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ABSTRACT

Recent results [5, 9, 25] prove that edge partitioning ap-
proaches (also known as vertex-cut) outperform vertex par-
titioning (edge-cut) approaches for computations on large
and skewed graphs like social networks. These vertex-cut
approaches generally avoid unbalanced computation due to
the power-law degree distribution problem. However, these
methods, like evenly random assigning [25] or greedy assign-
ment strategy [9], are generic and do not consider any com-
putation pattern for specific graph algorithm. We propose
in this paper a vertex-cut partitioning dedicated to random
walks algorithms which takes advantage of graph topologi-
cal properties. It relies on a blocks approach which captures
local communities. Our split and merge algorithms allow
to achieve load balancing of the workers and to maintain it
dynamically. Our experiments illustrate the benefit of our
partitioning since it significantly reduce the communication
cost when performing random walks-based algorithms com-
pared with existing approaches.
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1. INTRODUCTION

Random walks-based algorithms, such as personalized
PageRank (PPR) [10] and personalized SALSA [4] have
proven to be effective in personalized recommender systems
due to their scalability. Some recent proposals rely on mul-
tiple random walks started from each vertex on graph, e.g.
Fully personalized PageRanks computation using Monte
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Carlo approximation [3]. We call this intensive computa-
tion Fully Multiple Random Walks(FMRW).

Graph partitioning is a key area of distributed graph pro-
cessing research, and plays an increasingly important role
in both vertex-centric computation, like in Pregel model,
and query evaluation. Recent results exhibit that edge
partition(vertex-cut) turned out to be more efficient[5, 9]
than traditional vertex partitioning(edge-cut) for compu-
tation on real-world graphs like social networks. As a
consequence, several popular graph computation systems
based on this approach have emerged, such as PowerGraph
(GraphLab2) [9] and GraphX [25]. However their graph
partitioning strategies are generic and do not depend on the
algorithms performing the different computations. So they
distribute edges evenly over partitions either randomly, i.e.
a hash function of vertex ids in Giraph [2] and GraphX, or
using a greedy or dynamic algorithm like in PowerGraph and
GPS [19]. Besides, in contrast with light-weight algorithms
like PageRank whose messages transmitted between vertices
are only rank values, the simulation of heavy-communication
algorithms, such as fully (multiple) random walks in this pa-
per, have a more important communication cost since (i)
some extra path-related information of walks must also be
delivered, and (ii) more than one message (walk) start from
each vertex at one time. In this case, reducing communi-
cation cost is crucial for computation performance guaran-
tee. particularly in a large scale computing cluster with
complex machine-to-machine network infrastructure, or in
distributed Computing-in-Memory system like Spark where
communication might be a bottleneck for reaching high over-
all performance.

We propose in this paper a novel block-based, workload-
aware graph(-edge) partitioning strategy which provides a
balance edge distribution and reduce the communication
costs for random walks-based computations. To the best
of our knowledge, this is the first time a partitioning strat-
egy dedicated to fully multiple random walks algorithms is
proposed in Pregel model. Finally, the experiments show
that our partitioning made significant improvements on both
communication cost and time overhead.

Contributions

In summary, our contributions are:

1. a block-based partitioning strategy which considers
graph algorithms specificities and the topological prop-
erties of real-world large graphs along with a seeds se-
lection algorithm for building the blocks;

2. algorithms for merging and splitting blocks to achieve



a dynamical load-balancing of the partitions;

3. an experimental comparison of our partitioning ap-
proach with several existing methods, over large real
social graphes.

After the related work introduced in Section 2, Section 3
presents our block building strategy while Section 4 de-
scribes our blocks merge and refinement algorithms. Sec-
tion 5 presents our experimental results and Section 6 con-
cludes and introduces perspectives.

2. RELATED WORK

Pregel [15] has become a popular distributed graph pro-
cessing framework due to the facilities it offers to the
developers for large-graph computations, especially com-
pared with other data-parallel computation systems, e.g.
Hadoop. Pregel is inspired by Bulk Synchronous Paral-
lel [23] computation model where computations on a graph
consists of several iterations, also called super-steps. Dur-
ing a super-step, each vertex first receives all the messages
which were addressed to it by other vertices in the previ-
ous super-step. Each vertex performs the actions defined
by user-specific function, namely vertex.compute() [19] or
vertex.program() [9], in parallel, using the updated values
received in the messages. Then each vertex may decide to
halt computing or to pass to other vertices the messages to
be used in next super-step. When there is no message trans-
mitted over graph during a super-step (i.e. every vertex has
decided to halt) the computation stops. Due to Pregel suc-
cess, several optimizations have been recently proposed in
literature like the function Master.compute() [19] to incor-
porate global computations or Mirror Vertices [14] to reduce
communication.

Traditional graph partitioning methods from 2-way cut
by local search to multi-level approaches, like Kernighan-
Lin [12], PageRank Vectors [1] and METIS-based [11] al-
gorithms, follow a vertex-partitioning (edge-cut) strategy.
They propose partitionings which assign (almost) evenly
vertices between partitions while minimizing the number
of edges cut (edges between two partitions). These algo-
rithms are efficient for small graphs, which are not sensi-
tive to workload-unbalanced computation. However for real
world graphs the large size and the power-law distribution
lead to an unbalanced load over edge-cut partitions. More
recent partitioning proposals in Pregel-like systems, such as
Giraph, GPS, Gelly and Chaos[18] shard the graph using
an edge-cut strategy which also generates unbalancing for
power-law graphs, as introduced in [9].

While there exists a large literature and several imple-
mentations for vertex-partitioning, few recent works propose
edge-partitioning. The two principal ones are GraphX [25]
and PowerGraph [9]. However GraphX only offers ran-
dom/hash partitioning where edges are evenly allocated over
partitions with some constraints of communication between
nodes. The underlying graph property, like local communi-
ties in social networks, is not properly explored. Unlike the
hash-like partitioning, PowerGraph uses a heuristic parti-
tioning method, Greedy Vertex-Cuts, which has shown sig-
nificant better performance than random placement in any

cases [9]. However, it also ignores the graph topological
property and only focus on how to minimize the future com-
munication on previous partitioning situation during edges
distribution among partitions. Additionally, unlike our pro-
posal, GraphX and PowerGraph partitionings can not be
updated dynamically with graph evolution.

Our approach also takes advantage from the existence of
communities. In [8] authors state that, due to the heavy-
tailed degree distributions and large clustering coefficients
properties in social networks, considering only the direct
neighbors of a vertex allows to construct good clusters (com-
munities) with low conductance. In [24] authors improve
this method to detect communities over graph, but neither
edge partitioning nor workload balancing problem is stud-
ied. Moreover, the overlapping communities approach for
graph partitioning are not suitable to Pregel-like systems.

3. BLOCK-BASED GRAPH PARTITION-

ING

3.1 Principle
Most existing edge partitioning methods, like random[25]

or greedy[9] approaches achieve a balanced workload, which
means each partition has the same number of edges. Our
objective is to go beyond workload balancing and to lower
graph processing time by reducing the communication be-
tween partitions during graph computation. In edge-
partitioning approach, a vertex is possibly allocated to mul-
tiple partitions and communications between partitions oc-
cur when updating the different replicas (mirror vertices) at
each Pregel super-step. Consequently, Vertex Replication
Factor(VRF) firstly defined in [9] is often used as a commu-
nication measurement. So, given an edge partitioning, the
communication cost is generally estimated in Pregel, as

costComm = O(L ∗ (V RF ∗ |V |)) (1)

where L is the number of supersteps (iterations) during
graph computation.

However, in most real graphs, like social networks, there
exist many clusters (communities). Our objective is to take
advantage of this topological characteristic in our block con-
struction. Local Access Pattern(LAP) is described in [26]
for first time as one of three kinds of query workload in
graphs. We propose to rely on its principles and analysis
when proposing our edge-partitioning strategy for random
walks-based algorithms considering graph communities to
reduce communication costs.

As a consequence we consider that, while VRF is a good
estimator of communication cost for some graph algorithms,
it is not suitable for the random walks-based algorithms
which follow a LAP, since the number of visits of each vertex
is different for these algorithms in one super-step. In other
words, communications are conducted unevenly on graph.
So our objective is to design a new edge partitioning strat-
egy dedicated to random walks-based algorithms which takes
into consideration both the power-law topology of the graph
and the LAP characterizing these algorithms.



Figure 1: Example of blocks and partitions

In this way, we give a more exact expression for commu-
nication cost of algorithm algo during computing graph G:

∑

v∈V

NV (v) ∗Rep(v) (2)

Where NV(v) is the number of visits to vertex v during
algorithm simulation, and Rep(v) is the replication factor
of v. Note that in this formulation, the size of message for
communication is not considered. Hence, we could reduce
the communication overhead by 1) cutting down the VRF
in total as other existing approaches, and 2) making as few
mirrors as possible(to obtain low Rep(v)) for high-NV(v)
vertices in the simulation of specific graph algorithm, Ran-
dom Walks here. The experimental results show that our
block-based partitioning method can achieve both of them.

Our approach

A block corresponds to a tightly knit cluster in graph, e.g.
a community in social network. In the Pregel approach, we
consider the block as a set of edges which are ”close” one to
another, and these blocks become the component units of
each partition in computation, but also the allocation units
for workload over machines. Similar to the methodology
adopted in vertex partitioning [8, 24], we propose to com-
pute a set of K blocks by exploring the graph. An edge is
allocated to a block based on its distance from this block.
We start a breadth-first search exploration (BFS) from a
pre-defined set of K seeds. For each edge encountered we
update its distance with respect to all blocks. When the
exploration step ended, we allocate the edges to the closest
block.

Example 1. Figure 1 presents an example which illus-
trates our 2-step approach. First, we group edges based on
their distances to the different seeds (here three seeds). We
get three communities(edge blocks): c1, c2 and c3. Then
we merge blocks to get partitions with similar size. Here we
build partition P1, composed of c1 and c3, and partition P2
corresponds to the single block c2.

3.2 Distance of an edge
In graph computation, how to measure the closeness be-

tween a pair of nodes is a fundamental question and it

has been studied in many existing works. One interest of
these distance measures is to detect cluster in graph (see
Section 3.3). But based on the observation that for sev-
eral graph algorithms like random walk, nearest neighbors,
breadth-first search, etc, the communications during compu-
tations mainly occur between vertices belonging to the same
cluster, several approaches extended this cluster detection
to perform graph partitioning. For instance [1] proposed a
PageRank vector method to find a ”good” partition w.r.t.
an initial vertex and several pre-set configurations. Besides,
there are some proposals like [20] which describes how to
obtain these partitions by conducting random walks.

For our edge-partitioning approach, we propose here to
estimate the distance between an edge and a query vertex.
We adapt the inverse P-distance[10] used for distance com-
putation between two vertices.

Vertex to vertex distance

Inverse P-distance captures the connectivity: the more
numerous and short paths between two vertices, the closer
they are in graph topology.

So, the distance distv(i, j) from vertex i to vertex j in a
directed graph G can be calculated by the paths between
them, as follows:

distv(i, j) =
∑

p∈Pij

S(p) (3)

where the Pij denotes the set of paths from i to j. S(p) is
the inverse distance value of path p defines below.

According to the idea of inverse P-distance, we introduce
the concept of ”reachability” into distance computation be-
tween vertices. The reachability means the probability for a
random walk starting from i to arrive at j. So, for path p:
v0, v1, ..., vk with length k, S(p) can be defined by:

S(p) = (1− α)k ·
k−1
∏

i=0

1

outDeg(vi)
(4)

where α ∈ (0, 1) is the teleporting probability, i.e., the
probability to return to the original vertex, and outDeg(vi)
is the out-degree of vertex vi.

Vertex to edge distance

Based on the vertex to vertex distance introduced above,
we define a vertex to edge distance. We adopt the following
definition:

Definition 1 (edge distance). The distance
diste(a, b) from a vertex a to an edge b = (i, j) is:

diste(a, b) = θ(distv(a, i), distv(a, j))

where θ is an aggregation function.



In our experiment we choose the average function for θ but
other functions like min or max may also be considered.

3.3 Edges allocation algorithm
Based on our edge distance we can now design an edge

allocation algorithm. Our algorithm can be decomposed into
three steps:

i) selection of a subset of vertices, namely seeds

ii) distance computation from each edge to all the seeds

iii) edges allocation to the different blocks

Seeds selection

We consider for our block-partitioning a seed-expansion
strategy: we select a vertex as seed for each block and add
each edge to one of the existing block. Obviously the result
of the partitioning, in term of size-balancing or communi-
cation during the computation, is highly dependent on the
choice of the seeds. This problem has been studied in lit-
erature for instance in [24] to detect communities on graph
or in [7] where authors propose and experiment for the pre-
computation step of their recommendation algorithm several
landmark selection strategies.

Here we adopt the simple but efficient seeds selection pro-
cedure, based on Spread Hubs method (see [24]), which can
be easily deployed on existing graph processing systems.
There are two main measurements we used in seeds selec-
tion: 1) vertex degree, and 2) distance to other existing
seeds. Our seeds selection algorithm is:

1. first we sort the vertices in descending order, according
to their global (in+out) degrees;

2. then we scan the sorted list of vertices, and check if
the current one is not too close to any existing seed,
otherwise we discard it.

The rationale for this algorithm is that a vertex with a
large global degree is a vertex with a centrality property and
its connected vertices are likely to join its block. Moreover
observing a minimum distance between seeds allows a better
distribution of the seeds within the graph. Since BFS is
efficiently implemented in Pregel, we use it to measure the
distance between seeds. So we start a BFS from the seed
candidate and report the number of hops required to reach
the first existing seed. We observe experimentally that we
achieve a good partitioning with this algorithm even when
the depth of each seed’s BFS is set 1 (so a new seed is not
allowed to be the direct neighbor of an existing seed).

Number of seeds.

In our approach, each seed will determine a block which
implies to have at least as many seeds as the number of final

partitions. However we argue that we can achieve a better
partitioning when setting this number to a larger value. The
reasons are:

• the expansion of each block can be processed indepen-
dently, thus can be deployed easily on Pregel-like ar-
chitecture;

• the combination of small blocks needs much less over-
head cost than splitting (i.e., refinement) of large
blocks when trying to minimize the replication factor;

• the more blocks we pre-computed, the higher the level
of reusability of our partitioning will be.

Distance computation

For the second step of our algorithm, we compute first
the inverse p-distance of each vertex to all seeds. To perform
this distance computation efficiently in our Pregel-like archi-
tecture, we proceed to a parallel BFS exploration starting
from each seed. Consider a set of seeds S = (s1, s2, . . . , sN).
We maintain for each vertex ν a distance vector dist(ν) =
(d1, d2, . . . , dN) where di = distv(si, ν) is the inverse p-
distance to the seed si. This vector is updated for each
vertex encountered during the BFS exploration.

Since the BFS exploration in large graphs is very costly,
we propose to limit the distance of exploration during the
BFS. Indeed we observe in most of the large graphs (like
social graphs) a community phenomenon which we capture
by selecting the seeds among the vertices with the largest
degrees, representing the center of these communities. Intu-
itively, the distance from the community center is short to
other vertices inside the community. Actually, from our ex-
periment results and ”Six Degrees of Separation”theory [16],
we observe that the radius of block, i.e., the distance from
seed to potential community members is small and conse-
quently the BFS depth can be set to a small value.

For instance, during the experiment on Livejournal [13]
social network, we found the vertex/edge coverages of 200
seeds can reach around 88 percent and 96 percent by limiting
the BFS only to 3 and 4 hops respectively.

Finally we compute a distance vector for each edge in
the graph. Consider an edge e(ν, ν′) and the distance vec-
tors for its vertices dist(ν) = (d1, d2, . . . , dN ) and dist(ν′) =
(d′1, d

′
2, . . . , d

′
N). Based on Definition 1 we compute the edge

distance vector dist(ε) = (D1, D2, . . . , DN ) as:

∀i ∈ [1..N ], Di = diste(si, ε)

Edges allocation

Finally we can allocate the different edges to the blocks
according to their edge distance vector. We decide that an
edge belongs to the block whose seed is the closest to this
edge. For edges without any distance value (which means
its end vertices have not been reached by any seed during
the BFS step), we allocate them in an extra-block.



Figure 2: Example of edge allocation

Example 2. We illustrate the edge allocation process
with the example in Fig. 2.
We assume we have already computed the vertex distance
vectors for vertices i and j, considering three seeds s1, s2
and s3. Notice that the ’*’ value means that the current
vertex can not be reached by the seed s3 in our BFS explo-
ration step. We sum (or make the average) the two vectors
to determine the edge distance vector for e(i, j): dist(i, j) =
(0.64+0.53, 0.61+0.88, 0.62+0.0) = (1.17, 1.49, 0.62). Here
we can clearly point out that the edge e should be allocated
to s2 since it has maximum closeness value to this seed.

Observe that some optimizations are possible for storing
the vertex distance vectors and for the edge distance vector
computation. For instance we can avoid keeping all distance
values to every seed, since in this edge allocation step, only
the maximum value is used to allocate an edge to a block.
So we could keep only a top-k values for each vertex, with
k ≤ |S|. Of course the larger k is, the more precise our final
result is.

4. BLOCKS MERGE AND REFINEMENT

ALGORITHMS

Our block partitioning respects the topological properties
of the (social) graph, e.g. local communities and power-law
degree distribution to significantly reduce the communica-
tion costs compare to a random allocation strategy.

Given a number of servers P , we must determine how to
allocate the different blocks to these servers considering two
criteria:

• minimizing the global communication cost;

• balancing the storage and computation workload be-
tween servers.

These conditions can be captured by the following defini-
tion.

Definition 2 (Balanced edge partitioning).
Consider a graph G(V,E) where V is the set of vertices and
E the set of edges, a set of blocks B and a number of servers

P . The balanced edge partitioning A(B, P ) is defined as:

A(B, P ) ∈ 2B, such that



























∀A′ ∈ 2B , 1

|V |

∑

v∈V |alloc(v,A)|

≤ 1

|V |

∑

v∈V
|alloc(v,A′)|

∀i ∈ [1..P ], η |E|
P

≤ |Edge(pi)|

≤ λ
|E|
P

where pi is a partition (server) and Edge(pi) the edges it
contains, alloc(e,A) is the set of partitions to which edge
e is assigned with the partitioning A (more than one if the
vertex is replicated) and (0 ≤ η ≤ 1 ≤ λ) are small constants
to control the storage in each partition.

The first part of the definition means the partitioning
A is the one which minimizes the Vertex Replication Fac-
tor(VRF). The VRF measure adopted for instance in [9]
means the less partitions the vertex span on average, the
less communication across partitions the system initiates for
vertices synchronization before running into the next super-
step. The second part of the definition allows to control the
size of a partition to fit the server capacity and to have an
almost balanced edges distribution.

With respect to Definition 2 we can proceed to the final
partitioning based on the different blocks we built.

Block split

Since the edges allocation to blocks is only based on a dis-
tance criterium some blocks may not fit the maximum size
allowed for a partition (second part of Definition 2). Conse-
quently we propose a simple split strategy. Assume that the

size of a partition pi is (β − 1)λ |E|
P

≤ |Edge(pi)| < βλ
|E|
P

.
We then apply our block building algorithm to the partition
pi with β seeds to split it into β sub-blocks. We potentially
iterate the process for any of the sub-blocks which exceeds
the partition size.

Blocks merge

Our block building may also result in producing some blocks

whose size is lower than the minimal size (i.e. η |E|
P

, see Def-
inition 2). For such a block we re-allocate its edges without
considering its seed anymore. Observe that this may lead in
turn to some block splits.

Block allocation

We assume that, possibly after some required splits, the
size of all blocks respect the partition size limit. To al-
locate the blocks to the different partitions, two strategies
may be considered: based only on the balancing of the par-
tition sizes, or on minimizing the replication factor between
partition.



Considering this latter approach, we exhibit the following
drawbacks: (1) there is an exponential complexity for find-
ing the best blocks allocation considering this criterium, (2)
the final size of each partition may highly differ one from
another, (3) reducing the global replication factor will not
reduce that much the cost of the random-walks algorithms
since a path starting in one block and finishing in another
is unlikely (according to our blocks building) and finally (4)
this partitioning could not evolve dynamically and the par-
titioning must be re-built when many edges are added or
removed.

Consequently we decide to adopt a blocks allocation con-
sidering only the size criterium, to achieved a balanced parti-
tioning. We propose a simple but efficient greedy algorithm.
We allocate the largest block to the partition with the small-
est size, and we iterate this strategy until all blocks are al-
located. Consequently this allocation is in O(|B|) where B
represents the set of blocks.

The whole algorithm is presented in Algorithm 1 where
split refers to a function which proceeds to the block split
introduced above, sortSize is a function which sorts a set of
blocks according to their size, from the largest to the small-
est one, and first returns the first element from an ordered
set.

Algorithm 1: Block allocation algorithm

input : a set B = {b1, . . . , bn} of blocks, a set
P = {p1, . . . , pm} of partitions

output: each block is allocated to a pj ∈ P

1 // Initialization to avoid large blocks
2 B′ = ∅
3 foreach bi in the B do

4 if bi.size > λ
|E|
n

then

5 B′ = B′ ∪ split(bi)
6 end

7 B′ = B′ ∪ bi

8 end

9 // Sort the set of blocks in descending size order
10 B′ = sortSize(B′)
11 b = first(B′); while B′ 6= ∅ do

12 pi = smallest(P);
13 pi = merge(pi, b); //merge b with the smallest

partition
14 B′ = B′ − {b};
15 b = first(B′);

16 end

17 Return P ;

Managing graph dynamicity

Large graphs, especially for social network applications,
are often characterized by a high dynamicity. One impor-
tant aspect of our partitioning algorithm is its ability to
manage this dynamicity. Indeed when adding a new edge
(for instance when adding a friend on Facebook or an url
on a Website) we simply have to aggregate the two vertex
distance vectors of the two vertices of the edge if both ver-

tices were already present in the graph to compute its edge
distance vector. Then we allocate the edge to the block,
and consequently to the partition, with the highest distance
score. If one of the vertex is new, we have first to perform
the BFS exploration from that vertex and compute its ver-
tex distance vector. Potentially this edge allocation may
lead to a block split which can be handled with our split
algorithm. Oppositely when removing an edge, the size of
a block may become too small and we proceed to our block
merge algorithm.

5. EXPERIMENTS

This section presents experiments on our block-based par-
titioning strategy. We compare it with existing edge parti-
tioning methods: the hash-based approaches [25] and greedy
algorithm [9].

5.1 Setting
Computation are performed using GraphX [25] APIs in

Spark [27] (version 1.3.1), on a 16 nodes cluster. Each ma-
chine has 22 cores with 60 GB RAM running Linux OS. For
our experiments we set teleporting probability α to a classi-
cal value 0.15. The depth of the BFS exploration (i.e., the
maximum length considered for paths from seed to other
vertices) is set to 4. So we intend to compute only the
nearby vertices to current seed, rather than to every vertices
in graph, according to Six Degrees of Separation theory[17].

Data Sets. We validate our approach on two datasets:
LiveJournal [6] with 4.8M vertices and 68.9M edges, and
Pokec [22] with 1.6M vertices and 30.6M edges. These
datasets can be downloaded from SNAP 1.

Competitors.
Hash Partitioning. There are four wide used random(hash)-
like partitioning methods2, introduced in GraphX:

• RandomVertexCut: allocates edges to partitions by
hashing the source and destination vertex IDs.

• CanonicalRandomVertexCut: allocates edges to parti-
tions by hashing the source and destination vertex IDs
in a canonical direction.

• EdgePartition1D: allocates edges to partitions using
only the source vertex ID, co-locating edges with the
same source.

• EdgePartition2D: allocates edges to partitions using a
2D partitioning of the sparse edge adjacency matrix.

Greedy Vertex-Cuts. PowerGraph proposes a greedy
heuristic for edge placement process which relies on the pre-
vious allocation of vertices to determine the partition next
edge should be assigned.

1https://snap.stanford.edu/data/index.html
2see details and implementations at
http://spark.apache.org/docs/latest/api/scala/index.html



Graph Algorithms.

Except Fully Multiple Random Walks(FMRW), the high-
communication graph algorithm we mentioned before, some
other algorithms are also conducted to estimate computation
performance, i.e., runtimes, with our partitioning:

• Fully Multiple Random Walks(FMRW): in some com-
plicated graph applications, such as ranking and
recommendation (like the fully Personalized PageR-
ank(PPR) computation in [3, 21]), simulating multi-
ple random walks from each vertex is the staple and
a CPU/IO intensive task. For instance, in the follow-
ing experiments, we launch two independent random
walks of length 4 starting from each vertex. For longer
walks, we can obtain them by combining short ones
like in [3, 21]. Thus we have 4 supersteps(iterations)
in total graph computation, and in each superstep, ev-
ery walk at that vertex will be randomly delivered to
one of its direct neighbours, here note that the restart
operation is not introduced in. Finally we can gain
|V | ∗ 2 random walks after all supersteps are finished.

• PageRank: the most used algorithm to evaluate graph
processing system, in which the messages transmitted
between vertices are pure digital values. It means the
I/O overhead is not very high since the size of message
is small even the number of messages is big. Particu-
larly in our experiments, we conduct both static and
dynamic versions. The number of supersteps is fixed in
former, to control the overall time-consuming of graph
computation. Instead of it, a convergence tolerance,
e.g. 0.005 or 0.001, is applied to the latter, which is
better to used for required computation result accu-
racy.

• Connected Components: an algorithm to compute the
connected component for each vertex that can be used
to approximate the cluster structures in graph, in other
words, we can say it is a locality-sensitive algorithm.
The procedure of its computation is simple, in which
each vertex keeps a component id, e.g. the lowest id
received from neighbours, then in each superstep it
would update the id according the latest received mes-
sages.

5.2 Communication
Our approach aims at reducing the runtime graph process-

ing thanks to a significant reduction of the communication
costs.

5.2.1 Vertex Replica Factor (VRF)

VRF is the traditional way to compare two partitionings
regarding the communication costs, independently of the al-
gorithm executed. We compare the VRF of our Block-based
partitioning with the one of the competitors for different
numbers of partitions. Results are depicted on Figure 3.
We observe that, as observed in [9], partitioning strategies
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Figure 3: VRF w.r.t. edge partitioning methods on LiveJournal
(above) and Pokec (below)



based on topology outperform as expected hash-based meth-
ods: VRF decreased by 30-60% (resp. 60-80%) for Power-
graph (resp. our block strategy) compare to the strategies
used in GraphX. This experiment also illustrates the bene-
fit of our global approach for edge allocation compare to a
greedy approach with on average a 40%-lower VRF.

5.2.2 Number of Messages

VRF is a general criterium to compare two partition-
ing strategy independently from the algorithms, but we ex-
pect our partitioning to exhibit even better results for ran-
dom walks-based algorithms. Consequently to estimate the
benefit of our approach we simulate fully multiple random
walks (FMRW) and we measure the number of messages ex-
changed between partitions. From each vertex we perform 2
random walks of length 4 and we report experimental results
in Table 1. We observe that our method reduces significantly
the number of messages exchanged between partitions. For
instance with 100 partitions, 61.8 million messages are neces-
sary for processing the FMRW with our method while 381.9
million are transmitted with Random-Vertex-Cut method,
so a drop of 84%. This result was expected since the VRF is
3-4 times lower with our method than with Random-Vertex-
Cut. But we notice that if the reduction of the number
of messages and of the VRF were proportional, the sys-
tem should exchange 89.4 million message. This 30% gain
in the number of messages transmitted validates our intu-
ition that random walks intend to stay in the local clus-
ter(community). So low-replicated vertices (close to the seed
in block) are accessed more times, and oppositely few ran-
dom walks reach the farthest, high-replicated, vertices. Sim-
ilar results are obtained from experiments on Pokec.

5.3 Runtimes
We propose to evaluate how the runtime of different

graph processing algorithms benefits our partitioning, com-
pared to other methods. First, we launch FMRW, a
heavy-communication algorithm, on LiveJournal and Pokec
datasets respectively, with 3 random walks of length 4
started from each vertex. From the results in Figure 4, we
see that our partitioning can save up between from 20 to 65
percent of runtime, compared with other partitionings, for
both datasets.

We also test our method with traditional PageRank algo-
rithm. We consider the static (fixed number of iterations)
and dynamical (with convergence and a threshold value) ap-
proaches. We consider there are 200 partitions and we pro-
ceed to resp. 30, 50 and 100 iterations for static PageRank
and to dynamical PageRank with resp. 0.005 and 0.001 con-
vergence factor. Figure 5 depicts results and confirms that
our partitioning method outperforms other ones. While we
observe a small 5-20% gain for the static implementation of
PageRank, we reach a 20-55% gain for the dynamical imple-
mentation.

One notable thing here is the result of PowerGraph par-
titioning method on LiveJournal graph is worse than antici-
pated in static PageRank experiments, w.r.t its VRF score.
One speculation is some of its partitions consume too much
time in one or more supersteps(iterations of graph compu-
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Figure 5: Runtimes for static and dynamic PageRank for Liv-
erJournal
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Table 1: Messages transmitted in FMRW (LiveJournal)

Random-Vertex-Cut[25] Block-based partitioning
#Partitions VRF real mess. VRF real mess. expected mess. ratio

64 15.38 303.5m 3.90 55.3m 76.9m 0.72
100 17.61 381.9m 4.13 61.8m 89.4m 0.69
150 19.68 464.8m 4.07 70.6m 96.1m 0.73
200 21.12 525.6m 4.26 76.0m 106.0m 0.72
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Figure 7: Runtimes for Connected Components(CCs) compu-
tation with different partitionings for LiverJournal and Pokec

tation) which leads to long runtime in total because other
partitions need to wait them to finish that superstep. From
the experiments on Pokec graph, we can see, in Figure 6, it
works well for static PageRank.

In addition, we propose to use a locality-sensitive algo-
rithm, Connected Components, to verify our partitioning
works as expected. Finally, the results shown in Fig.7 have
proven again that our partitioning method performs much
better than others.

6. CONCLUSION AND FUTURE WORK

We present in this article a vertex-cut partitioning for
random-walks-based algorithms relying on the topology to
build blocks which respect local communities. We propose
split and merge algorithms to get and to maintain the fi-
nal partitioning. We experimentally demonstrate that our
proposal outperforms existing solutions.

As future work we plan to investigate different seeds se-
lection algorithms. While this problem has been studied in
different context (see [24, 7]) we believe that the nature of
the graph algorithms, here random walks-based algorithms,
must be considered when selecting the seeds. We also intend
to study the 5-10% of vertices which are not reached by the
BFS exploration issued at seeds. They are located on the
periphery of social graph and are poorly connected. While
we currently place them to an extra-block, we will design a
strategy to allocate them to existing blocks.
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