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Random CFAs are better than regular ones

Most of digital cameras today use a color filter array and a single sensor to acquire color information of the scene. In this paper, we ask which arrangement of colors in the mosaic of the color filter array provides the best encoding of the scene. As a solution of the inverse problem of demosaicing, we consider a linear minimum mean squared error model. We used redundancy given by the neighborhood on the sampled image to ensure the stability of the solution. For some CFAs, LMMSE with neighborhood provides equivalent reconstruction results and less variability among the image content compared to edge directed demosaicing on the Bayer. LMMSE allows comparing CFAs of regular pattern with random ones. We show that mosaics with random arrangement of colors and quasi equal proportion of RGB provide best reconstruction performance.

Introduction

A color image is composed with the intensity of three different channels covering three different domains of wavelength, usually in the Red, Green and Blue part of the visible spectrum. To acquire such an image with simplicity and low cost, a single sensor is used which is covered with a color filter array (CFA) to provide several color components to the acquired image, arranged in a mosaic. Thus only a single color is sampled at each pixel and reconstruction of missing colors (called demosaicing or demosaicking) is required. The Bayer's CFA [1] is the most commonly used CFA and several methods have been proposed for improving the quality of the reconstruction. Edge directed [START_REF] Hamilton | Adaptive color plane interpolation in single color electronic camera[END_REF] methods which interpolate along contours and avoid interpolation across them are known to be the best method for the Bayer CFA. These methods are usually followed by a post-processing that improves the reconstructed image [START_REF] Paliy | Spatially Adaptive Color Filter Array Interpolation for Noiseless and Noisy Data[END_REF][START_REF] Hirakawa | Adaptive homogeneity-directed demosaicing algorithm[END_REF][START_REF] Li | Demosaicing by successive approximation[END_REF][START_REF] Menon | Demosaicing with directional filtering and a posteriory decision[END_REF][START_REF] Zhang | Color demosaicking via directional linear minimum mean square-error estimation[END_REF][START_REF] Gunturk | Color plane interpolation using alternating projections[END_REF][START_REF] Malvar | High-quality linear interpolation for demosaicing of Bayer-patterned color images[END_REF][START_REF] Hore | An edge-sensing generic demosaicing algorithm with application to image resampling[END_REF]. But the computation time needed for these methods makes them generally too costly for embedded systems. Moreover in practice, the CFA image produced by a sensor is less constraining than the simulated image on the Kodak database [11] (the most used one on demosaicing) which contains moiré due to higher frequency content compared to the number of pixels. This is even worse for recent cameras with small pixels size [START_REF] Yasuma | Generalized assorted pixel camera: postcapture control of resolution, dynamic range, and spectrum. Image Processing[END_REF]. Because these methods are optimized for Bayer CFA they are not very useful for general CFAs such as those with random arrangement of color.

Some studies show new CFA patterns, but either they are designed empirically [START_REF] Lukac | Color filter arrays: Design and performance analysis[END_REF][START_REF] Yamanaka | Solid State Camera[END_REF][15]. Many authors have proposed optimal CFAs arrangement based on the criteria of frequency representation and selection [START_REF] Condat | A new color filter array with optimal sensing properties[END_REF][START_REF] Hirakawa | Spatio-spectral color filter array design for optimal image recovery[END_REF][START_REF] Bai | Automatic Design of Color Filter Arrays in the Frequency Domain[END_REF][START_REF] Hao | A geometric method for optimal design of color filter arrays[END_REF][START_REF] Couillaud | Nature-inspired colorfilter array for enhancing the quality of images[END_REF]. Indeed, the mosaic arrangement of the filters in the CFA could be interpreted as a spatial multiplexing of color components and has a simple expression in the Fourier domain [START_REF] Alleysson | Color demosaicing by estimating luminance and opponent chromatic signals in the Fourier domain[END_REF][START_REF] Alleysson | Linear demosaicing inspired by the human visual system[END_REF][START_REF] Dubois | Frequency-domain methods for demosaicking of Bayer-sampled color images[END_REF]. The spatial Fourier representation of the CFA allows simple linear demosaicing by selecting the part of the spectrum that corresponds to luminance and color components. Some authors assume the RGB filter's spectral sensitivity can be modified and consider composed colors as a linear combination of RGB and propose an arrangement of these new colors that optimize the frequency representation and estimation. But there is no evidence that these new colors can be easily produced from physical composition of the RGB pigments. Additionally, the simple mathematical expression of spatial multiplexing is due to periodicity or regularity in the mosaic. The locality of chrominance is lost for a random arrangement of color on the CFA. This prevents the application of frequency selection method on random CFAs.

Demosaicing is an inverse problem to retrieve the missing colors from the sampled ones. This kind of problem has no general solution. To solve it, we must consider a model of the solution family (solutions appear as a functional for which a set of parameters are optimal for the problem) and providing the best estimated solution inside this family. It is almost straightforward to consider linear solutions [START_REF] Ribes | Linear inverse problems in imaging[END_REF]. We therefore restrict here the solutions to be linear application from ℝ to ℝ , will be the dimension of the mosaiced image plus neighborhood's space and the dimension of the reconstructed color image's space (See next section for detail on the image formation model).

A general linear approach for demosaicing consists of minimizing the squared error of reconstruction and derives a linear least square approximation of the solution [START_REF] Trussell | A MMSE estimate for demosaicking[END_REF][START_REF] Trussell | Mathematics for demosaicking. Image Processing[END_REF]. This method is general and applies equally well to any CFA. Because most of the CFAs are a replication of a basis pattern, a shift invariant solution can be found, which simplifies calculation by considering only the basis pattern (called super-pixel) replicated on the surface of the CFA, a 2x2 array for Bayer's pattern [START_REF] Trussell | Mathematics for demosaicking. Image Processing[END_REF][START_REF] Taubman | Generalized wiener reconstruction of images from colour sensor data using a scale invariant prior[END_REF]. Despite the generality of the method which allows optimizations [START_REF] Parmar | A perceptually based design methodology for color filter arrays [image reconstruction[END_REF][START_REF] Parmar | Selection of optimal spectral sensitivity functions for color filter arrays[END_REF][START_REF] Parmar | Selection of optimal spectral sensitivity functions for color filter arrays[END_REF], the solution obtained with such a procedure is unstable because the number of unknowns is larger than the number of inputs. An elegant way for improving the number of inputs is to consider a closed neighborhood around the position to be interpolated. Intuitively, this reinforces the statistical learning of the solution with existing data and provides good reconstruction results [START_REF] De Lavarène | Practical implementation of LMMSE demosaicing using luminance and chrominance spaces[END_REF][START_REF] Alleysson | Linear minimum mean square error demosaicking. Single-sensor imaging: Methods and applications for digital cameras[END_REF][START_REF] Lu | Optimal color filter array design: Quantitative conditions and an efficient search procedure[END_REF][START_REF] Lu | Designing color filter arrays for the joint capture of visible and near-infrared images[END_REF][START_REF] Sadeghipoor | Correlation-based joint acquisition and demosaicing of visible and near-infrared images[END_REF][START_REF] Sadeghipoor | Optimum spectral sensitivity functions for single sensor color imaging[END_REF]. This framework allows the use of a random pattern inside the super-pixel [START_REF] Alleysson | Frequency selection demosaicking: A review and a look ahead[END_REF] even if the spatial frequency spectrum of luminance and chrominance for these CFAs is aliased.

Based on the LMMSE demosaicing we can directly compare, over a similar reconstruction method, the performance of any CFA pattern to reconstruct the desired image from the acquired image. In the next section we describe the formalism for demosaicing with linear minimum mean square error, learning over a database with generalized neighborhood. We then compare the performance of several CFAs. We also show the comparative performance with some of the state of the art methods applying on Bayer CFA.

Linear model of image formation

Writing a matrix model of image formation requires unfolding the matrix representing images into vectors, then finding a matrixvector multiplication that relates the expected image from the acquired one [START_REF] Trussell | Mathematics for demosaicking. Image Processing[END_REF]. In the case of demosaicing we suppose that the mosaiced image results from a color image multiplied by a projection matrix [START_REF] Alleysson | Linear minimum mean square error demosaicking. Single-sensor imaging: Methods and applications for digital cameras[END_REF]. But there are many ways of unfolding images that results in different models.

Classically an image is unfolded into a column vector. For the demosaicing problem it is expressed as follows: consider a color image having H rows, W columns and P color channels and the mosaiced image having H rows and W columns. We can construct the column vector of size 1 corresponding to the color image and of size 1 corresponding to the mosaiced image [START_REF] Trussell | Mathematics for demosaicking. Image Processing[END_REF]. In this case the model of image formation can be expressed as: (1) where is a matrix that transforms the vector corresponding to a color image into a vector corresponding to the mosaiced image.

The demosaicing matrix , we wish to estimate is the reverse operator that gives the estimate ^ from . It can be calculated from several couples , constructed from a database with the Wiener filtering approach that corresponds to the least square error estimator.

such that ^ ,

.. ! (2) 
With .. ! is the expectation over the " images of the database. In this model is of size . This model implies huge matrices as a model because the dimension of or is of size of the number of pixels in the images. A better model is given by considering the block shift invariant property of the mosaic. Since the mosaic is composed by a super-pixel of size # $ replicated on the whole CFA of size , we can unfold the image for #$ instead of . In this case the model formulation (equation 1) remains the same but is now a #$ #$ ⁄ matrix containing the set of vectors built from one super-pixel in the color image. And is a #$ #$ ⁄ matrix corresponding to the set of vectors built from one super-pixel of the mosaiced image. Thus is a #$ #$ matrix (i.e. 4x12 for the 2x2 super-pixel of the Bayer CFA) and is a #$ #$ matrix [START_REF] De Lavarène | Practical implementation of LMMSE demosaicing using luminance and chrominance spaces[END_REF][START_REF] Alleysson | Linear minimum mean square error demosaicking. Single-sensor imaging: Methods and applications for digital cameras[END_REF] which greatly reduces the computational complexity required to calculate and apply the reconstruction to the acquired data. But, with this model, the number of values to be retrieved is times larger than the acquired values making the estimate quite unstable.

To reinforce the stability of the solution, a neighborhood of could be used. Let's be a vector built from and its close neighborhood of size & ' , ( ) , * . ( ) , * . is a function that increase the number of rows of a vector by the & ' neighbors of each element of the vector. In this case, is of size

#$ & ' #$ ⁄
and the number of rows of could be easily larger than #$.

In this later unfolding, the computation of the demosaicing matrix from couples , constructed from the database is given by the following equation:

such that ^ , .. ! (3) 
Similarly to the equation 1, it is possible to design a matrix that transform a neighborhood in the color image (vector ) into a neighborhood of the mosaiced image , i.e.

. It is also possible to design a matrix + that transform the vector into the vector , i.e.

+ , such that it suppresses the neighborhood and selects the central pattern. With these two matrices, can be expressed as:

+ , , , with , ! (4) 
Equation 4 implies that we need to calculate the correlation , only once from the color images with their neighborhoods in the database. Then, for a particular CFA into consideration, we can construct and + and compute the optimal demosaicing filter in the least square sense. Thus, with the same , we can compare the performance of any CFA.

In [START_REF] Lu | Optimal color filter array design: Quantitative conditions and an efficient search procedure[END_REF], a similar notation to Equation 4 is provided, but the neighborhood size is restricted to an integer number of the size of the super-pixel which becomes intractable when super-pixel size increase and is less flexible. Here, we proposed a generalization for any CFA with any super-pixel size and any arrangement of colors inside the super-pixel. The construction of and + for a particular arrangement and a particular neighborhood is not trivial and cannot be described more here.

Simulation

With the framework given in the previous section, we can easily compare the performance of several CFAs with any superpixel size and any arrangement of colors inside the super-pixel as well as any size of the neighborhood used for controlling redundancy. The framework works as follows: for any color image taken from the database, we compute , composed by the set of vectors constructed for every pixel inside the super-pixels and theirs neighbors. From all taken from all images in the database, we compute , according to Equation 4. Then we design + and for the CFA and the neighborhood size. We compute D with Equation 4.

The performance of the demosaicing is then computed as follows: for each image in the database, we compute the mosaiced image by subsampling the color image according to the CFA. Then we compute the vector using the neighborhood. We apply D on as in Equation 3 to reconstruct the estimate ^ and compare it to by calculating PSNR (A border equivalent to neighborhood size was removed in the calculation).

We compute a PSNR from the whole mean square difference between the original and reconstructed image for all pixels and three PSNRs, one per color channel. We use the average of whole PSNR over all the images in the database,as an estimator of the overall quality of the reconstruction. The variance of the whole PSNR along image number, . gives an estimate of the adequacy of the method to encode any particular image. To test the method to equally encode any colors, we used the average of the PSNR per channel, -/ , -0 and -1 as well as the average of the variance of PSNR per channel, . /01 . Finally, the SSIM [START_REF] Zhou | Image Qualifty Assessment: From Error Visibility to Structural Similarity[END_REF] (computed the three channels together) is also provided to estimate the quality of the image in term of visual factors.

We perform the analysis on two databases (Kodak [11], McM [START_REF] Zhang | Color demosaicking by local directional interpolation and nonlocal adaptive thresholding[END_REF]) for comparing the performances. The Kodak database is known to have much higher frequency compared to the number of pixels and with low colorfulness which favor the edge directed and postprocessing methods. The McM database has been proposed has having more realist images in term of high frequency and colorfulness. We generally used all the images from the database for learning the demosaicing operator. We also implement a leaveone-out simulation where the image to reconstruct is not in the set of images used to learn which are presented in supplementary material [42].

Systematic evaluation for 2x2, 3x3 super-pixel size of the CFA

As a first example of performance comparison, we consider all the different combination of three colors R, G, B on a 2x2 super-pixel. The number of different possible arrangements is 3 4 = 81. Notice however that a lot of them are symmetrical than others. We also consider all the different combinations of the 3x3 superpixel, there are 3 3 19683 different ones.

Table 1 and Figure 3 (top row) shows the best 2x2 arrangements calculated over the Kodak databases. In term of average PSNR, -, the best arrangement is not the Bayer RG;GB but slightly modified one where the arrangement is RG;BG (2x2 #1). If we look at the average variance between PSNR calculated on individual color channels in the reconstructed images over the database, . /01 , the best is RB;GB (2x2 #2) arrangement. Also, if we look at the average variance of the overall PSNR, ., along all the images in the database, the BR;GG (2x2 #3) is the best. This shows the following criterion that either twice of green or blue is preferred but the color represented twice is never on the diagonal.

Table 1 and Figure 3 (top row) also shows the result for evaluating all the different 3x3 CFAs. Again depending on the criterion (-, . /01 , . three different optimal ones are shown. Among these three no one is regular and all three show an almost equal number of RGB.

Figure 2 shows the histogram of the average PSNR, -, for all of 3x3 CFAs. The three first peaks correspond to CFA with only one or two colors. A shown in Figure 2 (b), among the best hundred 3x3 CFAs, some are symmetrical but none are perfectly regular. 

Comparison of CFAs under LMMSE

We select several CFAs (Figure 3) proposed in the literature that we have tested with LMMSE demosaicing. We also compute the best arrangement of the 4x4 (they are 3^16 > 43 Millions) by pruning those with high bias between colors based on the previous results for 3x3 and 2x2. We also add the best 2x2 and the original Bayer in the comparison. Figure 4 shows the performance of CFAs along the neighborhood size. Which clearly favor the best 4x4 #2 for a neighborhood of size larger than 3. This CFA is also performing well with variance estimators showing its ability to equally encode colors and perform well for any image in the database. [START_REF] Yamanaka | Solid State Camera[END_REF], Lukac [START_REF] Lukac | Color filter arrays: Design and performance analysis[END_REF], Holladay halftone [START_REF] Parmar | Selection of optimal spectral sensitivity functions for color filter arrays[END_REF], CNRS [15]. Table 1 shows the number of the evaluation parameter estimated based on a neighborhood of 10x10 for the CFAs. In the table we highlight the number that is the best within that category. For example the best 2x2 for average PSNR,is given for the 2x2 #1. We show the result for the 4x4 #1 because even if it is not the best for average PSNR, it has very good visual performance on the fence of the lighthouse image as show in the supplementary material [42]. 

, 2x2 #1, 2x2#2, 2x2#3, 3x3#1, 3x3#2 3x3 #3, bottom row, 4x4 #1, 4x4 #2, Yamanaka

Comparison with other methods on Bayer

We compare the best 4x4 using a neighborhood of 10 with the state of the art method applying on the Bayer CFA using both the 2 shows the evaluation parameters as well as the computation time on Matlab. The code for the algorithms is found on web site [41]. [START_REF] Paliy | Spatially Adaptive Color Filter Array Interpolation for Noiseless and Noisy Data[END_REF], LIAN [START_REF] Lian | Adaptive Filtering for Color Filter Array Demosaicking[END_REF], DA [START_REF] Alleysson | Color demosaicing by estimating luminance and opponent chromatic signals in the Fourier domain[END_REF], HD [START_REF] Hirakawa | Adaptive homogeneity-directed demosaicing algorithm[END_REF], SA [START_REF] Li | Demosaicing by successive approximation[END_REF], DFPD [START_REF] Menon | Demosaicing with directional filtering and a posteriory decision[END_REF], DLMMSE [START_REF] Zhang | Color demosaicking via directional linear minimum mean square-error estimation[END_REF], AP [START_REF] Gunturk | Color plane interpolation using alternating projections[END_REF], LI [START_REF] Malvar | High-quality linear interpolation for demosaicing of Bayer-patterned color images[END_REF], HA [START_REF] Hamilton | Adaptive color plane interpolation in single color electronic camera[END_REF] are tested with a border of 15, 4x4 #1 and 4x4 #2 reported with a border of 10.

For the Kodak database, the best 4x4 has almost the same performance as the best edge directed method with a far less variance between colors. It has also a better variance among images on the database as well as SSIM [START_REF] Zhou | Image Qualifty Assessment: From Error Visibility to Structural Similarity[END_REF] and computation time per image. For the MCM database, the best 4x4 under LMMSE perform better than any other in the test for almost all these performance parameters. Supplementary material [42] shows some examples of reconstruction based on particular area on images.

For sure the extent of the size of the super-pixel provides a better encoding of the scene as shown by the objective criteria such the PSNR. But in our simulations, we also see that the random arrangement of colors in the CFA also reduces the visibility of the noise generated by the mosaicing/demosaicing process because noise becomes less structured.

Conclusion

In this paper we provide a flexible, fast and accurate linear minimum mean squared error demosaicing using the redundancy given by the neighborhood of the sampled image. The method is quite fast and allows us to systematically compare the performance of 2x2 and 3x3 CFA's super-pixels and most of the 4x4 CFAs.

Compared to frequency selection approaches used today for optimizing CFAs, our method does not guess the frequency spectrum of the sampled image by the CFA. Rather, it uses a learning procedure that computes optimal reconstruction filters. Even when the aliasing between luminance and chrominance is strong (as arising for random pattern), the method find good linear reconstruction filters. We found that the best CFAs are the ones with non-regular arrangement of colors (some are symmetric along the +-45° line) and almost equal number of RGB.

The best known methods for demosaicing are thought to be those with edge directed interpolation and post processing. We show that the 4x4 best CFAs give reconstruction results equivalent to the best nonlinear algorithms applied on Bayer. It even provides less variability among colors and particular image in the database. Moreover it gives better SSIM evaluation for a less computation time. This result provides linear demosaicing for being favorably used in the embedded camera devices.

Statistics of natural images are probably random because a contour or a particular object's color could potentially appear anywhere on the images. That is probably why random CFA perform better than regular one for encoding the spatial and chromatic structure of natural images.

Figure 1 :

 1 Detail of the unfolding of images into vectors (a) Mosaiced image ICFA with a neighborhood shown (b) Unfolding of the mosaiced image into matrix x1 (c) Color image I (d) Unfolding of the color image into matrix y.

Figure 2 :

 2 Figure 2: (a) Histogram of the PSNR for all 3x3 CFAs. A large number of them show more than 38dB of average PSNR. (b) The top hundred 3x3 CFA's for average PSNR learned over the Kodak database (The PSNR ranges between 38.96 and 38.70 for the top hundred for neighborhood of 10 for Kodak database). See supplementary material for the result on McM [42].

Figure 3 :

 3 Figure 3: Different CFA pattern used for comparison. From left to right top row, Bayer, 2x2 #1, 2x2#2, 2x2#3, 3x3#1, 3x3#2 3x3 #3, bottom row, 4x4 #1, 4x4 #2, Yamanaka[START_REF] Yamanaka | Solid State Camera[END_REF], Lukac[START_REF] Lukac | Color filter arrays: Design and performance analysis[END_REF], Holladay halftone[START_REF] Parmar | Selection of optimal spectral sensitivity functions for color filter arrays[END_REF], CNRS[15].

Figure 4 :

 4 Figure 4 : Evaluation of CFAs with LMMSE with increasing neighborhood (a) Average PSNR, -. (b)Variance of PSNR per channel, . /01 . (c) Variance of PSNR with image number, ..
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  Comparison of CFA, σ plotted for Kodak database Neighbourhood size σ Kodak and McM database. The following Table

Table 1 : Comparison of CFA for Kodak database, nh = nw = 10

 1 

	CFA				Kodak		
		μ	8 9	8 :	8 ;	< 9:;	σ	SSIM
	Bayer	38.90 38.57 41.53 37.59	4.64 6.57 0.9911
	2x2 #1	39.51 39.41 40.36 38.99	1.01 7.21 0.9923
	2x2 #2	39.10 38.71 39.39 39.32	0.53 7.64 0.9917
	2x2 #3	39.12 38.27 40.27 39.22	1.78 5.01 0.9916
	3x3 #1	37.16 37.40 37.13 37.02	0.22 6.34 0.9881
	3x3 #2	38.96 38.70 39.48 38.78	0.39 6.81 0.9913
	3x3 #3	36.36 37.40 35.81 36.13	1.11 5.41 0.9859
	4x4 #1	40.26 40.51 40.32 40.05	0.40 6.44 0.9933
	4x4 #2	40.40 41.00 39.82 40.56	0.76 6.39 0.9936
	Yaman.	38.73 37.82 40.95 38.19	3.46 6.81 0.9910
	Lukac	39.35 38.70 41.47 38.57	3.13 6.31 0.9918
	Holladay	38.57 39.23 39.62 37.30	1.87 6.05 0.9908
	Cnrs	39.78 40.01 40.02 39.39	0.40 6.42 0.9927

Table 2 : Comparison between the best 4x4 with LMMSE on Kodak database and other methods.

 2 

					Kodak			
	Method	μ	8 9	8 :	8 ; < 9:;	σ	SSIM	Time (s)
	4x4 #1	40.26 40.51 40.32 40.05 0.40 6.44	0.9933	0.64
	4x4 #2	40.40 41.0 39.82 40.6 0.76 6.39	0.9936	0.65
	LPA-ICI	40.52 39.63 43.0 39.91 4.45 7.08	0.9874	1.15
	LIAN	39.53 38.59 42.13 38.86 4.63 7.39	0.9855	0.31
	DA	37.82 37.38 40.66 36.54 5.27 5.82	0.9829	0.09
	HD	37.72 36.94 39.59 37.26 2.82 8.64	0.9799 28.11
	SA	39.01 37.92 41.56 38.53 4.57 6.37	0.9850	1.30
	DFPD	39.17 38.32 41.23 38.70 3.25 7.83	0.9837	1.55
	DLMMSE 40.05 39.12 42.58 39.53 4.79 6.92	0.9866 28.84
	AP	39.25 38.29 41.73 38.70 4.40 6.07	0.9849	1.61
	LI	35.66 35.16 38.83 34.25 6.05 10.24	0.9729	0.02
	HA	36.87 36.75 38.05 36.08 1.20 10.40	0.9769	0.08
	Bilinear	30.19 29.25 33.07 29.26 4.94 10.94	0.9160	0.04

Table 3 : Comparison between the best 4x4 with LMMSE on McM database and other methods.

 3 

					McM			
	Method	μ	8 9	8 :	8 ; < 9:;	σ	SSIM	Time (s)
	4x4 #1	35.44 36.96 35.89 34.14 2.83 9.32	0.9832	0.39
	4x4 #2	35.96 37.3 35.55 35.4 1.84 9.33	0.9851	0.40
	LPA-ICI	34.70 34.32 37.88 33.29 6.62 13.20	0.9655	0.64
	LIAN	34.91 34.55 37.95 33.52 6.13 10.40	0.9673	0.17
	DA	32.22 31.82 34.69 31.07 4.16 13.33	0.9528	0.06
	HD	33.46 32.94 36.96 32.15 7.94 11.20	0.9576 18.50
	SA	32.69 32.56 34.42 31.70 2.71 17.88	0.9529	0.87
	DFPD	34.22 33.74 37.17 32.96 5.64 10.77	0.9624	0.99
	DLMMSE 34.43 33.97 37.9 33.02 7.93 11.21	0.9647 18.27
	AP	33.14 32.79 35.13 32.17 3.01 12.47	0.9567	1.03
	LI	34.39 33.94 37.52 32.97 6.03 8.75	0.9645	0.02
	HA	34.79 34.58 37.9 33.27 6.87 9.96	0.9654	0.05
	Bilinear	32.29 31.65 35.38 31.20 6.59 11.58	0.9487	0.03
	LPA-ICI							
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