailed report and useful comments, which helped improve the article, as
well as for pointing out some pertinent references.

2. Outline of the proof

In this section, we review the approach initiated by A. Sambusetti and
developed in this article.

Let G be a non-elementary group acting properly and cocompactly by
isometries on a proper geodesic δ-hyperbolic metric space X. Every quotient
group Ḡ = G/N by a normal subgroup N�G acts properly and cocompactly
by isometries on the quotient metric space X̄ = X/N . We will assume that
ω(Ḡ) is nonzero, otherwise the main result clearly holds. This implies that
X̄ is unbounded.

Fix an origin O ∈ X. The left-invariant pseudo-distance d, cf. (1.3),
induces a semi-norm || · ||G on G given by

||α||G = d(e, α)

for every α ∈ G. By definition, a semi-norm on G is a nonnegative func-
tion || · || defined on G such that

||α−1|| = ||α||
||αβ|| ≤ ||α|| ||β||

for every α, β ∈ G. Semi-norms and left-invariant pseudo-distances on a
given group are in bijective correspondence. Similarly, we define a semi-
norm || · ||Ḡ on Ḡ from the quotient pseudo-distance d̄. For the sake of
simplicity and despite the risk of confusion, we will drop the prefixes pseudo-
and semi- in the rest of this article and simply write “distance” and “norm”.

For λ ≥ 0, consider the norm || · ||λ on the free product Ḡ ∗ Z2 where

||γ1 ∗ 1 ∗ · · · ∗ γm+1||λ =

(
m+1∑
i=1

||γi||Ḡ

)
+mλ

for every element γ1 ∗ 1 ∗ · · · ∗ γm+1 ∈ Ḡ ∗ Z2, with γi ∈ Ḡ, in reduced form
(that is, with m minimal). The norm || · ||λ induces a left-invariant distance,
denoted by dλ, on Ḡ ∗ Z2. We will write ω(Ḡ ∗ Z2, λ) for the exponential
growth rate of (Ḡ ∗ Z2, dλ). Clearly, ω(Ḡ ∗ Z2, λ + λ′) ≤ ω(Ḡ ∗ Z2, λ) for
every λ, λ′ ≥ 0.
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A direct combinatorial computation [Sa02b, Proposition 2.3] shows that

ω(Ḡ ∗ Z2, λ) > ω(Ḡ).

More precisely, the following estimate holds

Proposition 2.1 (see Proposition 2.3 in [Sa02b]).
For every λ > diam(X/G), we have

ω(Ḡ ∗ Z2, λ) ≥ ω(Ḡ) +
1

4λ
log(1 + e−λω(Ḡ)).

Strictly speaking this estimate has been stated for true distances, but it
also applies to pseudo-distances.

If we could construct an injective 1-Lipschitz map

(Ḡ ∗ Z2, || · ||λ)→ (G, || · ||G),

we could claim that the R-ball BḠ∗Z2,λ(R) of Ḡ ∗ Z2 for dλ injects into an

R-ball of G. This would imply that ω(Ḡ ∗ Z2, λ) ≤ ω(G). Combined with
Proposition 2.1, the main theorem would follow. Here, we do not construct
such a nonexpanding embedding, but derive a slightly weaker result which
still leads to the desired result.

Fix ρ > 0. Let Ḡρ be a subset of Ḡ containing the neutral element ē ∈ Ḡ
such that the elements of Ḡρ are at distance greater than ρ from each other
and every element of Ḡ is at distance at most ρ from an element of Ḡρ.

Example 2.2. Let G be the free group F2 = Z ∗ Z endowed with the word
metric induced by the canonical generators of the Z factors. For ρ = 5/4,
the set Ḡρ is formed of all words of even length.

Consider the subset Ḡρ∗Z2 of Ḡ∗Z2 formed of the elements γ1∗1∗· · ·∗γm+1

for m ∈ N with γi ∈ Ḡρ.

Suppose we can construct an injective 1-Lipschitz map

Φ : (Ḡρ ∗ Z2, || · ||λ)→ (G, || · ||G) (2.1)

for λ large enough. Then, as previously, the R-ball BḠρ∗Z2,λ(R) injects into
an R-ball of G and so

ω(Ḡρ ∗ Z2, λ) ≤ ω(G). (2.2)

To derive the main theorem, we simply need to compare ω(Ḡρ ∗ Z2, λ)
with ω(Ḡ ∗ Z2, λ). This is done in the next section, cf. Proposition 3.1,
where we show that

ω(Ḡ ∗ Z2, 2λ+ λ′) ≤ ω(Ḡρ ∗ Z2, λ) (2.3)

for λ′ large enough. The combination of Proposition 2.1, applied to 2λ+λ′,
with (2.3) and (2.2) allows us to conclude.

Thus, the key argument in the proof of the main theorem consists in con-
structing and deriving the properties of the nonexpanding map Φ, cf. (2.1).
This is done in Proposition 9.1 for λ large enough, without assuming that
the action of G on X is cocompact.
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3. Exponential growth rate of lacunary subsets

The goal of this section is to compare the exponential growth rates of Ḡ ∗ Z2

and Ḡρ ∗ Z2. We will use the notations (and obvious extensions) previously
introduced without further notice.

Given σ > 0, there exists rσ > 0 such that

cardBḠρ(rσ) ≥ cardBḠ(σ). (3.1)

An explicit value for rσ can be obtained from a (naive) packing argument
based on the following observation: every point of X̄ is at distance at most ∆
from a point of the Ḡ-orbit of Ō and so at distance at most ∆+ρ from some
point γ̊(Ō), where γ̊ ∈ Ḡρ. Here, ∆ = diam(X̄/Ḡ) = diam(X/G) and Ō
represents the projection of O to X̄.

More precisely, let ε > 0. As X̄ is unbounded, we can take cardBḠ(σ)
points (x̄i) on a minimizing ray of X̄ of length ` = 2(∆ + ρ) cardBḠ(σ) + ε
based at Ō with d(x̄i, x̄j) > 2(∆ + ρ) for i 6= j. From the previous ob-
servation, every point x̄i is at distance at most ∆ + ρ from some γ̊i(Ō),
where γ̊i ∈ Ḡρ. By construction, the elements γ̊i are disjoint and lie
in BḠρ(`+ ∆ + ρ). Thus, the bound (3.1) holds with

rσ = 3(∆ + ρ) cardBḠ(σ).

By applying the previous observation to a point of X̄ at distance ∆+ρ+ε
from Ō, we can also show that there exists θ̊ ∈ Ḡρ different from ē with

||̊θ||Ḡ ≤ 2(∆ + ρ).

Proposition 3.1. We have

ω(Ḡ ∗ Z2, λ+ λ′) ≤ ω(Ḡρ ∗ Z2,
λ
2 )

where λ ≥ 0 and λ′ ≥ Rρ = 6(∆ + ρ) cardBḠ(3(∆ + ρ)).

Proof. Let λ′ ≥ rσ + σ where σ = 3(∆ + ρ). For every γ ∈ Ḡ, we define

γ̊ ∈ Ḡρ as follows. If γ ∈ BḠ(ρ), then γ̊ = θ̊. Otherwise, we choose for γ̊ an
element of Ḡρ at distance at most ρ from γ. By construction, we have

d̄(γ, γ̊) ≤ 2(∆ + ρ) + ρ ≤ 3(∆ + ρ) = σ.

Now, we consider the map ϕ : Ḡ ∗ Z2 → Ḡρ ∗ Z2 defined as

ϕ(γ1 ∗ 1 ∗ · · · ∗ γm+1) = γ̊1 ∗ 1 ∗ · · · ∗ γ̊m+1.

As no γ̊i agrees with ē (this is the reason for introducing θ̊), the product
γ̊1 ∗ 1 ∗ · · · ∗ γ̊m+1 is in reduced form.

It follows from the bound d̄(γ, γ̊) ≤ σ that

||̊γ1 ∗ 1 ∗ · · · ∗ γ̊m+1||2λ+λ′−σ =

(
m+1∑
i=1

||̊γi||Ḡ

)
+m(2λ+ λ′ − σ)

≤

(
m+1∑
i=1

||γi||Ḡ

)
+ (m+ 1)σ +m(2λ+ λ′ − σ)

≤ ||γ1 ∗ 1 ∗ · · · ∗ γm+1||2λ+λ′ + σ.

Therefore, the map ϕ sends BḠ∗Z2,2λ+λ′(R) to BḠρ∗Z2,2λ+λ′−σ(R+ σ).



8 S. SABOURAU

Furthermore, the bound d̄(γ, γ̊) ≤ σ also implies that every element γ̊1 ∗
1 ∗ · · · ∗ γ̊m+1 ∈ Ḡρ ∗ Z2 in reduced form has at most

cardBḠ(̊γ1, σ)× · · · × cardBḠ(̊γm+1, σ) = (cardBḠ(σ))m+1

preimages by ϕ.
Hence, the cardinal of BḠ∗Z2,2λ+λ′(R) is bounded by the following sum

∞∑
m=0

card{̊γ1 ∗ 1 ∗ · · · ∗ γ̊m+1 ∈ BḠρ∗Z2,2λ+λ′−σ(R+ σ)} (cardBḠ(σ))m+1 .

Now, since cardBḠ(σ) ≤ cardBḠρ(rσ), each term of this sum is bounded
by the number of elements

γ̊1 ∗ 1 ∗ · · · ∗ γ̊m+1 ∗ 1 ∗ c̊1 ∗ 1 ∗ · · · ∗ c̊m+1 ∈ Ḡρ ∗ Z2

such that (
m+1∑
i=1

||̊γi||Ḡ

)
+m(2λ+ λ′ − σ) ≤ R+ σ

and c̊i ∈ BḠρ(rσ). As all these elements satisfy(
m+1∑
i=1

||̊γi||Ḡ +
m+1∑
i=1

||̊ci||Ḡ

)
+m(2λ+ λ′ − σ − rσ) ≤ R+ σ + rσ

and so(
m+1∑
i=1

||̊γi||Ḡ +

m+1∑
i=1

||̊ci||Ḡ

)
+ (2m+ 1) (λ+

λ′ − σ − rσ
2

) ≤ R+ λ+ λ′

since λ′ ≥ rσ + σ, we derive that

cardBḠ∗Z2,2λ+λ′(R) ≤ cardB
Ḡρ∗Z2,λ+λ′−σ−rσ

2

(R+ λ+ λ′).

Therefore,

ω(Ḡ ∗ Z2, 2λ+ λ′) ≤ ω(Ḡρ ∗ Z2, λ+
λ′ − σ − rσ

2
) ≤ ω(Ḡρ ∗ Z2, λ)

from the nonincreasing property of ω(Ḡρ ∗ Z2, ·). �

4. Classical results about Gromov hyperbolic spaces

In this section, we recall the definition of Gromov hyperbolic spaces and
present some well-known results. Classical references on the subject in-
clude [Gr87, GH90, CDP90].

Definition 4.1. Let X = (X, | · |) be a metric space. The Gromov product
of x, y ∈ X with respect to a basepoint w ∈ X is defined as

(x|y)w =
1

2
(|xw|+ |yw| − |xy|). (4.1)

By the triangle inequality, it is nonnegative.
Fix δ ≥ 0. A metric space X is δ-hyperbolic if

(x|y)w ≥ min{(x|z)w, (y|z)w} − δ
for every x, y, z, w ∈ X. Equivalently, a metric space X is δ-hyperbolic if

|xy|+ |zw| ≥ max{|xz|+ |yw|, |yz|+ |xw|}+ 2δ (4.2)
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for every x, y, z, w ∈ X.
A metric space is Gromov hyperbolic if it is δ-hyperbolic for some δ ≥ 0.

A finitely generated group is word hyperbolic in the sense of Gromov if its
Cayley graph with respect to some (or equivalently any) finite generating
set is Gromov hyperbolic.

Example 4.2. Gromov hyperbolic spaces include complete simply con-
nected Riemannian manifolds of sectional curvature bounded away from
zero and their convex subsets, metric trees and more generally CAT(−1)
spaces.

Remark 4.3. In this definition, the metric space X is not required to be ge-
odesic. However, from [BS00], every δ-hyperbolic metric space isometrically
embeds into a complete geodesic δ-hyperbolic metric space.

Without loss of generality, we will assume in the sequel that X is a com-
plete geodesic δ-hyperbolic metric spaces.

The following result about approximation maps can be found in [Gr87],
[GH90, Ch. 2, §3] and [CDP90].

Lemma 4.4. Given a geodesic triangle ∆ in X, there exists a map Φ : ∆→ T
to a possibly degenerated tripode T (i.e., a metric tree with at most three
leaves) such that

(1) the restriction of Φ to each edge of ∆ is an isometry,
(2) for every x, y ∈ X,

|xy| − 4δ ≤ |Φ(x)Φ(y)| ≤ |xy|.

In this lemma, we also denoted by | · | the metric on T . We will refer to
the map Φ as the approximation map of the geodesic triangle ∆.

Remark 4.5. This result implies the Rips condition: each side of a geodesic
triangle of X is contained in the 4δ-neighborhood of the union of the other
two sides.

Remark 4.6. Given x, y, z ∈ X, let Φ be the approximation map of a geo-
desic triangle ∆ = ∆(x, y, z) with vertices x, y and z. From Lemma 4.4.(1),
the Gromov product (x|y)z is equal to the distance between Φ(z) and the
center of the tripode T .

The following lemma is a simple version of the Local-to-Global theorem,
cf. [Gr87, GH90, CDP90].

Lemma 4.7. Let x, y, p, q ∈ X such that (x|q)p ≤ 4δ and (y|p)q ≤ 4δ. Then

|xy| ≥ |xp|+ |pq|+ |qy| − 14δ.

Proof. From the definition of the Gromov product, cf. (4.1), the bounds
(x|q)p ≤ 4δ and (y|p)q ≤ 4δ yield the following two estimates

|xq| ≥ |xp|+ |pq| − 8δ

|yp| ≥ |yq|+ |qp| − 8δ.
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Now, from (4.2), we have

|xy|+ |pq| ≥ max{|xp|+ |yq|, |yp|+ |xq|}+ 2δ

≥ |xq|+ |yp|+ 2δ.

Combined with the previous two estimates, we obtain the desired lower
bound for |xy|. �

The following simple fact will be useful in the sequel.

Lemma 4.8. Let x ∈ X. Consider the projection p of x to a given geodesic
line or geodesic segment τ (the projection may not be unique). Then, for
every q ∈ τ ,

(x|q)p ≤ 4δ.

In particular,
|xq| ≥ |xp|+ |pq| − 8δ.

Proof. Consider an approximation map Φ : ∆ → T of a geodesic trian-
gle ∆ = ∆(x, p, q) with vertices x, p and q. The center of the tripode T
has three preimages by Φ, one in each segment [x, p], [p, q] and [x, q]. Let
x1 and x2 be the preimages of the center of T in [xp] and [pq]. Note that
|xx1| = |xp| − |x1p|. From Lemma 4.4.(2), the points x1 and x2 are at dis-
tance at most 4δ , that is, |x1x2| ≤ 4δ. Since p is the projection of x to τ
and x2 lies in τ , we have |xp| ≤ |xx2|. Combining these estimates with the
triangular inequality, we obtain

|xp| ≤ |xx2| ≤ |xx1|+ |x1x2|
≤ |xp| − |x1p|+ 4δ.

That is, |x1p| ≤ 4δ. Now, we observed in Remark 4.6 that |x1p| = (x|q)p.
The result follows. �

The following classical result follows from the previous lemma.

Lemma 4.9. Let [x, y] be a geodesic segment joining x to y in X. Consider
an arc γ in X with the same endpoints as [x, y] such that

length(γ) ≤ |xy|+ `. (4.3)

Then the arc γ lies in the
(
`
2 + 8δ

)
-neighborhood of [x, y].

Proof. Let p be the projection to [x, y] of a point z in γ. From Lemma 4.8,
we have the following two estimates

|xz| ≥ |xp|+ |pz| − 8δ

|zy| ≥ |zp|+ |py| − 8δ.

Since p lies between x and y, we have |xy| = |xp|+ |py|. Hence,

length(γ) ≥ |xz|+ |zy|
≥ |xp|+ |pz| − 8δ + |zp|+ |py| − 8δ

≥ 2 |zp|+ |xy| − 16δ.

Substituting this inequality into the upper bound (4.3), we obtain

d(z, [x, y]) = |zp| ≤ `

2
+ 8δ.

�
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5. Traveling along hyperbolic orbits

In this section, we introduce some definitions, notations and constructions
which will be used throughout this article.

The following set of definitions and properties can be found in [Gr87,
GH90, CDP90].

Definition 5.1. Let X be a proper geodesic δ-hyperbolic metric space.
The boundary at infinity of X, denoted by ∂X, is defined as the equivalence
classes of geodesic rays of X, where two rays are equivalent if they are at
finite Hausdorff distance. Similarly, it can be defined as the equivalence
classes of sequences of points (xi)i≥1 of X whose Gromov product (xi|xj)p
with respect to any point p goes to infinity. Here, two such sequences (xi)
and (yj) are equivalent if (xi|yj)p goes to infinity. Thus, ∂X can be consid-
ered as a space of limit points. The space X∪∂X, endowed with the natural
topology extending the initial topology on X, is compact and contains X as
an open dense subset. Given two distinct points a and b in ∂X, there is a
geodesic line τ in X joining a to b, that is, τ(−∞) = a and τ(∞) = b. Every
isometry of X uniquely extends to a homeomorphism of X ∪ ∂X. An isom-
etry α of X is hyperbolic if for some (or equivalently any) point x ∈ X, the
map n 7→ αn(x) is a quasi-isometric embedding of Z into X. Alternatively,
an isometry of X is hyperbolic if and only if it is of infinite order. Every
hyperbolic isometry of X has exactly two fixed points on ∂X. An axis of a
hyperbolic isometry of X is a geodesic line of X joining the two fixed points
of the isometry. The minimal displacement of an isometry α of X is defined
as

dis(α) = inf
x∈X
|xα(x)|.

The minimal displacement of a hyperbolic isometry of X is positive.

Example 5.2. Let G be a group acting properly and cocompactly by isome-
tries on a proper geodesic δ-hyperbolic metric space X. We know that G
is a word hyperbolic group in the sense of Gromov (see the paragraph pre-
ceding Theorem 1.3). The argument leading to this result also shows that
an element of G is hyperbolic as an isometry of X if and only if it is hy-
perbolic as an isometry of the Cayley graph of G with respect to any finite
generating set (and so if and only if it is of infinite order). The boundary at
infinity of the word hyperbolic group G, defined as the boundary at infinity
of its Cayley graph with respect to some (and so any) finite generating set,
agrees with ∂X. The group G is non-elementary if and only if ∂X contains
more than two points. In this case, G contains a hyperbolic element. More
generally, every infinite subgroup N of a word hyperbolic group G in the
sense of Gromov contains a hyperbolic element.

Let G be a finitely generated group acting by isometries on a proper
geodesic δ-hyperbolic metric space X. Suppose that G contains a hyperbolic
isometry ξ of X, cf. Example 5.2. By taking a large enough power of ξ
if necessary, we can assume that the minimal displacement of ξ, denoted
by L = dis(ξ), is at most 300δ, i.e., L ≥ 300δ. Fix an axis τ of ξ.
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Definition 5.3. The stable norm of the fixed hyperbolic element ξ is de-

fined as the limit of the subadditive sequence ||ξ
k||
k . It is denoted by ||ξ||∞.

From [CDP90, §10, Proposition 6.4], the stable norm of ξ is positive and
satisfies

||ξ||∞ ≤ L = dis(ξ) ≤ ||ξ||∞ + 16δ.

Observe that ||ξ||∞ ≥ 0.9L as L ≥ 300δ.

Given ε ∈ (0, δ), let O ∈ X be an origin with |Oξ(O)| ≤ L+ ε.

Lemma 5.4. The point O is at distance at most 28δ from the axis τ of ξ.

Proof. Let p and q be the projections of O and ξ(O) to τ (they may not be
unique but we choose some). Let also q− be the projection of ξ−1(q) to τ .
From [GH90, Corollaire 7.3], the image ξ−1(τ), which is a geodesic line with
the same endpoints at infinity as τ , is at distance at most 16δ from τ . Thus,

|ξ−1(q)q−| ≤ 16δ. (5.1)

From this relation and Lemma 4.8, we derive

|Op|+ |pq−| − 8δ ≤ |Oq−| ≤ |Oξ−1(q)|+ 16δ.

That is,

|pq−| ≤ |ξ(O)q| − |Op|+ 24δ. (5.2)

Now, from Lemma 4.7, we have

|Oξ(O)| ≥ |Op|+ |pq|+ |qξ(O)| − 14δ

≥ |Op|+ |ξ−1(q)q| − |ξ−1(q)p|+ |qξ(O)| − 14δ

≥ |Op|+ |qξ(q)| − |pq−| − 16δ + |qξ(O)| − 14δ

≥ |qξ(q)|+ 2|Op| − 54δ

where the third inequality follows from (5.1) and the last one from (5.2). By
definition of O, we obtain

|Op| ≤ 27δ +
ε

2
< 28δ.

�

Let x1 = O. For i ∈ Z∗ = Z \ {0}, we denote by xi the point ξi−1(x1)
if i > 0 and ξi(x1) if i < 0 (this choice of indices may not seem natural, but it
allows us to consider fewer cases in forecoming arguments). As ||ξ||∞ ≥ 0.9L,
we derive that

dis(ξk) ≥ ||ξk||∞ = |k| ||ξ||∞ ≥ L
for every k ∈ Z∗ \ {±1}. Thus, dis(ξk) ≥ L for every k ∈ Z∗. That is,

|xixj | ≥ L

for every i, j ∈ Z∗ with i 6= j.
We also define pi as the projection of xi to τ (again, it may not be unique

but we choose one). Since ξ is an isometry, the points xi of the ξ-orbit of x1

attain the minimal displacement of ξ up to ε. Thus, from Lemma 5.4, we
derive

|xipi| ≤ 28δ. (5.3)
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For every pair of distinct indices i, j ∈ Z∗, we obtain

|pipj | ≥ |xixj | − 56δ ≥ L− (56δ + ε).

If the indices i and j are adjacent, we actually have

|pipj | ' |xixj | ± 56δ

' L± (56δ + ε). (5.4)

using the notation 1.5. Therefore, since L > 168δ + 3ε, we deduce that the
points pi lie in τ in the order induced by Z∗.

Consider the Voronoi cells of the ξ-orbit (xi) of O, namely

Di = {x ∈ X | |xxi| ≤ |xxj | for every j ∈ Z∗}.

Note that ξ(Di) = Di+1 if i ∈ Z∗ \ {−1} and ξ(D−1) = D1.

Lemma 5.5. Given x ∈ Di, let p be a projection of x to τ . Then p strictly
lies between the points pi− and pi+ of {pj | j ∈ Z∗, j 6= i} adjacent to pi.

In particular,

|pip| ≤ L+ 56δ + ε.

Proof. By contradiction, we assume that there is an index j ∈ Z∗ adjacent
to i such that pj lies between pi and p, or is equal to p. From (5.4), we have

|ppj | = |ppi| − |pipj |
≤ |ppi| − L+ 56δ + ε.

From the triangular inequality and the bound (5.3), this estimate leads to

|xxj | ≤ |xp|+ |ppj |+ |pjxj |
≤ |xp|+ |ppi| − L+ 56δ + ε+ 28δ.

On the other hand, from Lemma 4.8, we have

|xp|+ |ppi| ≤ |xpi|+ 8δ ≤ |xxi|+ |xipi|+ 8δ.

Hence, with the help of (5.3) and the inequality L > 120δ + ε, we obtain

|xxj | ≤ |xxi|+ 28δ + 8δ − L+ 56δ + ε+ 28δ < |xxi|.

Thus, x does not lie in Di, which is absurd. Hence the first part of the
lemma.

The second part of the lemma follows from (5.4). �

Remark 5.6. Lemma 5.5 also shows that two domains Di and Dj corre-
sponding to non-adjacent indices are disjoint. Thus, the Voronoi cells are
ordered by their indices.

Lemma 5.7. Let x and y be two points of X separated by D±1 or D±2.
Then

|xy| ≥ |Ox|+ |Oy| − 4L− 280δ − 4ε.
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Proof. Let p and q be the projections of x and y to τ . By assumption, there
exist two indices i, j ∈ Z∗ such that x ∈ Di and y ∈ Dj with D±1 or D±2

separating Di and Dj .
From Lemma 5.5, p±1 or p±2 separates p and q. This point between p

and q will be denoted by r. From the bounds (5.4) and (5.3), we derive that
|Or| ≤ 2L+ 140δ + 2ε. Hence

|pq| = |pr|+ |rq|
≥ |Op|+ |Oq| − 2 |Or|
≥ |Op|+ |Oq| − 2(2L+ 140δ + 2ε).

�

6. Geometric properties of symmetric elements

Using the previous notations and constructions, we introduce a notion
of symmetric element in G and establish some (almost) norm-preserving
properties.

Definition 6.1. Let β ∈ G. Denote by j(β) the smallest index j ∈ Z∗
such that β(O) ∈ Dj . We say that β is positive if j(β) > 0 and negative if
j(β) < 0.

We define β± ∈ G as follows

β+ = β

and

β− =

{
ξ−2j−1β if β is positive
ξ−2j+1β if β is negative

where j = j(β).
We will think of β− as the symmetric element of β with respect to a

symmetry line perpendicular to the direction of the ξ-shift.
Consider the following norm on G defined for every β ∈ G as

||β|| = |Oβ(O)|.

Proposition 6.2. Let β, β1, β2 ∈ G and j = j(β).

(1) β−(O) lies in D−j−2 if j > 0 and in D−j+2 if j < 0.
In particular, β+ and β− have opposite signs.

(2) If (β1)− = (β2)− then β1 = β2.
(3) We have

||β−|| ' ||β|| ±∆−

where ∆− = ∆−(L, δ, ε) = 8L+ 464δ + 8ε ≤ 10L.

Proof. The point (1) is obvious by construction of β−.
For the second point, if (β1)− = (β2)− then β1 and β2 have the same sign

from the second assertion of (1). We derive from the definition of β− that
ξkβ1 = ξkβ2 for k = −2j ± 1. Hence β1 = β2.

For the last point, let x = β(O) and x− = β−(O)− = ξ−2j∓1β(O), where
the exponent −2j ∓ 1 depends on the sign of β, see Definition 6.1. Fix
k = −j∓2. By assumption, x ∈ Dj and from the point (1), x− ∈ Dk. Thus,
|xxj | = |x−xk|.
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Let p and p− be the projections of x and x− to τ . From Lemma 5.5
and the bound (5.3), both |xjp| and |xkp−| are bounded from above by
L+ 84δ + ε. Combined with

|xp| ' |xxj | ± |xjp|
|x−p−| ' |x−xk| ± |xkp−|

and the relation |xxj | = |x−xk|, we obtain

|xp| ' |x−p−| ± (2L+ 168δ + 2ε). (6.1)

On the other hand, from (5.3) and the previous bound on |xjp|, we derive

|p1p| ' |x1xj | ± (|p1x1|+ |xjp|)
' |x1xj | ± (L+ 112δ + ε) (6.2)

Similarly,

|p1p−| ' |x1xk| ± (L+ 112δ + ε). (6.3)

Now, since

|x1xj | = |x−j+2x1|
' |xkx1| ± 4(L+ ε)

we obtain from (6.2) and (6.3) that

|p1p| ' |p1p−| ± (6L+ 224δ + 6ε). (6.4)

Now, from Lemma 4.8, we have

|xp1| ' |xp|+ |pp1| ± 8δ

|x−p1| ' |x−p−|+ |p−p1| ± 8δ

Combined with (6.1) and (6.4), we obtain

|xp1| ' |x−p1| ± (8L+ 408δ + 8ε).

The result follows from the bound |Op1| ≤ 28δ derived in (5.3). �

7. Geometric properties of twisted products

In this section, we introduce the twisted product and show that the norm
on G is almost multiplicative with respect to the twisted product.

Definition 7.1. The twisted product of two elements α, β in G is defined as

α ? β =

{
αβ+ if D1 or D−1 separates α−1(O) and β(O)
αβ− otherwise

Note that the twisted product ? is not associative. Furthermore, it has no
unit and is not commutative.

Recall that ||α|| = |Oα(O)| for every α ∈ G.

Proposition 7.2. Let α, β, β′ ∈ G. Then

(1) If α ? β = αβε with ε = ± then D±1 or D±2 separates α−1(O)
and βε(O).

(2) If α ? β = α ? β′ with β and β′ of the same sign, then β = β′.
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(3) We have

||α ? β|| ' ||α||+ ||β|| ±∆?

where ∆? = ∆?(L, δ, ε) = 12L+ 744δ + 12ε ≤ 15L.

Proof. For the first point. If ε = +, then the result is clear by definition of
the twisted product. Namely, D±1 separates α−1(O) and βε(O). If ε = −,
then D1 and D−1 do not separate α−1(O) and β(O). Assume that β is
positive, that is, β(O) ∈ Dj with j > 0 (the other case is similar). This
implies that α−1(O) lies in a domain Di with i ≥ −1, otherwise D−1 would
separate the two points. Therefore, D−2 separates α−1(O) and β−(O) since
β−(O) lies in D−j−2 from Proposition 6.2.

For the second point, if αβ = αβ′ then β = β′. Similarly, if α(β)− =
α(β′)− then β = β′ from Proposition 6.2.(2). Switching β and β′ if neces-
sary, we can assume that αβ = α(β′)−, and so β = (β′)−. From Proposi-
tion 6.2.(1), this implies that β and β′ have opposite signs, which is absurd.

For the last point. We have

||α ? β|| = |Oαβε(O)| = |α−1(O)βε(O)|.

Using the point (1), we can apply Lemma 5.7 to derive

|Oα−1(O)|+ |Oβε(O)| − 4L− 280δ− 4ε ≤ ||α ? β|| ≤ |Oα−1(O)|+ |Oβε(O)|.

That is,

||α ? β|| ' ||α||+ ||βε|| ± (4L+ 280δ + 4ε).

Hence, by Proposition 6.2, we obtain

||α ? β|| ' ||α||+ ||β|| ± (12L+ 744δ + 12ε).

�

8. Inserting hyperbolic elements

The proposition established in this section will play an important role in
the proof of the injectivity of the nonexpanding map defined in Section 9.

Lemma 8.1. Let β ∈ G and κ ≥ 4.

(1)

(ξκ ? β)+ =

{
ξκβ+ if β is positive
ξκβ− if β is negative

In particular, (ξκ ? β)+ is positive.

(2)

(ξκ ? β)− =

{
ξ−κβ− if β is positive
ξ−κ−4β+ if β is negative

In particular, (ξκ ? β)− is negative.

Therefore, for every α ∈ G, we have

α ? (ξκ ? β) = α ξκ∗βε (8.1)

with κ∗ = ±κ or − κ− 4, and ε = ±.
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Proof. The first point is clear since ξ−κ(O) ∈ D−κ. We only check the
second one. Let j = j(β) be the index of β, cf. Definition 6.1.

Suppose that j > 0. We observe that the image of O by ξκ ? β = ξκβ
lies in Dj+κ and that the index of ξκ ? β is positive equal to j + κ. Thus,

(ξκ ? β)− = ξ−2(j+κ)−1ξκβ = ξ−κβ−.
Suppose that j < 0. We observe that the image of O by ξκ?β = ξκ−2j+1β

lies in D−j+2+κ and that the index of ξκ ? β is positive equal to −j + 2 + κ.

Thus, (ξκ ? β)− = ξ−2(−j+2+κ)−1ξκ−2j+1β = ξ−κ−4β. �

Definition 8.2. An element α ∈ G is η-minimal modulo a normal sub-
group N �G, where η ≥ 0, if for every α′ ∈ αN ,

||α|| ≤ ||α′||+ η.

We denote by 〈〈ξ〉〉 the normal subgroup of G generated by ξ.

Recall that d(α, β) = |α(O)β(O)| for every α, β ∈ G and that the stable
norm of ξ introduced in Definition 5.3 satisfies

||ξ||∞ ≤ L = dis(ξ) ≤ ||ξ||∞ + 16δ.

Proposition 8.3. Let α1, α2, β1, β2 ∈ G such that αi is η-minimal mod-
ulo 〈〈ξ〉〉 for some η ≥ 0. Let κ ≥ 5 be an integer such that

κ > (6∆? + 3∆− + 48δ + η)/||ξ||∞.
If α1 ? (ξκ ? β1) = α2 ? (ξκ ? β2), then

d(α1, α2) ≤ 2κL+ 4(∆? +
1

2
∆− + 8δ).

Remark 8.4. Recall that L ≥ 300δ, ∆− ≤ 10L and ∆? ≤ 15L. Hence,
when η = ∆−, we can take κ = 140.

Proof. Let γ = αi ? (ξκ ? βi) = αiξ
κi(βi)εi where κi = ±κ or −κ − 4 and

εi = ± according to the decomposition (8.1) of Lemma 8.1. The segments
from O to Ai = αi(O), from Ai to Bi = αi(ξ

κi(O)), from Bi to γ(O), and
from O to γ(O) will be denoted by ai, ci, bi and c (these segments may
not be unique, but we choose some). We denote also by Āi and B̄i the
projections of Ai and Bi to c (which again may not be unique). Recall that
||ξ|| ≤ L+ δ with 300δ ≤ L and observe that for κ ≥ 5,

κ ||ξ||∞ ≤ |κi| ||ξ||∞ ≤ |AiBi| = ||ξκi || ≤ (κ+ 4)||ξ|| ≤ 2κL. (8.2)

From Propositions 6.2.(3) and 7.2.(3), we derive

length(ai ∪ ci ∪ bi) = ||αi||+ ||ξκi ||+ ||(βi)εi ||
' ||αi ? (ξκ ? βi)|| ± (2∆? + ∆−)

' length(c)± (2∆? + ∆−). (8.3)

Thus, by Lemma 4.9, the arc ai∪ci∪bi lies at distance at most ∆?+ 1
2∆−+8δ

from the geodesic c with the same endpoints. In particular, we have

|AiĀi| ≤ ∆? + 1
2∆− + 8δ (8.4)

|BiB̄i| ≤ ∆? + 1
2∆− + 8δ (8.5)

Fact 1. The points O, Āi and B̄i are aligned in this order along c.
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Indeed, from (8.3), we have

|OAi|+ |AiBi|+ |Biγ(O)| − 2∆? −∆− ≤ |Oγ(O)| ≤ |OBi|+ |Biγ(O)|.

This implies that

|OBi| ' |OAi|+ |AiBi| ± (2∆? + ∆−)

and so

|OB̄i| ≥ |OĀi|+ κ ||ξ||∞ − (2∆? + ∆−)− 2(∆? + 1
2∆− + 8δ)

using (8.4), (8.5) and (8.2). By our choice of κ, we have |OB̄i| ≥ |OĀi|.

Fact 2. The points O, Ā1 and B̄2 are aligned in this order along c.
Similarly, the points O, Ā2 and B̄1 are aligned in this order along c.

Let us prove the first assertion. Arguing by contradiction, we can assume
from Fact 1 that the points O, Ā2, B̄2 and Ā1 are aligned in this order
along c. Combined with (8.4) and (8.5), this implies that

|OA1| ' |OĀ1| ± (∆? + 1
2∆− + 8δ)

' |OĀ2|+ |Ā2B̄2|+ |B̄2Ā1| ± (∆? + 1
2∆− + 8δ)

' |OA2|+ |A2B2|+ |B2A1| ± 6(∆? + 1
2∆− + 8δ) (8.6)

Now, consider the projection

π : X → X/〈〈ξ〉〉,

where X/〈〈ξ〉〉 is endowed with the quotient distance, still denoted by | · |.
By definition, Ai = αi(O) and Bi = αi(ξ

κi(O)) = (αiξ
κiα−1

i )(αi(O)).

Hence, π(Ai) = π(Bi) since αiξ
κiα−1

i ∈ 〈〈ξ〉〉.
Note also that

|OAi| ' |π(O)π(Ai)| ± η
since αi is η-minimal modulo 〈〈ξ〉〉.

Continuing with (8.6) and since π(A2) = π(B2), we obtain

|OA1| ≥ |π(O)π(A2)|+ κ ||ξ||∞ + |π(B2)π(A1)| − 6(∆? + 1
2∆− + 8δ)

≥ |π(O)π(A1)|+ κ ||ξ||∞ − 6(∆? + 1
2∆− + 8δ)

≥ |OA1| − η + κ ||ξ||∞ − 6(∆? + 1
2∆− + 8δ).

Hence a contradiction from our choice of κ. Similarly, we derive the second
assertion of Fact 2.

From the order of the points Āi and B̄i on c given by Facts 1 and 2, we
deduce by (8.2), (8.4) and (8.5) that

|Ā1Ā2| ≤ max{|Ā1B̄1|, |Ā2B̄2|} ≤ 2κL+ 2(∆? + 1
2∆− + 8δ).

Therefore,

d(α1, α2) = |A1A2| ≤ 2κL+ 4(∆? + 1
2∆− + 8δ).

�
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9. A nonexpanding embedding

In this section, we finally establish the key proposition in the proof of the
main theorem. Namely, we construct a nonexpanding map Φ : Ḡ ∗ Z2 → G
and show that it is injective in restriction to some separated subset Ḡρ ∗Z2.

Let G be a finitely generated group acting by isometries on a proper
geodesic δ-hyperbolic metric space X. Let N be a normal subgroup of G.
The quotient group Ḡ = G/N , whose neutral element is denoted by ē, acts
by isometries on the quotient metric space X̄ = X/G.

Suppose that N contains a hyperbolic isometry ξ of X, cf. Example 5.2.
By taking a large enough power of ξ if necessary, we can assume that the
minimal displacement L of ξ is at least 300δ.

Given ε ∈ (0, δ), let O ∈ X be an origin with |Oξ(O)| ≤ L + ε. Denote
by || · || and || · ||Ḡ the norms induced on G and Ḡ by the distance d, cf. (1.3),
and the quotient distance d̄. We also need to fix κ = 140, cf. Remark 8.4.

For every γ ∈ Ḡ, we fix once and for all a representative α in G which
is ν-minimal modulo N . (To avoid burdening the arguments by epsilontics,
we will actually assume that ν = 0.) This yields an embedding

Φ : Ḡ ↪→ G.

We extend this embedding to a map

Φ : Ḡ ∗ Z2 → G

by induction on m with the relation

Φ(γ1 ∗ 1 ∗ · · · ∗ γm+1) = Φ(γ1)ε ? (ξκ ? Φ(γ2 ∗ 1 ∗ · · · ∗ γm+1))

where γ1 ∗ 1 ∗ · · · ∗ γm+1 is in reduced form and ε is the sign of Φ(γ2 ∗ 1 ∗
· · · ∗ γm+1), unless γ1 = ē, in which case ε = +.

For λ ≥ 0, consider the norm || · ||λ on the group Ḡ ∗ Z2 defined as

||γ1 ∗ 1 ∗ · · · ∗ γm+1||λ =

(
m+1∑
i=1

||γi||Ḡ

)
+mλ.

Let αi = Φ(γi). From Propositions 6.2.(3) and 7.2.(3), we derive

||Φ(γ1 ∗ 1 ∗ · · · ∗ γm+1)|| ≤ ||α1||+ ||ξκ||+ ||Φ(γ2 ∗ 1 ∗ · · · ∗ γm+1)||+ 2∆? + ∆−

≤

(
m+1∑
i=1

||αi||

)
+m(κL+ 2∆? + ∆−)

Thus, since ||αi|| = ||γi||Ḡ, the map Φ does not increase the “norms” if
λ ≥ κL+ 2∆? + ∆−.

For ρ > 0, consider a maximal system of disjoint (closed) balls of ra-
dius ρ/2 in Ḡ containing the ball of radius ρ/2 centered at ē. By maximality,
the centers of these balls form a subset Ḡρ of Ḡ such that

(1) the elements of Ḡρ are at distance greater than ρ from each other;
(2) every element of Ḡ is at distance at most ρ from an element of Ḡρ.

Note that ||γ||Ḡ > ρ for every γ ∈ Ḡρ with γ 6= ē.
Consider the subset Ḡρ ∗ Z2 of Ḡ ∗ Z2 formed of the elements

γ1 ∗ 1 ∗ · · · ∗ γm+1
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where m ∈ N and γi ∈ Ḡρ. Note that Ḡρ ∗ Z2 is not a group, as Ḡρ itself is
not a group.

Proposition 9.1. Let λ ≥ κL+2∆?+∆− and ρ ≥ 2κL+4(∆?+ 1
2∆−+8δ).

Then the nonexpanding map Φ : (Ḡρ ∗ Z2, || · ||λ)→ (G, || · ||) is injective.

Remark 9.2. We can take λ = 200L and ρ = 500L.

Proof. Assume

Φ(γ1 ∗ 1 ∗ · · · ∗ γm+1) = Φ(γ′1 ∗ 1 ∗ · · · ∗ γ′m′+1). (9.1)

Let α1 = Φ(γ1) and ε be the sign of Φ(γ2 ∗ 1 ∗ · · · ∗ γm+1), unless γ1 = ē1

in which case ε = +. Similar definitions hold for α′1 and ε′ by replacing γi
with γ′i.

By Proposition 6.2.(3), for every α ∈ G which is minimal modulo N , and
so modulo 〈〈ξ〉〉, its symmetric α− is η-minimal modulo 〈〈ξ〉〉 with η = ∆−.
Thus, from Proposition 8.3, we have

d((α1)ε, (α
′
1)ε′) ≤ ρ.

By definition of the quotient distance,

d̄(γ1, γ
′
1) ≤ d(ξiα1, ξ

i′α′1)

for every i, i′ ∈ Z. Hence,

d̄(γ1, γ
′
1) ≤ d((α1)ε, (α

′
1)ε′) ≤ ρ.

Since γ1 and γ′1 lie in a ρ-separated set, this shows that γ1 = γ′1 and so
α1 = α′1.

Suppose ε 6= ε′. As ε and ε′ play symmetric roles, we can assume that
ε = −. In this case, α = α1 is different from ē and d(α, α−) ≤ ρ. Now, as
α−1 ? α = α−1α−, we derive from Proposition 7.2.(3) that

d(α, α−) = ||α−1α−|| = ||α−1 ? α|| ≥ 2||α|| −∆? ≥ 2ρ−∆? > ρ.

From this contradiction, we deduce that ε = ε′.
Substituting this equality into (9.1), we derive

αε ? (ξκ ? β) = αε ? (ξκ ? β′)

where β = Φ(γ2 ∗ 1 ∗ · · · ∗ γm+1) and with a similar definition for β′ by
replacing γi with γ′i. As both ξκ?β and ξκ?β′ are positive, cf. Lemma 8.1.(1),
we obtain from Proposition 7.2.(2) that ξκ ? β = ξκ ? β′. Since β and β′ are
of the same sign (i.e., ε = ε′), we similarly derive that β = β′.

We conclude by induction that m = m′ and γi = γ′i. �

10. Conclusion

Consider a non-elementary group G acting properly and cocompactly by
isometries on a proper geodesic δ-hyperbolic metric space with fixed ori-
gin O. Denote by ∆ the diameter of X/G. Let N be an infinite normal
subgroup of G and Ḡ = G/N . We can assume that ω(Ḡ) is nonzero. De-
note by L the maximal value between 300δ and the minimal norm of a
hyperbolic element in N .
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Combining Propositions 2.1, 3.1 and 9.1, we obtain

ω(G) ≥ ω(Ḡρ ∗ Z2, λ) ≥ ω(Ḡ ∗ Z2, λ̃) ≥ ω(Ḡ) +
1

4λ̃
log(1 + e−λ̃ω(Ḡ))

where λ = 200L, ρ = 500L and λ̃ = 2λ+ 6(∆ + ρ) cardBḠ(3(∆ + ρ)). One
could also replace cardBḠ(3(∆+ρ)) with cardBG(3(∆+ρ)), since the latter
cardinal is at least as large as the former.

Observe that if ω(Ḡ) is close to ω(G), then L is large, that is, the norm
of every hyperbolic element of N is large.
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