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Abstract

This paper deals with global sensitivity analysis of computer model output.

Given a set of independent input sample and associated model output vector

with possibly the vector of output derivatives with respect to the input vari-

ables, we show that it is possible to evaluate the following global sensitivity

measures: (i) the Sobol’ indices, (ii) the Borgonovo’s density-based sensitiv-

ity measure, and (iii) the derivative-based global sensitivity measure of Sobol’

and Kucherenko. We compare the efficiency of the different methods to ad-

dress factors fixing setting, an important issue in global sensitivity analysis.

First, global sensitivity analysis of the Ishigami function is performed with

the different methods. Then, they are applied to two different responses of a

soil drainage model. The results show that the polynomial chaos expansion

for estimating Sobol’ indices is the most efficient approach.
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1. Introduction

Computer models are widely used to mimic systems and processes of dif-

ferent natures (e.g. physical, environmental or economical) because running

a computer model is less expensive than performing an experimental set-up.

Computer models can help understanding the process under study and/or

improving its management. However, the different sources of uncertainty in

the computer models should be taken into account in order to avoid erro-

neous inferences. For this purpose, the functional inputs should be treated as

stochastic processes and the uncertain scalar inputs as random variables de-

fined by a joint probability density function (see Blatman and Sudret, 2011;

Anstett-Collin et al., 2015). As a consequence, computer model predictions

are random quantities too.

Both uncertainty and sensitivity analyses are helpful for measuring the

impact of the different sources of uncertainty in the model response of in-

terest. Saltelli et al. (2006) note that the response of interest “should not

be concerned with the model output per se, but with the question that the

model has been called to answer.” While uncertainty analysis aims at as-

sessing the uncertainty of model output, global sensitivity analysis (GSA)

aims at pinpointing the different sources of uncertainty of the model re-

sponse uncertainty. There are two situations to consider when GSA is to be

undertaken: the case of independent inputs and the case of dependent in-

puts. The latter can be challenging (see for instance, Kucherenko et al., 2012;

Mara and Tarantola, 2012; Mara et al., 2015), depending on the question ad-

dressed (see some possible issues in Saltelli and Tarantola, 2002). Generally,

prior to a thorough data collection and statistical calibration of the computer

model, independence of the inputs can be reasonably assumed. In the present

work, independent input scalar variables are considered.
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Let y = f(x) be the scalar response of a computer model function of d in-

dependent random variables x = (x1, . . . , xd) ∼ p1(x1)×· · ·×pd(xd). We also

consider the vector of local sensitivities j = (j1, . . . , jd) (with ji = ∂y/∂xi)

possibly provided by the computer model itself. We denote by X, a N × d

matrix, a given sample of x. The vector of responses associated to X is de-

noted y and J is the matrix of partial derivatives (also called the Jacobian

matrix) obtained after evaluating the computer model with each of the N in-

dependent draws. The availability of the Jacobian matrix is only compulsory

for the assessment of the so-called derivative-based global sensitivity measure

(see below). It is not mandatory for the two other sensitivity measures stud-

ied in this work.

Recent reviews on sensitivity analysis have focused primarily on methods

employing specific sampling designs (e.g., Iooss, 2011; Saltelli et al., 2012;

Neumann, 2012; Norton, 2015; Borgonovo and Plischke, 2015, among oth-

ers). In the present article, we address how to pinpoint the relevant input

variables from a given set of data (X,y,J). Our aim is to demonstrate

that, with a single sample of size N (say, thousands), several global sensitiv-

ity indices can be evaluated. Three global sensitivity measures are studied,

namely: (i) the Sobol’ indices (Sobol’, 1993; Homma and Saltelli, 1996), (ii)

the sensitivity measure of Borgonovo (2006), and (iii) the derivative-based

global sensitivity measure (Lamboni et al., 2013). These sensitivity indices

are of different natures and may lead to different inferences about the model

input importance.

The choice of the sensitivity index to compute and the model output to

consider depends on the question that the model has been called to answer

(Saltelli et al., 2004). In this work, we address the factors fixing setting

(henceforth, FF setting) with the different sensitivity measures. Saltelli et al.
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(2006) define this setting as follows: “The objective of this setting, which could

also be labelled as screening, is to identify the input factor or the subset of

input factors that we can fix at any given value over their range of uncertainty

without reducing significantly the output variance.” One could even require

“ . . . without changing significantly the predicted output probability density

function.”

There are many sensitivity measures proposed in the literature to address

the FF setting. Compared to those studied in the present work, some of them

are of higher-order (e.g., Owen et al., 2014; Gamboa et al., 2015). In our

study, we focus on the three aforementioned sensitivity indices because they

are of different natures (i.e. variance-based, density-based and derivative-

based sensitivity measures respectively) and can be assessed from a single

sample. Plischke et al. (2013) define other possible moment-independent im-

portance measures which can be estimated from given data. Their estimation

is based on a method similar to the one described in this paper for assess-

ing Borgonovo’s importance measure (see Section 2.2). Therefore, we only

consider the Borgonovo’s importance measure in our study.

In the present work, we do not consider GSA methods based on surro-

gate models that are run to assess the sensitivity indices. The reasons are

i) there is a plethora of different emulators, and it is not the point here to

discuss their merits and flaws and ii) some emulators can require specific

experimental designs for the sake of efficiency (e.g. the Gaussian emula-

tor Oakley and O’Hagan, 2004), while it is assumed here that the sample

is arbitrary (though independent). It can be notified that the polynomial

chaos expansion method described in Section 2.1 is a surrogate-based ap-

proach. However, we argue that this approach employs ANOVA-like decom-

position and as such is classified amongst the spectral methods (such as the
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Fourier amplitude sensitivity test, Cukier et al., 1973; Schaibly and Shuler,

1973; Saltelli et al., 1999). Indeed, as detailed later (see Section 2.1), the

variance-based sensitivity indices are directly obtained from the regression

coefficients without needing to run the surrogate model.

The paper is organized as follows: In Section 2 we discuss the global SA

methods based on the Sobol’ indices (Section 2.1), the density-based impor-

tance measure of Borgonovo (Section 2.2), and the derivative-based global

sensitivity measure (Section 2.3). First, their performance for addressing fac-

tors fixing setting of a well-known non-linear function is studied in Section 3.

Then, the different methods are applied to perform GSA of a soil drainage

experiment in Section 4. Finally, a summary and conclusions are given in

Section 5.

2. Global sensitivity analysis

2.1. Variance-based sensitivity measures

Variance-based sensitivity indices (also called Sobol’ indices) are the most

popular importance measures for GSA. By computing all Sobol’ indices (there

are 2d − 1 indices at most), one can guess the structure of the input/output

relationship. In practice, two variance-based sensitivity indices are particu-

larly interesting: the first-order sensitivity index Si (also called correlation

ratio by Pearson, 1905; McKay, 1996) and the total sensitivity index STi

(first defined in Homma and Saltelli, 1996). They are defined as follows:

Si =
V [E [y|xi]]

V [y]
∈ [0, 1] (1a)

STi =
E [V [y|x∼i]]

V [y]
∈ [0, 1] (1b)
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where x∼i = x\xi. E [·] and V [·] represent the expectation and variance

operators, respectively. E [·|·] and V [·|·] represent the conditional expectation

and conditional variance operators, respectively.

Si measures the amount of variance of y due to the uncertainty of xi

alone, while STi ≥ Si measures the amount of all contributions of xi to

the variance of y, including its cooperative non-linear contributions with

the other variables gathered in x∼i. The higher STi is, the more xi is an

important input for the variance of y. The input/output relationship is

additive when Si = STi, ∀i = 1, . . . , d and, in this case,
∑d

i=1 Si = 1.

Sobol’ indices were introduced in the framework of ANOVA-HDMR (acronym

for analysis of variance - high dimensional model representation, see Rabitz et al.,

1999). The latter relies on the existence of a unique ANOVA representation

of the input/output relationship when model inputs are independent (other-

wise, such a representation is not unique, see for instance Mara et al., 2015).

Thus, the 2d − 1 Sobol’ indices reflect the structure of the model response.

This is one of the appealing features of Sobol’ indices. Indeed, (1−
∑d

i=1 Si)

represents the amount of variance due to interactions between the input vari-

ables.

There are several computationally affordable methods proposed in the lit-

erature to compute the set of first-order sensitivity indices (Oakley and O’Hagan,

2004; Tarantola et al., 2006; Ratto et al., 2007; Lewandowski et al., 2007;

Mara and Joseph, 2008; Plischke, 2010, among others). However, it is much

more expensive to compute the entire set of total sensitivity indices. From

given data, this task can be achieved with sparse polynomial chaos expansions

(Blatman and Sudret, 2010, 2011; Fajraoui et al., 2012; Shao et al., 2016).

ANOVA-HDMR presumes that f(x) is square-integrable. This means that
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f ∈ H, where H is a Hilbert space equipped with the following inner-product:

< f, g >H= E [f(x)g(x)] (2)

with g ∈ H. Polynomial chaos expansion (PCE) is a spectral method that

casts the continuous scalar model response onto orthonormal polynomials as

follows:

f(x) =
∑

α⊂Nd

aαΨα(x) (3)

where α = α1α2 . . . αd ∈ N
d is a d-dimensional index and the aαs are the PCE

coefficients to be determined. The Ψαs are the multidimensional polynomial

basis elements of degree |α| =
∑d

i=1 αi. They form a complete orthonormal

basis in H. For some specific random variables, they are derived from the

Askey scheme (see Askey and Wilson, 1985; Xiu and Karniadakis, 2002). In

the case of a vector of arbitrarily distributed variables x, one can either re-

sort to isoprobabilistic transformations (see Sudret, 2008) or build-up the or-

thonormal polynomials with the data-driven method of Oladyshkin and Novak

(2012) or alternatively the stable procedure of Stieltjes (see Gautschi, 1982,

1993). Because the numerical exercise in Section 3 and the application in

Section 4 deal with parameters uniformly distributed, throughout this paper

Legendre polynomials are employed in expansion (3).

The multidimensional polynomial Ψα is simply the tensor product of

univariate polynomials,

Ψα(x) =
d
∏

i=1

ψαi
(xi)

with ψ0 = 1.

Due to the orthonormality of the polynomial basis elements, the total

variance of f(x) reduces to the sum of squares of the PCE coefficients,

V [y] =
+∞
∑

|α|>0

a2
α

(4)
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and the conditional expectation of y onto xi, also called xi’s marginal effect,

writes

E [y|xi] = a0...0 +

+∞
∑

αi>0

a0...αi...0ψαi
(xi). (5)

For practical reasons, the previous expansions are truncated up to a pre-

scribed degree p. The resulting PCE coefficients are then evaluated by using

a regression method yielding

â = argmin
a







N
∑

k=1



yk −
∑

|α|≤p

aαΨα(Xk1, . . . , Xkd)





2





(6)

where â is the vector of estimated coefficients and (Xk1, . . . , Xkd) is the k-th

draw of the input vector.

The first-order and total sensitivity indices of xi are then inferred as

follows:

ŜPCE
i =

p
∑

αi>0

â20...αi...0

p
∑

|α|>0

â2
α

(7a)

ŜT
PCE

i =

p
∑

α:αi>0

â2
α

p
∑

|α|>0

â2
α

. (7b)

Thus, evaluating the variance-based sensitivity indices with PCE amounts

to estimating the polynomial coefficients. For a PCE of degree p, there

are (p+ d)!/p!d! coefficients to compute. However, most of these coeffi-

cients are not significant regarding the total variance. Hence, it is ad-

visable to discard the irrelevant terms in the estimated truncated PCE.

This leads to the so-called sparse PCE (Blatman and Sudret, 2010). There

are several algorithms proposed in the literature to build-up a sparse PCE
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(e.g. Blatman and Sudret, 2011; Fajraoui et al., 2012). The one proposed

in Shao et al. (2016) is used in the present work. The approach developed in

Shao et al. (2016) generally provides very sparse truncated PCEs because of

the specific algorithm employed. The latter combines a model selection cri-

terion with informative prior to infer the optimal sparse PCE in a Bayesian

framework. The prior is chosen in order to favour low degrees and low inter-

action terms. The MATLAB programs are available upon request from the

first author of the present paper. Another alternative is to use UQLab, the

MATLAB toolbox developed by Marelli and Sudret (2014).

2.2. Density-based sensitivity measure

The development of density-based sensitivity measures was motivated by

the fact that variance-based sensitivity measures only reveal the relevant in-

puts for the output variance, which is only the second-order moment of the

probability density function of the output. Hence, some authors have ad-

vocated the use of moment-independent importance measure (Chun et al.,

2000; Borgonovo, 2006, 2007). Several moment-independent sensitivity mea-

sures have been proposed in recent literature (some of them are described in

Plischke et al., 2013; Borgonovo et al., 2016). In the present work, we con-

sider the density-based sensitivity measure introduced by Borgonovo (2006).

The sensitivity index of Borgonovo measures the importance of the input

variable over the entire pdf and is defined as follows:

δi =
1

2
E [s(xi)] ∈ [0, 1] (8)

with,

s(xi) =

∫

R

|py(y)− py|xi
(y|xi)|dy (9)

where py(y) is the probability density function (pdf) of y and py|xi
(y|xi) is

the conditional pdf of y onto xi. It is worth noting that s(xi) measures the
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area between py and py|xi
(see Figure 1) so that the latter is null if py|xi

= py.

Eq. (8) simply computes the half expectation of s(xi) with respect to xi. If

δi = 0 then fixing xi to any value in its uncertainty range does not change

the predicted pdf.

y

py|xi

py

s(xi)

Figure 1: In blue, the unconditional predicted pdf (py) is represented. The red curve is

the conditional predicted pdf (py|xi
). The shaded area s(xi) measures the shift between

the two densities.

Borgonovo importance measure (BIM) is a strong measure of statistical

dependence between two random variables (Strong and Oakley, 2013). As

opposed to Sobol’ indices, BIM does not require the existence of an HDMR.

Thus, because δi only measures the pairwise dependency between (xi, y), its

definition is somehow simpler than STi. Meanwhile, as shown in the following

numerical exercises, accurate estimate of BIM may require a large simple size.

But, as also shown, rough estimate of the BIMs at modest sample size (say

one thousand) may be sufficient for detecting irrelevant inputs. This is a

desired feature for screening purposes of high-dimensional computer models.

Up to 2013, the use of BIM for GSA of computer models was hampered

by its computational cost. Indeed, it can be noticed that, for each input, a

double loop is necessary to assess its density-based sensitivity measue (Eqs.

(8-9)). In the first loop, the current variable xi is set to prescribed values,
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while in the second loop several draws of the remaining inputs x∼i are gener-

ated. For each prescribed value, an output vector is obtained from which the

conditional pdf (onto xi) can be inferred. However, by noticing that setting

xi to different values is almost the same as varying xi within a narrow range,

Plischke et al. (2013) proposed a cheaper computational method to estimate

the BIM of each input variable with only one single sample (i.e. one sin-

gle loop). Therefore, the proposed approach alleviates the so-called curse of

dimensionality. The principle of the approach is explained hereafter.

In the approach proposed by Plischke et al. (2013), the draws of xi de-

noted {Xki, k = 1, . . . , N} are partitioned into M subsamples of equal size

(X1
i , . . . , X

M
i ). It must be ensured that there are enough draws in each

partition for an accurate estimation of the conditional pdf (say a hundred).

In the case of equiprobable partitions, the number of draws per partition is

P = N/M . Such a partitioning can be easily understood with a pairwise

scatterplot (see the top plot of Figure 2). Then, a rough estimation of s(xi)

(see Eq. (9)) for xi = x̄1i =
∑P

k=1X
1
ki/P is,

ŝ(x̄1i ) =

∫

Ωy

|p̂y(y)− p̂y|xi
(y|xi ∈ X1

i )|dy (10)

where Ωy denotes the range of variation of y.

Numerically, Eq. (10) is computed by comparing the estimated pdf of y

(i.e. p̂y) with the one of y1
i (i.e. p̂y|xi

for xi = x̄1i ). This is illustrated in the

bottom plot of Figure 2 for each partition. The smoothing kernel-density

approach (Parzen, 1962) is used by the authors to assess the pdfs from the

sample and subsamples. In order to reduce bias in the estimate of the BIM,

it must be ensured that p̂y(y) and p̂y|xi
(y|xi = x̄1i ) are significantly different.

For this purpose, the Kolmogrov-Smirnov’s test is employed (Press et al.,

2007).

Finally, the calculation of δi is straightforward because the partitioning
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is equiprobable, and the result is

δ̂i =
1

2M

M
∑

j=1

ŝ(x̄ji ). (11)

The choice ofM is one of the degrees of freedom of the proposed approach.

Given that each subsample must have a sufficient number of draws (say

hundreds) to accurately infer the conditional pdf, the choice of M depends

on the sample size N . In Section 3, we numerically show that, for small

sample sizes, BIM estimates are not accurate but can allow for detecting

irrelevant input variables. In the present work, the BIMs are estimated with

the program developed by E. Plischke and available on the website of the

Joint Research Center (https://ec.europa.eu/jrc/en/samo/simlab).

2.3. Derivative-based global sensitivity measure

Until the end of the last century, local sensitivity indices were intensively

used to perform sensitivity analysis of a given model response y = f(x).

These indices rely on partial derivatives of the model response evaluated at

some point x∗. This point generally reflects the analyst’s best knowledge

about the input values. The success of local SA is partially explained by the

usefulness of partial derivatives in model calibration and the existence of effi-

cient computational methods to assess the sensitivity matrix (e.g. automatic

differentiation, adjoint method Cacuci, 1981; Griewank, 1989; Navon, 1997).

The local sensitivity index of xi at x∗ is defined as follows:

LSi = x∗i
∂y

∂xi

∣

∣

∣

∣

x
∗

. (12)

The higher is LSi, the more xi is locally relevant.

Local sensitivity analysis suffers at least from two drawbacks: (i) the re-

sult is local and will differ from one point to another for non-linear functions
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Figure 2: On the top, the scatterplot of the model response y versus the input variable

xi. The draws are partitioned into M = 6 subsamples of equal size (here xi is uniformly

distributed). On the bottom, the pdf of the total draws of y (blue continuous curve) is

compared to the conditional pdf of the draws localized in the partitions (red broken line).

and (ii) it does not capture the possible interactions amongst the inputs.

To circumvent these drawbacks, a derivative-based global sensitivity mea-

sure (DGSM) has been defined, thanks to the recent work of Lamboni et al.

(2013) and the earlier works of Sobol’ and Kucherenko (2009, 2010). DGSM

is inferred by evaluating the partial derivatives at several points in the in-

put space. Indeed, in Lamboni et al. (2013) the authors define the following

statistic:

νi =

∫

Rd

(

∂y

∂xi

)2 d
∏

j=1

pj(xj)dxj . (13)
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The authors then show that,

STi ≤ 4C2
i

νi
V [y]

(14)

where Ci is called the Cheeger constant defined as follows:

Ci = sup
xi∈R

min (Fi(xi), 1− Fi(xi))

pi(xi)
(15)

with Fi(xi) the cumulative distribution function of xi (i.e. pi(xi) =
dFi

dxi
).

The Cheeger constant has been defined by Sobol’ and Kucherenko (2009,

2010) for the uniform distribution pi(xi) = U(ai, bi) as Ci =
(bi−ai)

2π
and for

the normal distribution pi(xi) = N (µi, σ
2
i ) as Ci =

σi

2
. This constant can

be computed for any distribution that belongs to the class of Boltzmann

probability measure (see Lamboni et al., 2013, for more details).

From Eq. (14), it can be inferred that if the DGSM Υi = 4C2
i

νi
V[y]

is small,

xi is an irrelevant input. Finally, we note that from a given (quasi) Monte

Carlo sample of partial derivatives matrix J, νi is estimated as follows:

ν̂i =
1

N

N
∑

k=1

J2
ki. (16)

It is then straightforward to get a (quasi) Monte Carlo estimate of Υi.

2.4. GSA setting

Comparing different importance measures can be misleading because "im-

portance" is not a mathematical concept (Saltelli et al., 2004). Saltelli et al.

(2006) advice to define "importance" at the stage of framing the analysis.

We note that DGSM is particularly suited for screening purposes, which

consists of investigating unessential inputs. Hence, in the present work,

we study the ability of the different methods to pinpoint the irrelevant in-

puts of a given model response. This is known as the factors fixing setting

(Saltelli and Tarantola, 2002).
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We particularly investigate whether the different methods are subject to

Type I error (i.e. failing at identifying irrelevant inputs) or Type II error (i.e.

identifying influential inputs as irrelevant ones). It is expected that the risk

of error is high for small sample sizes. We can also expect that performing

FF setting with DGSM might be subject to Type I error because it is an

upper bound for the total sensitivity index (see Eq. (14)). Thereby, it is only

informative when its value is very small (for irrelevant inputs).

3. Numerical test: the Ishigami function

GSA is performed on the Ishigami function defined as,

f(x1, x2, x3, x4) = sin(x1) + 7 sin2(x2) + 0.1x43 sin(x1) + ǫx4 (17)

with the input variables uniformly distributed as follows xi ∼ U(−π, π) and

ǫ = 10−6. This function is non-monotonic and includes a strong interaction

between x1 and x3. Regarding FF setting, the first three input variables are

important while x4 is a non important parameter introduced in the analysis

to make sure that the different methods are able to identify it as an irrelevant

input.

The analysis is performed with quasi-Monte Carlo (QMC) sequences of

different sizes, N = {64, 128, 256, 512, 1 024, 2 048, 4 096, 8 192, 16 384}. For

this purpose, we used the MATLAB program LPtau51.m developed by Sobol’ et al.

(1992) and downloadable on the website of the Joint Research Center (see

the link before § 2.3). BIM cannot be computed for small sample sizes

because one must ensure that enough draws are contained in each subsam-

ple. We assign the following number of partitions to each sample M =

{0, 0, 2, 4, 8, 16, 16, 16, 16, 32}, with M = 0 meaning that BIM cannot be as-

sessed. To estimate the DGSMs, the partial derivatives evaluated at the
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different QMC draws are also computed, namely,

j1(x) = (1 + 0.1x43) cos(x1) (18)

j2(x) = 14 cos(x2) sin(x2) (19)

j3(x) = 0.4x33 sin(x1) (20)

j4(x) = ǫ (21)

The estimated sensitivity measures are plotted in Figure 3 versus log2(N) =

6, . . . , 14. The results are compared with the analytical values. The latter are

exactly calculated for the Sobol’ indices. As far as the two other sensitivity

measures are concerned, they are estimated from a QMC sample of size

N = 219. For the DGSM, a total of M = 64 partitions are selected which

is much higher than what is recommended in practice (see Plischke et al.,

2013). This choice is done to get accurate estimates.

Figure 3a-b show that the variance-based sensitivity estimates are vir-

tually constant. Actually, the PCE-based estimator have converged toward

the analytical values proving that even for N = 64 the sparse PCEs are

good approximations of the original function. Such a fast convergence is due

to the fact that the Ishigami function is very smooth (infinitely derivable

w.r.t. all the input variables). Note that, because the input variables are

uniformly distributed, the sparse PCE was built with Legendre polynomials.

The first-order sensitivity indices indicate that x2 has the higher first-order

effect while the one of x3 is zero. This means that it is expected that by

fixing x2 one has more chance to reduce the output variance than fixing

x3 (Saltelli and Tarantola, 2002). The total sensitivity indices indicate that

(x1, x2, x3) are important and that x4 is irrelevant.

It is worth mentioning that for N = 16 384, a 16-th degree polynomial

has been identified with 26 terms in the expansion. A very sparse PCE is
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obtained due to i) the specific algorithm used (see Shao et al., 2016) and ii)

the features of the Ishigami function. Indeed, the Ishigami function is odd

with respect to x1, even with respect to x2 and the interaction term between

x1 and x3 is the product of an even polynomial function of x3 and an odd

function of x1. The identified sparse PCE inherits from these features and

contains only odd degree monomials of x1, even degree monomials of x2 and

products of odd degree monomials of x1 with even degree monomials of x3.

Figure 3c depicts the BIM estimates. We can note that the estimations

have not completely converged even after N ≥ 16 384, especially for δ3 and

δ2. This difference of convergence from one input to another seems to indicate

that the partitioning should be adapted to the input variable for an overall

better convergence of the estimator. At low sample sizes (i.e. N ≤ 512) the

approach is not able to successfully identify the three first inputs as important

(Type II error). Although the convergence is slow, when the sample size is

sufficiently large (here fromN = 1 024) the estimator of Plischke et al. (2013)

is able to detect the relevant inputs.

Regarding the DGSMs, Figure 3d shows that the estimates are quite

stable from N ≥ 256. We note that (Υ̂1, Υ̂2, Υ̂3) are greater than one which

indicates that (x1, x2, x3) cannot be deemed as irrelevant. Note that the fact

Υ̂i can be greater than one contrasts with the two other sensitivity measures

scaled within [0, 1]. Anyway, with the DGSM only x4 is identified as non

important (Υ̂4 = 0).

For this exercise all the estimated sensitivity measures are able to de-

tect the irrelevant input x4. PCE-based total sensitivity indices and DGSMs

require less computational effort (i.e. draws) to effectively identify the irrele-

vant inputs. Note that because the sensitivity measures are based on different

definitions, they can yield different rankings of importance. Indeed, accord-
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ing to Figure 3, the input vector ranked by order of importance is (x1, x2, x3)

with the total sensitivity index, (x2, x1, x3) with BIM and (x2, x3, x1) with

DGSM.
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Figure 3: GSA of the Ishigami function - estimated sensitivity indices versus sample size.

The dashed lines are the reference values.
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4. Application to an unsaturated flow model

4.1. Drainage experiment

Modeling the flow in the unsaturated zone is crucial to predict groundwa-

ter resources evolution and forecast the migration of contaminants in aquifers.

The hydraulic properties of soils are the key parameters controlling the flow

through the unsaturated zone. They are generally estimated from labora-

tory drainage experiments. In such experiments, a flow cell filled with a

saturated soil is drained by imposing a negative pressure head at the lower

boundary of the cell. In the following, the global sensitivity methods are used

to detect irrelevant hydraulic parameters of a synthetic laboratory drainage

simulation.

To simulate the unsaturated flow, the Mualem-van Genuchten (MvG)

retention curve is chosen to relate the hydraulic conductivity of the unsatu-

rated soil to its water content (Mualem, 1976; van Genuchten, 1980). This

retention curve is defined as follows:

K = ks · S
λ
e

(

1−
(

1− S1/m
e

)m
)2

(22)

where,

Se =
ω − ωr

ωs − ωr
=











1

(1 + (α|h|)n)m
h < 0

1 h ≥ 0
(23)

with m = 1−1/n. The effective saturation Se links the pressure head h [cm]

to the water content ω [cm3.cm−3] at any location in the soil.

The soil hydraulic parameters are: the saturated hydraulic conductivity

ks [m.s−1], the saturated water content ωs [cm3.cm−3], the residual water

content ωr [cm3.cm−3] as well as the MvG parameters α [m−1], n [−] and λ

[−]. Hence, the random input vector is x = (ks, ωr, ωs, α, n, λ).

20



The state variables (i.e. h(t) and ω(t)) are solution of the Richard’s

equation, that is,

∂ω

∂t
=

∂

∂z

[

K(h)

(

∂h

∂z
− 1

)]

, (24)

where t [min] is time and z [cm] is the vertical coordinate (positive down-

ward). This partial differential equation is solved with a standard Galerkin fi-

nite element method in conjunction with the Newton linearization method as-

sociated with the primary variable switching method (Diersch and Perrochet,

1999; Hayek et al., 2008).

For this numerical exercise we consider a cylindrical cell, 8.5 cm in di-

ameter and 6 cm in height, filled with a soil. The parameters of the soil

are assumed to be uniformly distributed over the ranges reported in Table 1.

The soil, initially saturated with water, is drained by imposing a negative

pressure head of -700 cm in the bottom of the cell. The responses of in-

terest are the pressure head h at the center of the column, as well as the

average soil water content ωavg in the column after a simulation period of

250 min. In addition to these responses, the numerical model provides the

partial derivatives of these outputs with respect to the hydraulic parameters.

Hence, there are four scalar responses computed by the numerical model.

Preliminary studies showed that at least one thousand draws were necessary

to obtain exploitable results with BIM. This finding is in agreement with

the results of the Ishigami function (see the previous Section). Therefore,

the computer model responses are evaluated for N = 1 024 different QMC

draws.

4.2. GSA of the pressure head

First, let us analyse the results for the pressure head. The different sensi-

tivity measure estimates are compiled in Table 1. To assess the significance
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level of the sensitivity estimates, a dummy parameter has been included in

the analysis. Its sensitivity indices were computed 1 000 times, each time by

assigning different random draws to the dummy parameter. The ranges of

variation (minimal value-maximal value) of its estimated sensitivity indices

are reported on the last column of Table 1. We note that, all methods are in

relative good agreement and indicate that (ks, α, n) are the most important

parameters.

A sparse PCE containing only 54 terms in an 11th-degree polynomial ex-

pansion has been built for the computation of the Sobol’ indices. Comparison

of first-order sensitivity indices with total sensitivity indices in Table 1 indi-

cate that there are non-negligible interactions amongst the relevant parame-

ters (ks, α, n) (for these variables ŜT
PCE

i > ŜPCE
i ). This is one of the appeal-

ing features of variance-based sensitivity indices. Indeed,
∑6

i=1 Ŝi = 0.86 < 1

means that approximately 14% of the response variance is due to interactions

amongst the input variables. According to the total sensitivity indices, the

most important parameter is ks, followed by n and α. The same ranking is

observed when using first-order or total sensitivity indices. The contribution

of the parameters ωr, ωs and λ to the total variance is insignificant (less than

2%).

The marginal effects of the hydraulic parameters onto the pressure head

are depicted in Figure 4. They highlight the non-linear effects of ks and n

and the linear effect of α. This figure also indicates that ks and n have a

monotonic decreasing effect onto the pressure head while α has an increasing

effect. This means that increasing the value of ks alone (resp. α) tends to

decrease (resp. increase) the predicted value of the pressure head.

The density-based sensitivity measures are evaluated using a small num-

ber of partitions (M = 4), which provides subsamples of size P = 256. The

22



results in Table 1 show that the density-based sensitivity measures are able

to detect the relevant inputs despite the small number of partitions. How-

ever, the ranking is different from that obtained with the Sobol’ indices since

the BIMs indicate that α is the most important parameter while n is the

least important one. It is worth noting that
∑6

i=1 δ̂i = 0.7 < 1, but in con-

trast with the first-order sensitivity indices, it does not mean that 30% of

the output pdf is left unexplained by the BIMs. This is one drawback of

Borgonovo’s importance measure compared to the variance-based sensitivity

measures, it does not provide any information about the model structure.

Both the indices STi (Eq. (1b)) and δi (Eq. (8)) have the advantage of

measuring the importance of the input variable regardless the nature of the

model (linear or non-linear, with continuous values or not, etc.). However,

with the variance-based measures, it is assumed that the response uncertainty

is represented by its variance, while the density-based measure is moment-

independent. Hence, the two sensitivity measures can provide different rank-

ings regarding the order of importance of the input variables. In our opinion,

STi measures the importance of xi in the model structure while δi measures

its importance for py. Regarding the objective of the study, that is, detecting

the irrelevant inputs (FF setting), the two methods provide the same results:

ωr, ωs and λ are not important parameters for predicting the pressure head.

The derivative-based global sensitivity indices are reported on the last

row of Table 1. Obviously, these indices can be greater than one and in this

case are not very informative. For instance, the DGSM of α (Υ̂α = 0.36)

should not be compared to that of n (Υ̂n = 42.8) because DGSM is useful

for screening the inputs and not for their ranking by order of importance.

As expected, the DGSM is systematically greater than the respective total

sensitivity index. This confirms that the DGSM is an upper bound for the
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total sensitivity index, that is, STi ≤ Υi. For the studied test case, it can

be inferred that ωr, ωs and λ are irrelevant parameters for the predictive

uncertainty of the pressure head.

Parameter ks ωr ωs α n λ dummy

[cm/min] [cm3/cm3] [cm3/cm3] [cm−1] [-] [-] [-]

Range [0.01,0.5] [0.01,0.20] [0.40,0.45] [0.005,0.02] [1.0,1.4] [-0.5,1.0] [-]

ŜPCE
i 0.39 0.01 0.00 0.16 0.29 0.01 [0.0,0.0]

ŜT
PCE

i 0.50 0.01 0.00 0.28 0.34 0.02 [0.0,0.0]

δ̂i 0.23 0.06 0.00 0.26 0.10 0.05 [0.0,0.08]

Υ̂i 6.94 0.02 0.00 0.36 42.8 0.02 [0.0,0.0]

Table 1: GSA of the drainage model - estimated sensitivity indices for the pressure head.

A dummy parameter is included to assess the significance of the estimated statistics (last

column).

4.3. GSA of the average water content

The sensitivity indices for the average water content are gathered in Ta-

ble 2. All sensitivity methods show that the parameter n is by far the most

important parameter.

The results of Table 2 indicate that the total sensitivity indices are close

to the first-order indices (Ŝi ≈ ŜT i). This result means that the relationship

between the model response and the parameters is virtually additive (i.e.

with negligible interactions). The identified sparse PCE contained only 10

terms in a 2nd degree polynomial expansion. The variance-based sensitivity

indices point out the importance of (ωr, ωs, α, n) and the negligible influence

of ks and λ onto the average water content. The marginal effects plotted

in Figure 5 highlight the linear effect of these parameters on this model

response.
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Figure 4: Marginal effects of the hydraulic parameters for the predicted pressure head.

The red curve is the estimated conditional expectation (i.e. E [y|xi]) provided by the

sparse PCE.

Contrary to the results for the pressure head, the variance and density

based sensitivity rankings are in good agreement for the average water con-

tent. The ranking of importance is the same with the first-order sensitivity

indices, the total sensitivity indices and the density-based sensitivity indices.

The ranking of importance regarding the variance of the response indicates

that the most important parameter is n, followed by ωr, then α and ωs.

Finally, the results of the DGSM must be interpreted with caution. As

stated earlier, the DGSM cannot be used to rank the input variables by order

of importance. The DGSM results in Table 2 show that the parameter ks

is not considered to be irrelevant as found by all the other indicators. This
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result can be explained by analysing the scatterplot of the partial derivatives

of the average water content with respect to ks in Figure 6. This scatterplot

depicts high local sensitivities in a very small region near the smallest value

of ks. However, this result does not mean that ks is globally a relevant

parameter because the DGSM is an upper bound for the total sensitivity

index which indicates that ks is irrelevant for the average water content

(explaining only 1% of the variance). This result confirms that FF setting

performed with the DGSM can be subject to Type I error.

Parameter ks ωr ωs α n λ dummy

[cm/min] [cm3/cm3] [cm3/cm3] [cm−1] [-] [-] [-]

Range [0.01,0.5] [0.01,0.20] [0.40,0.45] [0.005,0.02] [1.0,1.4] [-0.5,1.0] [-]

ŜPCE
i 0.01 0.09 0.03 0.04 0.80 0.0 [0.0,0.0]

ŜT
PCE

i 0.01 0.11 0.03 0.05 0.84 0.0 [0.0,0.0]

δ̂i 0.0 0.09 0.04 0.06 0.44 0.0 [0.0,0.04]

Υ̂i 0.32 0.14 0.04 0.09 1.10 0.0 [0.0,0.0]

Table 2: GSA of the drainage model - estimated sensitivity indices for the average water

content.

5. Summary and conclusion

In this paper, we discussed and tested three global sensitivity analysis

methods that can be performed using only a single independent sample of

modest size (∼ a thousand). The GSA methods allow to compute the follow-

ing sensitivity indices: (i) the Sobol’ indices, (ii) the Borgonovo measure of

importance, and (iii) the derivative-based global sensitivity measure of Sobol’

and Kucherenko. We tested the performances of the different methods for

addressing factors fixing setting. This setting was applied to the Ishigami

function and to a soil drainage model.
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Figure 5: Marginal effects of the hydraulic parameters for the average water content. The

red curve is the estimated conditional expectation (i.e. E [y|xi]) provided by the sparse

PCE.

Variance-based sensitivity indices (also called Sobol’ indices) are model

free. They measure the amount of the model response variance due to each

input variable alone and in interaction with the other variables. In the present

work, they were computed by using the Bayesian sparse polynomial chaos

expansion method developed by Shao et al. (2016). The results showed that

this method provided reliable results at low computational cost. Moreover,

PCE supplied quantitative insights into the input/output relationship.

Contrary to the Sobol’ indices, the density-based sensitivity measure of

Borgonovo is moment-independent. The BIMs were computed with the esti-

mator proposed in Plischke et al. (2013). This estimator showed some prob-
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Figure 6: Partial derivatives of the average water content w.r.t. the hydraulic parameters.

lems of convergence of the estimated statistics at low sample sizes (see the

Ishigami function). Despite of this problem, this method provided reliable

results for FF setting if the sample size was sufficiently large (∼ a thousand).

The derivative-based global sensitivity measure (DGSM) is computed by

evaluating the partial derivatives at several points in the input space. It

requires that the computer model also provide the partial derivatives of the

model response with respect to the input variables. The DGSM is an upper

bound for the total sensitivity index. Thus, it cannot help in ranking the

input variables by order of importance. However, the method is interesting

for screening purposes that involve the investigation of unessential inputs

(i.e. FF setting). However, our results proved that DGSM could be subject

to Type I error, that is, identifying irrelevant inputs as possible relevant ones.
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In conclusion, GSA of computer models can be performed using different

methods and free programs are often available for their computation when the

inputs are independent. Several different global sensitivity measures can be

computed from given data. In practice, the choice of the sensitivity measure

to compute depends on the objective of the analysis. For the present work,

it was found that sparse PCE was the most efficient method for addressing

factors fixing setting.
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