
HAL Id: hal-01398189
https://hal.science/hal-01398189

Submitted on 21 Nov 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Block-Based Edge Partitioning for Random Walks
Algorithms over Large Social Graphs

Yifan Li, Camelia Constantin, Cedric Du Mouza

To cite this version:
Yifan Li, Camelia Constantin, Cedric Du Mouza. A Block-Based Edge Partitioning for Random Walks
Algorithms over Large Social Graphs. Web Information Systems Engineering – WISE 2016, Nov 2016,
Shanghai, China. pp.275-289. �hal-01398189�

https://hal.science/hal-01398189
https://hal.archives-ouvertes.fr

A Block-Based Edge Partitioning for Random
Walks Algorithms over Large Social Graphs

Yifan LI1,2, Camelia Constantin1, and Cedric du Mouza2

1 LIP6, University Pierre et Marie Curie
Paris, France

firstname.lastname@lip6.fr
2 CEDRIC Lab., CNAM

Paris, France
dumouza@cnam.fr

Abstract. Recent results [5, 9, 23] prove that edge partitioning approaches
(also known as vertex-cut) outperform vertex partitioning (edge-cut) ap-
proaches for computations on large and skewed graphs like social net-
works. These vertex-cut approaches generally avoid unbalanced compu-
tation due to the power-law degree distribution problem. However, these
methods, like evenly random assigning [23] or greedy assignment strat-
egy [9], are generic and do not consider any computation pattern for
specific graph algorithm. We propose in this paper a vertex-cut parti-
tioning dedicated to random walks algorithms which takes advantage of
graph topological properties. It relies on a blocks approach which cap-
tures local communities. Our split and merge algorithms allow to achieve
load balancing of the workers and to maintain it dynamically. Our ex-
periments illustrate the benefit of our partitioning since it significantly
reduce the communication cost when performing random walks-based al-
gorithms compared with existing approaches.

1 Introduction

Random walks-based algorithms, such as personalized PageRank (PPR) [10]
and personalized SALSA [4] have proven to be effective in personalized recom-
mender systems due to their scalability. Some recent proposals rely on multiple
random walks started from each vertex on graph, e.g. Fully personalized PageR-
anks computation using Monte Carlo approximation [3]. We call this intensive
computation Fully Multiple Random Walks(FMRWs).

Graph partitioning is a key area of distributed graph processing research,
and plays an increasingly important role in both vertex-centric computation,
like in Pregel model, and query evaluation. Recent results exhibit that edge
partition(vertex-cut) turned out to be more efficient [5, 9] than traditional vertex
partitioning(edge-cut) for computation on real-world graphs like social networks.
As a consequence, several popular graph computation systems based on this ap-
proach have emerged, such as PowerGraph (GraphLab2) [9] and GraphX [23].
However their graph partitioning strategies are generic and do not depend on

the algorithms performing the different computations. So they distribute edges
evenly over partitions either randomly, i.e. a hash function of vertex ids in Gi-
raph [2] and GraphX, or using a greedy or dynamic algorithm like in PowerGraph
and GPS [19]. Due to the power-law nature of the Web and social network graphs,
this edge allocation may lead to an important workload imbalance between the
resources. Besides, in contrast with light-weight algorithms like PageRank whose
messages transmitted between vertices are only rank values, the simulation of
heavy-communication algorithms, such as fully (multiple) random walks in this
paper, have a more important communication cost since (i) some extra path-
related information of walks must also be delivered, and (ii) more than one
message (walk) start from each vertex at one time. In this case, reducing com-
munication cost is crucial for computation performance guarantee.

We propose in this paper a novel block-based, workload-aware graph(-edge)
partitioning strategy which provides a balance edge distribution and reduce the
communication costs for random walks-based computations. To the best of our
knowledge, this is the first time a partitioning strategy dedicated to fully multiple
random walks algorithms is proposed in Pregel model. Finally, the experiments
show that our partitioning made significant improvements on both communica-
tion cost and time overhead.

Contributions

In summary, our contributions are:

1. a block-based partitioning strategy which considers graph algorithms speci-
ficities and the topological properties of real-world large graphs along with
a seeds selection algorithm for building the blocks;

2. algorithms for merging and splitting blocks to achieve a dynamical load-
balancing of the partitions;

3. an experimental comparison of our partitioning approach with several exist-
ing random methods over large real social graphs.

After the related work introduced in Section 2, Section 3 presents our block
building strategy while Section 4 describes our blocks merge and refinement
algorithms. Section 5 presents our experimental results and Section 6 concludes
and introduces perspectives.

2 Related work

Pregel [16] has become a popular distributed graph processing framework due to
the facilities it offers to the developers for large-graph computations, especially
compared with other data-parallel computation systems, e.g. Hadoop. Pregel is
inspired by Bulk Synchronous Parallel [21] computation model where compu-
tations on a graph consists of several iterations, also called super-steps. During
a super-step, each vertex first receives all the messages which were addressed
to it by other vertices in the previous super-step. Each vertex performs the

actions defined by user-specific function, namely vertex.compute() [19] or ver-
tex.program() [9], in parallel, using the updated values received in the messages.
Then each vertex may decide to halt computing or to pass to other vertices the
messages to be used in next super-step. When there is no message transmitted
over graph during a super-step (i.e. every vertex has decided to halt) the com-
putation stops. Due to Pregel success, several optimizations have been recently
proposed in literature like the function Master.compute() [19] to incorporate
global computations or Mirror Vertices [14] to reduce communication.

Traditional methods from 2-way cut by local search to multi-level approaches,
like Kernighan-Lin [12], PageRank Vectors [1] and METIS-based [11] algorithms,
follow a vertex-partitioning (edge-cut) strategy. They propose partitionings which
assign (almost) evenly vertices between partitions while minimizing the number
of edges cut (edges between two partitions). These algorithms are efficient for
small graphs, using in-memory computation. However for real world graphs the
large size and the power-law distribution lead to an unbalanced load over edge-
cut partitions. More recent partitioning proposals in Pregel-like systems, such as
Giraph, GPS, Gelly and Chaos[18] shard the graph using an edge-cut strategy
which also generates unbalancing for power-law graphs, as introduced in [9].

While there exists a large literature and several implementations for vertex-
partitioning, few recent works propose edge-partitioning. The two principal ones
are GraphX [23] and PowerGraph [9]. However GraphX only offers random/hash
partitioning where edges are evenly allocated over partitions with some con-
straints of communication between nodes. The underlying graph property, like lo-
cal communities in social networks, is not properly explored. Unlike the hash-like
partitioning, PowerGraph uses a heuristic partitioning method, Greedy Vertex-
Cuts, which has shown significant better performance than random placement in
any cases [9]. However, it also ignores the graph topological property and only
focus on how to minimize the future communication on previous partitioning
situation during edges distribution among partitions. Additionally, unlike our
proposal, GraphX and PowerGraph partitionings can not be updated dynami-
cally with graph evolution.

Our approach also takes advantage from the existence of communities. In [8]
authors state that, due to the heavy-tailed degree distributions and large cluster-
ing coefficients properties in social networks, considering only the direct neigh-
bors of a vertex allows to construct good clusters (communities) with low conduc-
tance. In [22] authors improve this method to detect communities over graph, but
neither edge partitioning nor workload balancing problem is studied. Moreover,
the overlapping communities approach for graph partitioning are not suitable to
Pregel-like systems.

3 Block-Based Graph Partitioning

3.1 Principle

Most existing edge partitioning methods, like random [23] or greedy [9] ap-
proaches achieve a balanced workload, which means each partition has the same

number of edges. Our objective is to go beyond workload balancing and to lower
graph processing time by reducing the communication between partitions during
graph computation. In edge-partitioning approach, a vertex is possibly allocated
to multiple partitions and communications between partitions occur when up-
dating the different replicas (mirror vertices) at each Pregel super-step. Conse-
quently, Vertex Replication Factor(VRF) firstly defined in [9] is often used as a
communication measurement. So, given an edge partitioning, the communication
cost is generally estimated in Pregel, as

costComm = O(L× (V RF × |V |)) (1)

where L is the number of supersteps (iterations) during graph computation.
However, in most real graphs, like social networks, there exist many clusters

(communities). Our objective is to take advantage of this topological character-
istic in our block construction. Local Access Pattern(LAP) is described in [24]
for first time as one of three kinds of query workload in graphs. We propose to
rely on its principles and analysis when proposing our edge-partitioning strat-
egy for random walks-based algorithms considering graph communities to reduce
communication costs.

As a consequence we consider that, while VRF is a good estimator of com-
munication cost for some graph algorithms, it is not suitable for the random
walks-based algorithms which follow a LAP, since the number of visits of each
vertex is different for these algorithms. In other words, communications are con-
ducted unevenly on graph. So our objective is to design a new edge partitioning
strategy dedicated to random walks-based algorithms which takes into consid-
eration both the power-law topology of the graph and the LAP characterizing
these algorithms.

Our approach A block corresponds to a tightly knit cluster in graph, e.g.
a community in social network. In the Pregel approach, we consider the block
as a set of edges which are ”close” one to another, and these blocks become
the component units of each partition in computation, but also the allocation
units for workload over machines. Similar to the methodology adopted in vertex
partitioning [8, 22], we propose to compute a set of K blocks by exploring the
graph. An edge is allocated to a block based on its connectivity score from this
block. We start a breadth-first search exploration (BFS) from a pre-defined set
of K seeds. For each edge encountered we update its connectivity score with
respect to all blocks. When the exploration step ended, we allocate the edges to
the closest block.

3.2 Connectivity score of an edge

In graph computation, how to measure the closeness between a pair of nodes
is a fundamental question and it has been studied in many existing works. One
interest of these connectivity score measures is to detect cluster in graph (see
Section 3.3). But based on the observation that for several graph algorithms

like random walk, nearest neighbors, breadth-first search, etc, the communica-
tions during computations mainly occur between vertices belonging to the same
cluster, several approaches extended this cluster detection to perform graph par-
titioning. For instance [1] proposed a PageRank vector method to find a ”good”
partition w.r.t. an initial vertex and several pre-set configurations. Besides, there
are some proposals like [20] which describes how to obtain these partitions by
conducting random walks.

For our edge-partitioning approach, we propose here to estimate the con-
nectivity score between an edge and a query vertex, e.g. the seed in our paper.
We adapt the inverse P-distance [10] used for connectivity score computation
between two vertices.

Vertex to vertex connectivity score

Inverse P-distance captures the connectivity: the more numerous and short
paths between two vertices, the closer they are in graph topology.

So, the connectivity score connv(i, j) from vertex i to vertex j in a directed
graph G can be calculated by the paths between them, as follows:

connv(i, j) =
∑
p∈Pij

S(p) (2)

where the Pij denotes the set of paths from i to j. S(p) is the inverse distance
score value of path p defines below.

According to the idea of inverse P-distance score, we introduce the concept of
”reachability” into connectivity score computation between vertices. The reach-
ability means the probability for a random walk starting from i to arrive at j.
So, for path p: v0, v1, ..., v(k−1) with length k, S(p) can be defined by:

S(p) = (1− α)
k ·

k−1∏
i=0

1

outDeg(vi)
(3)

where α ∈ (0, 1) is the teleporting probability, i.e., the probability to return
to the original vertex, and outDeg(vi) is the out-degree of vertex vi.

Vertex to edge connectivity score

Based on the vertex to vertex connectivity score introduced above, we define
a vertex to edge connectivity score. We adopt the following definition:

Definition 1 (edge connectivity score).
The connectivity score conne(a, b) from a vertex a to an edge b = (i, j) is:

conne(a, b) = θ(connv(a, i), connv(a, j))

where θ is an aggregation function.

In our experiment we choose the average function for θ but other functions
like min or max may also be considered.

3.3 Edges allocation algorithm

Based on our edge connectivity score we can now design an edge allocation
algorithm. Our algorithm can be decomposed into three steps:

i) selection of a subset of vertices, namely seeds
ii) connectivity score computation from each edge to all the seeds
iii) edges allocation to the different blocks

Seeds selection

We consider for our block-partitioning a seed-expansion strategy: we select a
vertex as seed for each block and add each edge to one of the existing blocks.
Obviously the result of the partitioning, in term of size-balancing or communica-
tion during the computation, is highly dependent on the choice of the seeds. This
problem has been studied in literature for instance in [22] to detect communities
on graph or in [7] where authors propose and experiment for the pre-computation
step of their recommendation algorithm several landmark selection strategies.

Here we adopt the simple but efficient seeds selection procedure, based on
Spread Hubs method (see [22]), which can be easily deployed on existing graph
processing systems. There are two main measurements we used in seeds selection:
1) vertex degree, and 2) connectivity score to other existing seeds. Our seeds
selection algorithm is:

1. first we sort the vertices in ascending order, according to their global (in+out)
degrees;

2. then we scan the sorted list of vertices, and check if the current one is not
too close to any existing seed, otherwise we discard it.

The rationale for this algorithm is that a vertex with a large global degree
is a vertex with a centrality property and its connected vertices are likely to
join its block. Moreover observing a minimum connectivity score between seeds
allows a better distribution of the seeds within the graph. Since BFS is efficiently
implemented in Pregel, we use it to measure the distance between seeds. So we
start a BFS from the seed candidate and report the number of hops required to
reach the first existing seed. We observe experimentally that we achieve a good
partitioning with this algorithm even when the depth of each seed’s BFS is set
to 1 (so a new seed is not allowed to be the direct neighbor of an existing seed).

Number of seeds. In our approach, each seed will determine a block which
implies to have at least as many seeds as the number of final partitions. However
we argue that we can achieve a better partitioning when setting this number to
a larger value because:

– the expansion of each block can be processed independently, thus can be
deployed easily on Pregel-like architecture;

– the combination of small blocks needs much less overhead cost than splitting
(i.e., refinement) of large blocks when trying to minimize the VRF;

– the more blocks we pre-computed, the higher the level of reusability our
partitioning will be.

Connectivity score computation

For the second step of our algorithm, we compute first the distance scores of each
vertex to all seeds. To perform this connectivity score computation efficiently in
our Pregel-like architecture, we proceed to a parallel BFS exploration starting
from each seed. Consider a set of seeds S = (s1, s2, . . . , sN). We maintain for
each vertex ν a connectivity score vector conn(ν) = (d1, d2, . . . , dN) where di =
connv(si, ν) is connectivity score to the seed si. This vector is updated for each
vertex encountered during the BFS exploration.

Since the BFS exploration in large graphs is very costly, we propose to limit
the depth of BFS. Indeed we observe in most of the large graphs (like social
graphs) a community phenomenon which we capture by selecting the seeds
among the vertices with the largest degrees, representing the center of these
communities. Intuitively, the distance from the community center is short to
other vertices inside the community. Actually, from our experiment results and
”Six Degrees of Separation” theory [17], we observe that the radius of block, i.e.,
the connectivity score from seed to potential community members is small and
consequently the BFS depth can be set to a small value.

For instance, during the experiment on Livejournal [13] social network, we
found the vertex/edge coverages of 200 seeds can reach around 88 percent and
96 percent by limiting the BFS only to 3 and 4 hops respectively.

Finally we compute a connectivity score vector for each edge in the graph.
Consider an edge e(ν, ν′) and the connectivity score vectors for its vertices
conn(ν) = (d1, d2, . . . , dN) and conn(ν′) = (d′1, d

′
2, . . . , d

′
N). Based on Defini-

tion 1 we compute the edge connectivity score vector conn(ε) = (D1, D2, . . . , DN)
as:

∀i ∈ [1..N], Di = conne(si, ε)

Edges allocation

Finally we can allocate the different edges to the blocks according to their edge
connectivity score vector. We decide that an edge belongs to the block whose
seed is the closest to this edge. For edges without any connectivity score value
(which means its end vertices have not be reached by any seed during the BFS
step), we allocate them in an extra-block.

Example 1. We illustrate the edge allocation process with the example in Fig. 1.
We assume we have already computed the vertex connectivity score vectors for
vertices i and j, considering three seeds s1, s2 and s3. Notice that the ’*’ value

Fig. 1: Example of edge allocation

means that the current vertex can not be reached by the seed s3 in our BFS
exploration step. We sum (or make the average) the two vectors to determine
the edge connectivity score vector for e(i, j): conn(i, j) = (0.64 + 0.53, 0.61 +
0.88, 0.62 + 0.0) = (1.17, 1.49, 0.62). Here we can clearly point out that the edge
e should be allocated to s2 since it has maximum closeness value to this seed.

Observe that some optimizations are possible for storing the vertex connec-
tivity score vectors and for the edge connectivity score vector computation. For
instance we can avoid keeping all connectivity score values to every seed, since
in this edge allocation step, only the maximum value is used to allocate an edge
to a block. So we could keep only a top-k values for each vertex, with k ≤ |S|.
Of course the larger k is, the more precise our final result is.

4 Blocks merge and refinement algorithms

Our block partitioning respects the topological properties of the (social) graph,
e.g. local communities and power-law degree distribution to significantly reduce
the communication costs compare to a random allocation strategy.

Given a number of servers P , we must determine how to allocate the different
blocks to these servers considering two criteria:

– minimizing the global communication cost;
– balancing the storage and computation workload between servers.

These conditions can be captured by definition 2.
The first part of the definition allows to control the size of a partition to fit the
server capacity and to have an almost balanced edges distribution. The second
part of the definition means the partitioning A is the one which minimizes the
Vertex Replication Factor(VRF). The VRF measure adopted for instance in [9]
means the less partitions the vertex span on average, the less communication
across partitions the system initiates for vertices synchronization before running
into the next superstep. With respect to Definition 2 we can proceed to the final
partitioning based on the different blocks we built.

Definition 2 (Balanced edge partitioning). Consider a graph G(V,E) where
V is the set of vertices and E the set of edges, a set of blocks B and a number of
servers P . The balanced edge partitioning A(B, P) is defined as:

A(B, P) ∈ 2B, such that


∀i ∈ [1..P], η |E|P ≤ |Edge(pi)| ≤ λ

|E|
P

∀A′ ∈ 2B satisfying above,
1
|V |

∑
v∈V |alloc(v,A)| ≤ 1

|V |
∑

v∈V |alloc(v,A′)|,
otherwise, relax η and(or) λ to find the A.

where pi is a partition (server) and Edge(pi) the edges it contains, alloc(e,A)
is the set of partitions to which edge e is assigned with the partitioning A (more
than one if the vertex is replicated) and (0 ≤ η ≤ 1 ≤ λ) are small factors to
control the storage in each partition.

Block split

Since the edges allocation to blocks is only based on a connectivity score cri-
terium some blocks may not fit the maximum size allowed for a partition (second
part of Definition 2). Consequently we propose a simple split strategy. Assume

that the size of a partition pi is (β − 1)λ |E|P ≤ |Edge(pi)| < βλ |E|P . We then
apply our block building algorithm to the partition pi with β seeds to split it
into β sub-blocks. We potentially iterate the process for any of the sub-blocks
which exceeds the partition size.

Blocks merge

Our block building may also result in producing some blocks whose size is lower

than the minimal size (i.e. η |E|P , see Definition 2). For such a block we re-allocate
its edges without considering its seed anymore. Observe that this may lead in
turn to some block splits.

Block allocation

We assume that, possibly after some required splits, the size of all blocks respect
the partition size limit. To allocate the blocks to the different partitions, two
strategies may be considered: based only on the balancing of the partition sizes,
or on minimizing the replication factor between partitions.

Considering this latter approach, we exhibit the following drawbacks: (1)
there is an exponential complexity for finding the best blocks allocation consid-
ering this criterion, (2) the final size of each partition may highly differ one from
another, (3) reducing the global replication factor will not reduce that much
the cost of the random-walks algorithms since a path starting in one block and
finishing in another is unlikely (according to our blocks building) and finally
(4) this partitioning could not evolve dynamically and the partitioning must be
re-built when many edges are added or removed.

Consequently we decide to adopt a blocks allocation considering only the size
criterion, to achieve a balanced partitioning. We propose a simple but efficient
greedy algorithm. We allocate the largest block to the partition with the smallest
size, and we iterate this strategy until all blocks are allocated. Consequently this
allocation is in O(|B|) where B represents the set of blocks.

The whole algorithm is presented in Algorithm 1 where split refers to a
function which proceeds to the block split introduced above, sortSize is a function
which sorts a set of blocks according to their size, from the largest to the smallest
one, and first returns the first element from an ordered set.

Algorithm 1: Block allocation algorithm

input : a set B = {b1, . . . , bn} of blocks, a set P = {p1, . . . , pm} of partitions
output: each block is allocated to a pj ∈ P

1 // Initialization to avoid large blocks
2 B′ = ∅
3 foreach bi in the B do

4 if bi.size > λ |E|
n

then
5 B′ = B′ ∪ split(bi)
6 end
7 B′ = B′ ∪ bi
8 end
9 // Sort the set of blocks in descending size order

10 B′ = sortSize(B′)
11 b = first(B′); while B′ 6= ∅ do
12 pi = smallest(P);
13 pi = merge(pi, b); //merge b with the smallest partition
14 B′ = B′ − {b};
15 b = first(B′);

16 end
17 Return P ;

Managing graph dynamicity

Large graphs, especially for social network applications, are often characterized
by a high dynamicity. One important aspect of our partitioning algorithm is its
ability to manage this dynamicity. Indeed when adding a new edge (for instance
when adding a friend on Facebook or an url on a Website) we simply have to
aggregate the two vertex connectivity score vectors of the two vertices of the
edge if both vertices were already present in the graph to compute its edge con-
nectivity score vector. Then we allocate the edge to the block, and consequently
to the partition, with the highest connectivity score score. If one of the vertices is
new, we have first to perform the BFS exploration from that vertex and compute
its vertex connectivity score vector. Potentially this edge allocation may lead to

a block split which can be handled with our split algorithm. Oppositely when
removing an edge, the size of a block may become too small and we proceed to
our block merge algorithm.

5 Experiments

This section presents experiments on our block-based partitioning strategy. We
compare it with existing edge partitioning methods: the hash-based approaches [23]
and greedy algorithm [9].

5.1 Setting

Computation are performed using GraphX [23] APIs in Spark [25] (version 1.3.1),
on a 16 nodes cluster. Each machine has 22 cores with 60 GB RAM running Linux
OS. For our experiments we set teleporting probability α to a classical value 0.15.
The depth of the BFS exploration (i.e., the maximum length considered for paths
from seed to other vertices).

Data Sets. We validate our approach on two datasets: LiveJournal [6] with
4.8M vertices and 68.9M edges, and Pokec [15] with 1.6M vertices and 30.6M
edges. These datasets can be downloaded from SNAP 3.

Competitors. Hash Partitioning. There are four wide used random(hash)-
like partitioning methods4, introduced in GraphX:

– RandomVertexCut: allocates edges to partitions by hashing the source and
destination vertex IDs.

– CanonicalRandomVertexCut: allocates edges to partitions by hashing the
source and destination vertex IDs in a canonical direction.

– EdgePartition1D: allocates edges to partitions using only the source vertex
ID, co-locating edges with the same source.

– EdgePartition2D: allocates edges to partitions using a 2D partitioning of the
sparse edge adjacency matrix.

Greedy Vertex-Cuts. PowerGraph proposes a greedy heuristic for edge place-
ment process which relies on the previous allocation of vertices to determine the
partition next edge should be assigned.

5.2 Communication

Our approach aims at reducing the runtime graph processing thanks to a signif-
icant reduction of the communication costs.

3 https://snap.stanford.edu/data/index.html
4 see details and implementations at http://spark.apache.org/docs/latest/api/scala/index.html

Vertex Replica Factor (VRF)
VRF is the traditional way to compare two partitionings regarding the commu-
nication costs, independently of the algorithm executed. We compare the VRF
of our Block-based partitioning with the one of the competitors for different num-
bers of partitions. Results are depicted on Figure 2. We observe that, as observed
in [9], partitioning strategies based on topology outperform as expected hash-
based methods: VRF decreased by 30-60% (resp. 60-80%) for Powergraph (resp.
our block strategy) compare to the strategies used in GraphX. This experiment
also illustrates the benefit of our global approach for edge allocation compare to
a greedy approach with on average a 40%-lower VRF.

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 22

 16 36 56 76 96 116 136 156 176 196

ve
rt

e
x

re
p

lic
a

tio
n

 f
a

ct
o

r

number of partitions

Block-based
Blocks-merged

PowerGraph
EdgePartition2D
EdgePartition1D

CanonicalRandomVertexCut
RandomVertexCut

 5

 10

 15

 20

 25

 30

 16 36 56 76 96 116 136 156 176 196

ve
rt

e
x

re
p

lic
a

tio
n

 f
a

ct
o

r

number of partitions

Block-based
Blocks-merged

PowerGraph
EdgePartition2D
EdgePartition1D

CanonicalRandomVertexCut
RandomVertexCut

Fig. 2: VRF w.r.t. edge partitioning methods on LiveJournal (left) and Pokec (right)

Number of Messages
VRF is a general criterion to compare two partitioning strategy independently
from the algorithms, but we expect our partitioning to exhibit even better results
for random walks-based algorithms. Consequently to estimate the benefit of our
approach we simulate fully multiple random walks (FMRW) and we measure the
number of messages exchanged between partitions. From each vertex we perform
2 random walks of length 4 and we report experimental results in Table 1. We
observe that our method reduces significantly the number of messages exchanged
between partitions. For instance with 100 partitions, 61.8 million messages are
necessary for processing the FMRW with our method while 381.9 million are
transmitted with Random-Vertex-Cut method, so a drop of 84%. This result was
expected since the VRF is 3-4 times lower with our method than with Random-
Vertex-Cut. But we notice that if the reduction of the number of messages and
of the VRF were proportional, the system should exchange 89.4 million message.
This 30% gain in the number of messages transmitted validates our intuition that
random walks intend to stay in the local cluster(community). So low-replicated
vertices (close to the seed in block) are accessed more times, and oppositely few
random walks reach the farthest, high-replicated, vertices. Similar results are
obtained from experiments on Pokec.

Table 1: Messages transmitted in FMRW (LiveJournal)
Random-Vertex-Cut[23] Block-based partitioning

#Partitions VRF real mess. VRF real mess. expected mess. ratio

64 15.38 303.5m 3.90 55.3m 76.9m 0.72

100 17.61 381.9m 4.13 61.8m 89.4m 0.69

150 19.68 464.8m 4.07 70.6m 96.1m 0.73

200 21.12 525.6m 4.26 76.0m 106.0m 0.72

5.3 Runtimes

We propose to evaluate how the runtime of different graph processing algorithms
benefits our partitioning, compared to other methods. First, we launch FMRW,
a heavy-communication algorithm, on LiveJournal and Pokec datasets respec-
tively, with 3 random walks of length 4 started from each vertex. From the
results in Figure 3, we see that our partitioning can save up between from 20 to
65 percent of runtime, compared with other partitionings, for both datasets.

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

Live:200 Live:300 Pokec:64 Pokec:100 Pokec:150 Pokec:200

ru
n
tim

e
(s

)

Data Set:Number of Partitions

Block-Based
PowerGraph

EdgePartiton2D
EdgePartition1D

CanonicalRandomVertexCut
RandomVertexCut

Fig. 3: Runtimes for FMRW with different partitionings for LiverJournal and Pokec

We also test our method with traditional PageRank algorithm. We consider
the static (fixed number of iterations) and dynamical (with convergence and
a threshold value) approaches. We consider there are 200 partitions and we
proceed to resp. 30, 50 and 100 iterations for static PageRank and to dynamical
PageRank with resp. 0.005 and 0.001 convergence factor. Figure 4 depicts results
and confirms that our partitioning method outperforms other ones. While we
observe a small 5-20% gain for the static implementation of PageRank, we reach
a 20-55% gain for the dynamical implementation.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

Sta.:30 Sta.:100 Sta.:200 Dyn.:0.005 Dyn.:0.001

ru
n
tim

e
(s

)

Static(or Dynamic) PageRank:Number of Iterations(or Convergence Tolerance)

Block-Based
PowerGraph

EdgePartiton2D
EdgePartition1D

CanonicalRandomVertexCut
RandomVertexCut

Fig. 4: Runtimes for static and dynamic PageRank for LiverJournal

6 Conclusion and Future Work

We present in this article a vertex-cut partitioning for random-walks-based algo-
rithms relying on the topology to build blocks which respect local communities.
We propose split and merge algorithms to get and to maintain the final parti-
tioning. We experimentally demonstrate that our proposal outperforms existing
solutions.

As future work we plan to investigate different seeds selection algorithms.
While this problem has been studied in different contexts (see [22, 7]) we believe
that the nature of the graph algorithms, here random walks-based algorithms,
must be considered when selecting the seeds. We also intend to study the 5-10%
of vertices which are not reached by the BFS exploration issued at seeds. They
are located on the periphery of social graph and are poorly connected. While
we currently place them to an extra-block, we will design a strategy to allocate
them to existing blocks.

References

1. R. Andersen, F. Chung, and K. Lang. Local Graph Partitioning Using PageRank
Vectors. In FOCS, pages 475–486, 2006.

2. Apache. Giraph. http://giraph.apache.org.

3. B. Bahmani, K. Chakrabarti, and D. Xin. Fast Personalized PageRank on MapRe-
duce. In SIGMOD, pages 973–984, 2011.

4. B. Bahmani, A. Chowdhury, and A. Goel. Fast Incremental and Personalized
PageRank. Proc. VLDB Endow., 4(3):173–184, 2010.

5. F. Bourse, M. Lelarge, and M. Vojnovic. Balanced Graph Edge Partition. In
SIGKDD, pages 1456–1465, 2014.

6. F. Chierichetti, R. Kumar, S. Lattanzi, M. Mitzenmacher, A. Panconesi, and
P. Raghavan. On Compressing Social Networks. In SIGKDD, pages 219–228,
2009.

7. R. Dahimene, C. Constantin, and C. du Mouza. RecLand: A Recommender System
for Social Networks. In CIKM, pages 2063–2065, 2014.

8. D. F. Gleich and C. Seshadhri. Vertex Neighborhoods, Low Conductance Cuts,
and Good Seeds for Local Community Methods. In SIGKDD, pages 597–605, 2012.

9. J. E. Gonzalez, Y. Low, H. Gu, D. Bickson, and C. Guestrin. PowerGraph: Dis-
tributed Graph-parallel Computation on Natural Graphs. In OSDI, pages 17–30,
2012.

10. G. Jeh and J. Widom. Scaling Personalized Web Search. In WWW, pages 271–279,
2003.

11. G. Karypis and V. Kumar. A Fast and High Quality Multilevel Scheme for Parti-
tioning Irregular Graphs. SIAM J. Scientific Computing, 20(1):359–392, 1998.

12. B. W. Kernighan and S. Lin. An Efficient Heuristic Procedure for Partitioning
Graphs. The Bell System Technical Journal, 49(2):291–307, 1970.

13. J. Leskovec, K. J. Lang, A. Dasgupta, and M. W. Mahoney. Community struc-
ture in large networks: Natural cluster sizes and the absence of large well-defined
clusters, 2008.

14. Y. Low, D. Bickson, J. Gonzalez, C. Guestrin, A. Kyrola, and J. M. Hellerstein.
Distributed GraphLab: A Framework for Machine Learning and Data Mining in
the Cloud. VLDB Endow., 5(8):716–727, 2012.

15. M. Z. Lubos Takac. Data Analysis in Public Social Networks. Present Day Trends
of Innovations, pages 1–6, 2012.

16. G. Malewicz, M. H. Austern, A. J. C. Bik, J. C. Dehnert, I. Horn, N. Leiser,
G. Czajkowski, and G. Inc. Pregel: A System for Large-Scale Graph Processing.
In SIGMOD, pages 135–146, 2010.

17. M. Newman, A.-L. Barabasi, and D. J. Watts. The Structure and Dynamics of
Networks: (Princeton Studies in Complexity). Princeton University Press, 2006.

18. A. Roy, L. Bindschaedler, J. Malicevic, and W. Zwaenepoel. Chaos: Scale-out
Graph Processing from Secondary Storage. In SOSP, pages 410–424, 2015.

19. S. Salihoglu and J. Widom. GPS: A Graph Processing System. In SSDBM, pages
22:1–22:12, 2013.

20. P. Sarkar and A. W. Moore. Fast Nearest-neighbor Search in Disk-resident Graphs.
In SIGKDD, pages 513–522, 2010.

21. L. G. Valiant. A Bridging Model for Multi-core Computing. J. Comput. Syst. Sci.,
77(1):154–166, 2011.

22. J. J. Whang, D. F. Gleich, and I. S. Dhillon. Overlapping Community Detection
Using Seed Set Expansion. In CIKM, pages 2099–2108, 2013.

23. R. S. Xin, J. E. Gonzalez, M. J. Franklin, and I. Stoica. GraphX: A Resilient
Distributed Graph System on Spark. In GRADES, pages 1–6, 2013.

24. S. Yang, X. Yan, B. Zong, and A. Khan. Towards Effective Partition Management
for Large Graphs. In SIGMOD, pages 517–528, 2012.

25. M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauley, M. J. Franklin,
S. Shenker, and I. Stoica. Resilient Distributed Datasets: A Fault-tolerant Abstrac-
tion for In-memory Cluster Computing. In NSDI, pages 2–2, 2012.

