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THE FARRELL–TATE AND BREDON HOMOLOGY FOR PSL4(Z)

VIA CELL SUBDIVISIONS

ANH TUAN BUI, ALEXANDER D. RAHM AND MATTHIAS WENDT

Abstract. We provide some new computations of Farrell–Tate and Bredon (co)homology for arith-
metic groups. For calculations of Farrell–Tate or Bredon homology, one needs cell complexes where
cell stabilizers fix their cells pointwise. We provide two algorithms computing an efficient subdi-
vision of a complex to achieve this rigidity property. Applying these algorithms to available cell
complexes for PSL4(Z) provides computations of Farrell–Tate cohomology for small primes as well
as the Bredon homology for the classifying spaces of proper actions with coefficients in the complex
representation ring.

1. Introduction

Understanding the structure of the cohomology of arithmetic groups is a very important problem
with relations to number theory and various K-theoretic areas. Explicit cohomology computations
usually proceed via the study of the actions of the arithmetic groups on their associated symmetric
spaces, and recent years have seen several advances in algorithmic computation of equivariant cell
structures for these actions. To approach computations of Farrell–Tate and Bredon (co)homology
of arithmetic groups, one needs cell complexes having a rigidity property: Cell stabilizers must fix
their cells pointwise. The known algorithms (using Voronoi decompositions and such techniques,
cf. e.g. [7, 9]) do not provide complexes with this rigidity property, and both for the computation
of Farrell–Tate cohomology (resp. the torsion at small prime numbers in group cohomology) of
arithmetic groups as well as for the computation of Bredon homology, this lack of rigid cell complexes
constitutes a significant bottleneck.

In theory, it is always possible to obtain this rigidity property via the barycentric subdivision.
However, the barycentric subdivision of an n-dimensional cell complex can multiply the number of
cells by (n + 1)! and thus easily let the memory stack overflow. We provide two algorithms, called
Rigid Facets Subdivision, cf. Section 3, and Virtually Simplicial Subdivision, cf. Section 4, as well as a
combination of them (Hybrid Subdivision, cf. Section 5) which subdivide cell complexes for arithmetic
groups such that stabilizers fix their cells pointwise, but only lead to a controlled increase (in terms
of sizes of stabilizer groups) in the number of cells, avoiding an explosion of the data volume. An
implementation of the algorithms, cf. [5], shows that cases like PSL4(Z) can effectively be treated with
it, using commonly available machine resources. For the sake of comparison, barycentric subdivison
applied to the cell complex for PSL4(Z) from [6] would produce 3540 times as many top-dimensional
cells as Rigid Facets Subdivision does — see Table 1.

1.1. Computations of Farrell–Tate cohomology. Farrell–Tate cohomology is a modification of
cohomology of arithmetic groups which is particularly suitable to investigate torsion related to finite
subgroups (in particular, the torsion in cohomological degrees above the virtual cohomological di-
mension). While the known cell complexes for arithmetic groups can deal very well with the rational
cohomology and torsion at primes which do not divide orders of finite subgroups, computations with
these complexes run into serious trouble for small prime numbers because the differentials in the
relevant spectral sequence are too complicated to evaluate. There is a suitable new technique called
torsion subcomplex reduction, cf. [14], which produces significantly smaller cell complexes and there-
fore simplifies the equivariant spectral sequence calculations. To apply this simplification, however,
one needs cell complexes with the abovementioned rigidity property. Applying Rigid Facets Subdi-
vision to a cell complex for PSL4(Z), we have computed the Farrell–Tate cohomology of PSL4(Z),
at the primes 3 and 5. These results can be found in Theorem 12 and Proposition 16. Since the
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Table 1. Numbers of cells in the individual dimensions of the studied non-rigid
fundamental domain X for PSL4(Z) from [6], its rigid facets subdivsion RFS(X),
its virtually simplicial subdivision VSS(X), its hybrid subdivision HyS(X) and its
barycentric subdivision BCS(X).

Dimension 0 1 2 3 4 5 6

# Orbits in X 2 2 2 4 4 3 1
# Cells in X 304 1416 2040 1224 332 36 1
# Orbits in RFS(X) 17 213 1234 3025 3103 1117 1
# Cells in RFS(X) 4153 62592 268440 472272 370272 108096 96
# Orbits in VSS(X) 17 219 1508 5082 8456 6720 2040
# Cells in VSS(X) 4153 71952 390936 974304 1238688 783360 195840
# Orbits in HyS(X) 17 213 1245 3095 3214 1180 12
# Cells in HyS(X) 4153 62592 271416 483504 383520 114144 1152
# Cells in BCS(X) 5353 110352 644136 1658304 2138688 1359360 339840

computation proceeds through a complete description of the reduced torsion subcomplex, we can
compute the torsion above the virtual cohomological dimension in all degrees.

In the cases which are effectively of rank one (5-torsion in PSL4(Z)), we can check the results
of the cohomology computation using torsion subcomplex reduction by comparing to a computation
using Brown’s formula.

1.2. Computations of Bredon homology. For any group G, Baum and Connes introduced a
map from the equivariant K-homology of G to the K-theory of the reduced C∗-algebra of G, called
the assembly map. For many classes of groups, it has been proven that the assembly map is an
isomorphism; and the Baum–Connes conjecture claims that it is an isomorphism for all finitely
presented groups G (counter-examples have been found only for stronger versions of the Baum–
Connes conjecture). The assembly map is known to be injective for arithmetic groups. For an
overview on the conjecture, see the monograph [13].

The geometric-topological side of Baum and Connes’ assembly map, namely the equivariant K-
homology, can be determined using an Atiyah–Hirzebruch spectral sequence with E2-page given by
the Bredon homology HFin

n (EG; RC) of the classifying space EG for proper actions with coefficients
in the complex representation ring RC and with respect to the system Fin of finite subgroups of G.
This Bredon homology can be computed explicitly, as described by Sanchez-Garcia [18, 19].

While for Coxeter groups with a small system of generators [19] and arithmetic groups of rank 2 [15],
general formulae for the equivariant K-homology have been established, the only known higher-rank
case to date is the example SL3(Z) in [18]. Although there are by now considerably more arithmetic
groups for which cell complexes have been worked out [6, 7, 9], no further computations of Bredon

homology HFin
n (EG; RC) have been done since 2008 because the relevant cell complexes fail to have the

rigidity property required for Sanchez-Garcia’s method. We discuss an explicit example, cf. Section 2,
demonstrating that the rigidity property is essential for the computation of Bredon homology and
cannot be circumvented by a different method.

Applying rigid facets subdivision to the cell complex for EPSL4(Z) from [6], we obtain

HFin
n (EPSL4(Z); RC) ∼=





0, n > 4,

Z, n = 3,

0, n = 2,

Z4, n = 1,

Z25 ⊕ Z/2, n = 0.

This is consistent with the rational homology of BPSL4(Z) as inferred from the results of [6]. As
further consistency checks, the authors have paid attention that the homology of the cell complex
remains unchanged under our implementation of rigid facets subdivision, and that the equivariant
Euler characteristic of EG vanishes before and after subdividing.
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Organization of the paper. In Section 2, we provide a counterexample in order to contradict the
possibility to compute the Bredon homology from an arbitrary non-rigid cell complex. In Section 3,
we provide the Rigid Facets Subdivision algorithm. In Section 4, we provide the Virtually Simplicial
Subdivision algorithm. In Section 9, we apply the Rigid Facets Subdivision algorithm to a PSL4(Z),
and compare the result with a computation using Brown’s conjugacy classes cell complex.

Acknowledgements. We are grateful for support by Gabor Wiese’s Fonds National de la Recherche
Luxembourg grants (INTER/DFG/FNR/12/10/COMFGREP and AMFOR), which did facilitate
meetings for this project via visits to Université du Luxembourg by the first author (thrice for
one month) and the third author. We would like to thank Graham Ellis for having supported the
development of the first implementation of our algorithms – the “Torsion Subcomplexes Subpackage”
for his Homological Algebra Programming (HAP) package in GAP. Further thanks go to
Sebastian Schönnenbeck for having provided us cell complexes for congruence subgroups in SL3(Z),
used for benchmarking purposes in this paper, and especially to Mathieu Dutour Sikirić for having
provided the cell complexes for SL3(Z), Sp4(Z) and PSL4(Z) in HAP.
This article is dedicated to the memory of Aled Ellis.

2. Necessity of Rigidity for Bredon homology

From a non-rigid cell complex, i.e., a cell complex where cell stabilizers do not necessarily fix the
corresponding cell pointwise, one can compute classical group homology via the equivariant spectral
sequence with coefficients in the orientation module. Such an orientation module, where elements
of the stabilizer group act by multiplication with 1 or −1, depending on whether they preserve or
reverse the orientation of the cell, cannot exist for Bredon homology. We make this precise in the
following statement:

Proposition 1. There is no module-wise variation of the Bredon module with coefficients in the com-
plex representation ring and with respect to the system of finite subgroups such that Bredon homology
can be computed from a non-rigid cell complex.

Proof. We provide a counterexample in order to contradict the possibility to compute the Bredon
homology from an arbitrary non-rigid cell complex.

Consider the classical modular group PSL2(Z). A model for EPSL2(Z) is given by the modular
tree [21]. There is a rigid cell complex structure T1 on it, given as follows. By [21], the modular tree
admits a strict fundamental domain for PSL2(Z), of the shape

Z/3Z b b Z/2Z

with vertex stabilizers as indicated and trivial edge stabilizer. We obtain the cell complex T1 by
tessellating the modular tree with the PSL2(Z)-images of this fundamental domain. Obviously, T1 is
rigid, and it yields the Bredon chain complex

0 → RC(〈1〉)
d

−→ RC(Z/2Z)⊕RC(Z/3Z) → 0.

The map d in the above Bredon chain complex is injective, and as RC(Z/nZ) ∼= Zn, we read off

HFin
1 (EPSL2(Z); RC) = 0, HFin

0 (EPSL2(Z); RC) ∼= Z4.

Now we equip the modular tree with an alternative equivariant cell structure T2, induced by the
non-strict fundamental domain

Z/3Z b b Z/3Z

where the (set-wise) edge stabilizer is Z/2Z, flipping the edge onto itself. It can be seen as a ramified
double cover of the fundamental domain for T1 discussed above. A system of representative cells for
T2 is given by the edge of double length, and one vertex of stabilizer type Z/3Z. This yields a chain
complex

0 → ˜RC(Z/2Z) → RC(Z/3Z) → 0,

where the tilde could be any construction which takes the non-trivial Z/2Z-action on the edge of
double length into account (similar to the coefficients in the orientation module for group homo-
logy computed from non-rigid cell complexes). But no matter how this construction is done, from

RC(Z/3Z) ∼= Z3, we can never reach HFin
0 (EPSL2(Z); RC) ∼= Z4. Hence T2 is our desired counter-

example. �
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Remark 2. We could of course drop the condition “module-wise” in the above proposition, and
investigate whether there is a reasonable construction which maps the representation ring to a com-
plex of modules and yields a quasi-isomorphism from the total complex to the Bredon complex for
the subdivided tree. But with such a construction, one would only superficially hide the fact that
one needs to know how to subdivide in order to get the constructed complexes right. This means
that it will not be practicable to compute Bredon homology with respect to the system of finite
subgroups and coefficients in the complex representation ring without subdividing the cell complex
under consideration to make it rigid.

3. The rigid facets subdivision algorithm

In this section, we discuss the rigid facets subdivision algorithm which rigidifies equivariant cell
complexes. The core of the method is Algorithm 2, which is expected to run in reasonable time for
input coming from cell complexes for arithmetic groups. The key fact which guarantees that rigid
facets subdivision works, is Lemma 9 below.

Algorithm 1 Subdivide to get stabilizers which fix their cells pointwise

Input: An n-dimensional Γ-equivariant CW-complex X with finite cell stabilizers and a metric as
in Remark 4.
Output: A rigidification of X (that is, an equivalent Γ-cell complex on which each stabilizer fixes
its cell pointwise).

for m running from 1 to n do

for σ running through lifts of m-cells in Γ\X
(m) do

if σ is not rigid then

Use Algorithm 2 or 4 to subdivide σ into a partition P , which is a union of rigid m-cells,
disjoint up to boundaries, with a fundamental domain F for the Γσ-action on P .
Run through all the (m+ 1)-cells; if their boundaries contain σ,

then replace σ by its partition P .
Replace the cell σ by F in Γ\X

(m).
end if

end for

end for

Definition 3. Following the notation in [4], we use the term Γ-equivariant CW-complex, or simply
Γ-cell complex, to mean a CW-complex X on which a discrete group Γ acts cellularly, i.e., in such a
way that the action induces a permutation of the cells of X . We say the cell complex is rigid if each
element in the stabilizer of any cell fixes the cell pointwise.

Remark 4. The algorithm producing the subdivision of the Γ-equivariant CW-complex X only
modifies combinatorial data, based on the barycentric subdivison of individual cells. We require X to
come with a geometric realization, equipped with a metric such that each of the cells of X is convex,
the restriction of the metric to each cell is CAT(0) and the cell stabilizers act by CAT(0)-isometries.
We are not requiring that the metric is CAT(0) on the whole CW-complex. Note however that the
examples we are most interested in, are those where Γ is an arithmetic group and the geometric
realization of X is the associated symmetric space.

Definition 5. A rigidification X̂ of a Γ-cell complex X is a rigid Γ-cell complex X̂ with the same
underlying topological space as X . The map passing through the underlying topological space is then
a Γ-equivariant homeomorphism X̂ → X of Γ-spaces. Note that a Γ-equivariant homeomorphism of
Γ-spaces does not need to preserve existing cell structure, so X̂ is allowed to have more cells than X .

The outer shell of the rigid facets subdivision is Algorithm 1, which subdivides (whenever necessary)
representatives of cell orbits using Algorithm 2, respectively Algorithm 4.

Proposition 6. Let Γ be a discrete group, and let X be a Γ-equivariant CW-complex having finitely
many Γ-orbits and finite cell stabilizers. Assume furthermore that X is equipped with a metric as in
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Remark 4. Then Algorithm 1 finds a rigidification of X (with respect to the Γ-action). It terminates
in finite time.

Proof. The key step of the algorithm is proved by Lemma 9 below; the rest is a routine induction.
Lemma 9 is the point where the convexity and isometry requirements are needed. By the finiteness
assumptions for orbits and cell stabilizers, the loops are all deterministic over finite index sets. Each
operation inside them takes finite time, cf. Corollary 10, whence the claim. �

Observation 7. The outer shell Algorithm 1 can be used with any subdivision algorithm for the
cells. In particular, replacing the use of Algorithm 2 by the barycentric subdivision in Algorithm 1,
the claims of Proposition 6 still hold. However, as mentioned in the introduction, the reason for
developing Algorithm 2 is to reduce the blow-up in the number of cells, so as to make the algorithm
practically applicable to cell complexes for higher-rank arithmetic groups.

We now discuss the actual subdivision to rigidify cells, Algorithm 2.

Algorithm 2 — Rigid Facets Subdivision

Input: An m-cell σ with stabilizer group Γσ, with rigid faces, equipped with a metric as in
Remark 4.
Output: A Γσ-equivariant set of rigid m-cells, disjoint up to boundaries, constituting a partition
P of σ, together with a contractible fundamental domain F (a single m-cell) for the action of Γσ

on P .

• Sort the (m− 1)-faces of σ into orbits {{gjtσj}t}j under the action of Γσ, where j is indexing
the orbits and t is indexing the cells inside each orbit.

• Let T be the list containing the element g11σ1.
while #T < #{orbits of (m− 1)-faces of σ} do

Choose one cell τ ∈ {gjtσj} in the next orbit {gjtσj} not yet represented in T ,
if the union of τ with the cells in T has vanishing naive Euler characteristic then

if {τ} ∪ T is contractible (we can use Ellis’ method [10] to check this) then

Construct the boundary S of {τ} ∪ T .
if S has the naive Euler characteristic of an (m− 2)-sphere then

if #T < #{orbits of (m− 1)-faces of σ}-1 then

Add the chosen cell τ to T .
else

if S is simply connected then Add the chosen cell τ to T .
end if

end if

end if

end if

end if

end while

• Use Algorithm 3 to construct the m-cell F := |
⋃

τ∈T convex envelope(τ , barycenter(σ))|.
• Let Γpw

σ be the subgroup of Γσ which fixes the cell σ pointwise.
• Then P :=

⋃
16t6|Γσ/Γ

pw

σ | g1tF is the desired partition of σ.

• Return P and F .

Remark 8. Essentially, Algorithm 2 produces a convex union of cells of the barycentric subdivision
which is a fundamental domain for the Γσ-action. The slight complications arise from the fact that
we do not actually want to compute the full barycentric subdivision, to gain computational feasibility.

Lemma 9 (Rigid Facets Lemma). Let σ be a cell (with stabilizer Γσ), whose faces are all rigid and
which is equipped with a metric as in Remark 4. Let Γpw

σ be the subgroup of Γσ which fixes the cell
σ pointwise. Then there is a fundamental domain F for the action of Γσ/Γ

pw
σ on σ such that σ is

tessellated by |Γσ/Γ
pw
σ | copies of F .

Proof. First we have to check that the statement is well defined in the sense that Γσ/Γ
pw
σ is a group.

This is the case because for all g in Γσ, for all γ in Γpw
σ , for all x in σ we have (g−1γg)x = g−1(γ(gx)) =
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Figure 1. From left to right: 1) A full square with natural cell structure and
action by its stabilizer mirroring it onto itself. 2) Barycentric subdivision of the
square. 3) Rigid facet subdivision of the square with respect to the mirroring ac-
tion. 4) Virtually Simplicial Subdivision of the square with respect to the mirroring
action; note that the fundamental domain F can be chosen arbitrarily by selecting
one cell among each of the pairs {a1, a2}, {b1, b2} and {c1, c2}.
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g−1(gx) = x. Therefore, as the kernel of the action of Γσ on σ, Γpw
σ is a normal subgroup; and there

is a short exact sequence of groups,

1 → Γpw
σ → Γσ → Γσ/Γ

pw
σ → 1,

which makes our statement well defined.
Suppose that α is one of the facets of σ. We are going to prove that the size of the orbit of α, under

the action of Γσ on the set of facets of σ, is |Γσ/Γ
pw
σ |. Let Γα be the stabilizer of α. We claim that

Γα ∩ Γσ = Γpw
σ . The action of Γσ on the compact set closure(σ) is by homeomorphisms; therefore,

any element of Γσ fixing σ pointwise also fixes the boundary ∂σ pointwise. Hence Γα ∩ Γσ ⊃ Γpw
σ .

On the other hand, let g ∈ Γα ∩ Γσ. Then by assumption on the rigidity of the facets, g fixes the cell
α pointwise. Since the cell σ is convex and the group acts by CAT(0)-isometries, the barycenter of σ
preserves its distances to the boundary ∂σ under the action of Γσ on σ, and hence remains fixed. As
a further consequence of the CAT(0) isometry, the fixed point set of g extends, by preservation of the
distances, from the convex envelope of α and the barycenter of σ to the whole cell σ. Hence, g is an
element of Γpw

σ . Thus, we can conclude that Γα ∩Γσ = Γpw
σ . Whence, the size of the orbit of α under

the action of Γσ is |Γσ/Γ
pw
σ |.

Furthermore, from Γα ∩Γσ = Γpw
σ , we see that Γσ/Γ

pw
σ acts freely on the set of facets of σ. So, we

can take one arbitrary representative αk for each orbit of facets, to unite to a fundamental domain
for Γσ/Γ

pw
σ on the set of facets of σ. Taking the convex envelope ek of αk and the barycenter of σ,

we get a fundamental domain F :=
⋃

k ek for Γσ/Γ
pw
σ on σ. By the above orbit size calculation, it

yields the desired tessellation. �

Corollary 10. Algorithm 2 terminates after finitely many steps and produces a rigid subdivision of
the cell σ.

Proof. The existence of the fundamental domain F for the action σ is guaranteed by Lemma 9. The
contractibility of the fundamental domain T and the simply connectedness of its boundary S ensure
that merging the union of cells

⋃
τ∈T

convex envelope(τ , barycenter(σ))

into one cell F can be realized with the boundary construction

∂F =
⋃

τ∈T

τ ∪
⋃

s∈S

e(s),

where e(s) is the convex envelope of s and the barycenter of σ. �

4. Virtually Simplicial Subdivision

As a compromise between Rigid Facets Subdivision (RFS) and Barycentric Subdivision (BCS),
we can make a simplification of RFS, which we shall call Virtually Simplicial Subdivision (VSS) and
detail in Algorithm 4 below. For a cell complex X , VSS(X) is a refinement of RFS(X), and BCS(X)
is a further refinement of VSS(X), as illustrated in Figure 1.
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Algorithm 3 Constructing the union of the convex envelopes

Input: A list T of j-cells, connected by adjacency,
and an m-cell σ such that all τ ∈ T are faces of σ.

Output: A (j + 1)-cell F which has the same underlying topological space as⋃
τ∈T convex envelope(τ , barycenter(σ)).

Record the barycenter of σ as a new vertex, with stabilizer Γσ.
Enumerate the finite set S := {ρ is (j − 1)-cell | ∃! τ ∈ T : ρ ∈ ∂τ}.
Then S contains all the (j − 1)-faces ρ of all τ ∈ T such that ρ is not a common face of any two
j-cells τ1, τ2 ∈ T .

• For each s ∈ S, take the convex envelope e(s) of s and the barycenter of σ.
• Record e(s) as an oriented j-cell, with boundary

∂e(s) = {s} ∪
⋃

ε∈∂s

{convex envelope(ε, barycenter(σ))}.

For the stabilizers, we record Γe(s) = Γs ∩ Γσ and Γconvex envelope(ε,barycenter(σ)) = Γε ∩ Γσ.

The boundary of the (j + 1)-cell F consists of all the j-faces τ ∈ T and e(s) (for all s ∈ S).
Here, we have to take care of which of the newly constructed cells e(s) are on the same Γσ-orbit.
In order to decide this, we make use of their common vertex, the barycenter of σ :

• Identify the orbits e(s1) and e(s2) if and only if ∃ γ ∈ Γσ : γs1 = s2.
• Attribute arbitrary orientations to Γσ-representatives of the new cells e(s), and spread them

on their Γσ-orbit using the above identifications.
• Return the (j + 1)-cell F with boundary

∂F =
⋃

τ∈T

τ ∪
⋃

s∈S

e(s)

and stabilizer Γσ∩
⋂

τ∈T Γτ , where the orbits are subject to the above specified identifications.

Algorithm 4 — Virtually Simplicial Subdivision

Input: An m-cell σ with stabilizer group Γσ, with rigid faces, equipped with a metric as in
Remark 4.
Output: A Γσ-equivariant set of rigid m-cells, disjoint up to boundaries, consituting a partition
P of σ, together with a fundamental domain F (a set of m-cells) for the action of Γσ on P .

• Sort the (m− 1)-faces of σ into orbits {{gjtσj}t}j under the action of Γσ, where j is indexing
the orbits and t is indexing the cells inside each orbit.

• Use Algorithm 3 to construct the m-cells Fj := convex envelope(gj1σj , barycenter(σ)), where
j runs through all orbits.

• Let Γpw
σ be the subgroup of Γσ which fixes the cell σ pointwise.

• Then P :=
⋃

j

⋃
16t6|Γσ/Γ

pw

σ | gjtFj is the desired partition of σ.

• Return P and the set F := {Fj}j.

Corollary 11. Algorithm 4 terminates after finitely many steps and produces a rigid subdivision of
the cell σ.

Proof. The existence of the fundamental domain F for the action σ is guaranteed by Lemma 9. We
do not need any topological properties for F , because its cells already have the structure constructed
with Algorithm 3. �

5. Hybrid Subdivision

The bulk of the processing time of Rigid Facets Subdivision (RFS) and Virtually Simplicial Sub-
division (VSS) is being spent on the top-dimensional cells. We can save a considerable amount of
processing time as compared to RFS if we do not merge the top-dimensional cells. And we can do
that by applying RFS until we are in (top minus 1) dimensions, and then achieve the subdivision
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Table 2. Time spent on a single processor for subdividing available cell complexes.

Arithmetic group SL3(Z) Γ1 in SL3(Z) Γ2 in SL3(Z) Sp4(Z) PSL4(Z)

Rigid Facets Subdivision 8s 17s 26s 24s 69 minutes
Virtually Simplicial Subdivision 9s 22s 33s 43s 111 minutes
Hybrid Subdivision 9s 20s 31s 33s 33 minutes
Barycentric Subdivision 13s 56s 104s 296s ?

using VSS on the top-dimensional cells. We will call this process “Hybrid Subdivision (HyS)”. It is
faster than both RFS and VSS on large cell complexes, and it produces considerably less cells than
VSS. We note however that the VSS process on the top-dimensional cells adds a few low-dimensional
cells when connecting to the barycenter, so for instance in Table 5, the low-dimensional numbers of
cells are slightly higher for HyS than for RFS, rather than being equal.

6. Comparison of the various subdivision algorithms

As illustrated in Figure 1, all of the cells constructed by Rigid Facets Subdivision are also con-
structed by barycentric subdivision; and usually, Rigid Facets Subdivision is coarser than barycentric
subdivision. However, the worst-case complexity of Rigid Facets Subdivision is not better than that
of barycentric subdivision: If X is a single n-simplex with the natural permutation action of the
symmetric group Σn+1 acting on the vertices, then any rigidification will need to produce at least
(n + 1)! = #Σn+1 top-dimensional cells for X . However, the point is that the average cell complex
for interesting arithmetic groups has many of its cells already almost rigid and, only very few with
maximally possible stabilizer. Therefore, the complexity for the cases of interest is significantly better
than that of the barycentric subdivision, as evidenced by Table 1. As we see from Figure 1, Rigid
Facets Subdivision is a minimal rigidification only for the top-dimensional cells; in lower dimensions
it creates some superfluous cells at the barycenters of facets, and cells connecting those barycenters
with the constructed fundamental domain for the boundary of the subdivided cell.

In Table 1, note that we do not have the numbers of orbits for the barycentric subdivision, because
the latter was not constructed; only the numbers of cells have been calculated. In such a construction,
the boundaries of the 4-cells would span a 1658304× 2138688-matrix, and even though that matrix
is quite sparse, the authors have not tried to store that amount of information on a machine. In
retrospective however, considering that the amount of cells that have been constructed with Virtually
Simplicial Subdivision comes close to the amount of cells expected for barycentric subdivision, it
turns out that this issue would not prevent applying barycentric subdivision (which in the end was
not done, because Table 2 was interpreted by the authors as an exponential growth of the runtime).

In contrast, for SL3(Z), the barycentric subdivision is almost reached (see Table 3) : In dimensions
0 and 1, the same cell structure is obtained with both subdivision methods, the only difference being
that the four tetrahedra which represent the top-dimensional cells, are merged into one polyhedron
when passing to the rigid facets subdivision, along three triangles of trivial stabilizers. Note also
that Soulé did in [22] carry out the barycentric subdivision by hand. This means for the 2-torsion
subcomplex of SL3(Z), which we will discuss in Section 7, that we can extract it equivalently by hand
from [22], or by machine after rigid facets subdivision.

In order to benchmark the run-time, in Table 2, we denote the subgroup of SL3(Z) consisting of

(1) all matrices whose first column agrees with the first standard basis vector modulo 2 by Γ1;
(2) all matrices which are upper triangular modulo 2 by Γ2.

7. Example: Farrell–Tate cohomology of SL3(Z)

From the non-rigid cell complex describing the action of SL3(Z) on its symmetric space, provided
by Mathieu Dutour Sikirić in [8], we obtain, after applying Rigid Facets Subdivision, the following
2-torsion subcomplex, in accordance with Soulé’s subdivision [22].
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Table 3. Numbers of cells in the individual dimensions, of the studied non-rigid
fundamental domain X for SL3(Z), its rigid facets subdivsion RFS(X), its virtually
simplicial subdivision VSS(X), its hybrid subdivision HyS(X) and its barycentric
subdivision BCS(X) (the latter three coincide for SL3(Z)).

Dimension 0 1 2 3

# Orbits in X 1 1 2 1
# Cells in X 16 24 10 1
# Orbits in RFS(X) 5 11 8 1
# Cells in RFS(X) 51 194 168 24
# Orbits in VSS(X), HyS(X) and BCS(X) 5 11 11 4
# Cells in VSS(X), HyS(X) and BCS(X) 51 194 240 96

stab(M) ∼= S4

stab(Q) ∼= D6
stab(O) ∼= S4 stab(N) ∼= D4

stab(P) ∼= S4

N’ M’

D2
D3

D3

D2

Z/2

Z/2
Z/2

D4

Z/2

D4

D2

Z/2

Here, the three edges NM , NM ′ and N ′M ′ have to be identified as indicated by the arrows. All
of the seven triangles belong with their interior to the 2-torsion subcomplex, each with stabilizer
Z/2, except for the one which is marked to have stabilizer D2. Using torsion subcomplex reduction
(cf. [14]), we reduce this subcomplex to

b
S4

O

b
D2 D6

Q

Z/2 S4

M

b
D4 S4

P

b
D4 D4

N ′

b

and then to
S4b

Z/2 S4b
D4 S4b

which is the geometric realization of Soulé’s diagram of cell stabilizers. This yields the mod 2 Farrell
cohomology as specified in [22].

Also for PSL4(Z), Rigid Facets Subdivision allows us to obtain the 2-torsion subcomplex, but
because of the complexity the latter (see Table 4), the current implementation of Torsion Subcomplex
Reduction does not get it down to manageable size. In upcoming joint work, the authors are going to
present a new implementation of Torsion Subcomplex Reduction, which will overcome this problem
using Discrete Morse Theory.
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Table 4. Numbers of cells in the 2-torsion subcomplex for PSL4(Z) before reduc-
tion, obtained after rigid facets subdivsion of the studied cell complex, sorted into
isomorphism types of their stabilizers. Here, G1 and G2 are non-trivial group ex-
tensions 1 → A4 × A4 → G1 → Z/2Z → 1 and 1 → G0 → G2 → Z/2Z → 1 for
1 → (Z/2Z)4 → G0 → Z/3Z → 1

Stabilizer type A4 G1 (Z/2Z)2 S4 Z/2Z D8 (Z/2Z)3 G2 Z/4Z

Vertices 2 1 5 4 1 2 1 1 0
Edges 2 0 24 2 101 5 1 0 5
2-cells 0 0 27 0 326 0 0 0 4
3-cells 0 0 8 0 340 0 0 0 0
4-cells 0 0 0 0 116 0 0 0 0

Table 5. Numbers of cells in the individual dimensions, of the non-rigid fundamental
domain X for Sp4(Z) described in [12] and implemented by Dutor Sikirić [8], its rigid
facets subdivsion RFS(X), its virtually simplicial subdivision VSS(X), its hybrid
subdivision HyS(X) and its barycentric subdivision BCS(X).

Dimension 0 1 2 3 4

In X : # Orbits | # Cells 2 | 76 2 | 216 3 | 180 3 | 40 1 | 1
In RFS(X): # Orbits | # Cells 8 | 185 31 | 800 54 | 1048 30 | 448 1 | 16
In VSS(X): # Orbits | # Cells 8 | 185 39 | 1152 106 | 2536 122 | 2352 49 | 784
In HyS(X): # Orbits | # Cells 8 | 185 35 | 864 72 | 1336 53 | 816 10 | 160

In BCS(X) : # Orbits | # Cells 11 | 513 90 | 3488 295 | 7904 368 | 7392 154 | 2464

8. Example: Farrell–Tate cohomology of Sp4(Z) at odd primes

We shortly discuss the results of applying rigid facets subdivision and torsion subcomplex reduction
(for odd primes) to the non-rigid cell complex describing the action of Sp4(Z) on the associated
symmetric space Sp4(R)/U(2), described in [12] and implemented by Mathieu Dutour Sikirić in [8].

The 3-torsion subcomplex for Sp4(Z) is a single vertex whose stabilizer group is the group [72, 30]
in the GAP SmallGroup library. This group is of the form C3 ×((C6 ×C2) ⋊ C2) and its mod 3
cohomology is isomorphic to the mod 3 cohomology of C3 × S3. In particular, we get isomorphisms

Hi(Sp4(Z),F3) ∼= Hi(C3 × S3,F3), i > vcd(Sp4(Z)).

The Hilbert–Poincaré series for the mod 3 cohomology of C3 × S3 is given by

HPC3 × S3
(T ; 3) =

(1 + T )(1 + T 3)

(1− T 2)(1− T 4)
.

In [3, (6.7)], the Hilbert–Poincaré-series for Sp4(Z) has been computed. In the notation of loc.cit.,
the difference to the Hilbert–Poincaré-series for C3 × S3 above is given by

P (Γ6
0)− P (B′ ⋊ Z/2) =

1 + T 3 + T 4 + T 5

1− T 4
−

1 + T + T 3 + T 4

1− T 4
=

T 5 − T

1 − T 4
= −T.

In particular, the Hilbert–Poincaré series for C3 × S3 and Sp4(Z) agree above the virtual cohomological
dimension of Sp4(Z) and thus the computation via rigid facets subdivision and torsion subcomplex
reduction agrees with the computation of Brownstein and Lee in [3].

The 5-torsion subcomplex for Sp4(Z) is a single vertex whose stabilizer group is C10, whose mod
5 cohomology is isomorphic to the mod 5 cohomology of C5. This agrees directly with [3, Corollary
6.3] in degrees above the virtual cohomological dimension.

Table 5 provides an overview of the numbers of cells resp. orbits in the complexes subdivided by
rigid facets subdivision and barycentric subdivision, respectively.
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9. Example: Farrell–Tate cohomology of PSL4(Z) at the prime 3

Applying the rigid facets subdivision algorithm to the PSL4(Z)-equivariant cell complex from [6],
extracting the 3-torsion subcomplex, and reducing it using the methods of [14], we get the following
graph of groups T , decorated with the groups stabilizing the cells that are the pre-images of the
projection to the quotient space.

bb

S3

S3

S3 × S3 S3 × S3
E9 ⋊C2 C3

b S3b
E9 ⋊C2

Here, E9 ⋊C2 denotes the semi-direct product of the elementary abelian group of order 9 with C2,
where C2 acts by inversion (corresponding to the group [18,4] in GAP’s SmallGroups library). The
machine computation provided the following system of morphisms among the above cell stabilizers.
The E9 ⋊C2 edge stabilizer admits an isomorphism of groups φ (not the identity, though) to the
E9 ⋊C2 vertex stabilizer and an inclusion into the S3 × S3 vertex stabilizer. Of the two S3 edge
stabilizers, one has maps diag(1, 1) and diag(1, 0) to the two S3 × S3 vertex stabilizers, and the
other one has maps diag(1,−1) and diag(−1,−1) to the two S3 × S3 vertex stabilizers. The C3 edge
stabilizer admits an inclusion into the E9 ⋊C2 vertex stabilizer, and an inclusion into the S3 vertex
stabilizer.

By the properties of torsion subcomplex reduction, the PSL4(Z)-equivariant cohomology of the
3-torsion subcomplex is isomorphic to the PSL4(Z)-equivariant cohomology of the above graph of
groups T . Similarly, the Farrell–Tate cohomology of PSL4(Z) at the prime 3 is isomorphic to the
Farrell–Tate cohomology of the above graph of groups. In the following, we evaluate the isotropy
spectral sequence

Ep,q
1 =

⊕

σ∈Tp

Hq(Stab(σ);F3) ⇒ Ĥ
p+q

(PSL4(Z);F3)

converging to Farrell–Tate cohomology. As we only consider a graph, the spectral sequence is concen-
trated in the two columns p = 0, 1. The differential d1 is induced from the inclusions of subgroups,
up to the sign coming from the choice of orientation of the graph. Since the spectral sequence is
only concentrated in the first two columns, we will have E2 = E∞. Since we are interested in field
coefficients, there are no extension problems to solve at the E∞-page.

The relevant cohomology groups of the finite groups are:

• H•(C3;F3) ∼= F3[x](a) with deg a = 1 and deg x = 2.
• H•(S3;F3) ∼= F3[y](b) with deg b = 3 and deg y = 4.
• By the Künneth formula, H•(S3 × S3;F3) ∼= H•(S3;F3)

⊗2.
• By the Hochschild–Serre spectral sequence, H•(E9 ⋊C2;F3) ∼= F3[x1, x2](a1, a2)

C2 where
deg xi = 2, deg ai = 1 and C2 acts by multiplication with −1 on all the generators.

To describe the d1-differential, it is enough to note that the restriction map associated to the inclusion
C3 →֒ S3 is the inclusion of C2-invariants.

Now, for the evaluation of the spectral sequence, we first deal with the edges attached to the loop.

(1) The restriction map

φ⊕ (ResS3

C3
◦ pr∗2) : H

•(E9 ⋊C2;F3) → H•(E9 ⋊C2;F3)⊕H•(C3;F3)

is injective, and the cokernel is isomorphic to H•(C3;F3). Here φ denotes the isomorphism
E9 ⋊C2

∼= E9 ⋊C2 appearing as stabilizer inclusion in the reduced torsion subcomplex.
(2) The inclusion of the dihedral vertex group into the cyclic edge group is an injection

ResS3

C3
: H•(S3;F3) →֒ H•(C3;F3)

given by the inclusion of the invariant elements for the C2-action by −1. Therefore, the
cokernel is concentrated in degrees 1, 2 mod 4 (except for the degree 0).
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Therefore, we can reduce the E1-page of the spectral sequence as follows: from (1), we find that
we can remove the two summands for E9 ⋊C2 from the columns p = 0 and p = 1, respectively; but in
turn, we have to replace the restriction map for E9 ⋊C2 →֒ S3 × S3 by a map from the cohomology
of S3 × S3 to the cokernel of the restriction map in (2). However, since the latter is concentrated
in degrees 1 and 2, the induced restriction map is trivial in the generating degrees 3 and 4, hence
it is trivial. Therefore, the E1-page decomposes: one contribution comes from the cokernel of the
restriction map H•(S3;F3) →֒ H•(C3;F3), the other contribution comes from the loop connecting the
two copies of S3 × S3 via the S3-edges.

The cohomology of the loop is computed as follows:

(3) The restriction maps diag(1, 1), diag(1, 0), diag(1,−1) and diag(−1,−1) :

F3[x4, y4](a3, b3) ∼= H•(S3 × S3;F3) → H•(S3;F3) ∼= F3[z4](c3)

are surjective. On the kernel of diag(1, 1), the restriction of diag(1,−1) is still surjective. On
the kernel of diag(−1,−1), the restriction of diag(1, 0) is still surjective.

Therefore, the cohomology of one edge of the loop is killed already by the restriction map from
any one of the vertex groups. Number the S3 × S3-vertices by 1 and 2, and the S3-edges by a and
b. The restriction from the vertex group 1 to the edge a is surjective. Removing this part from the
spectral sequence, the restriction from the vertex group 2 to the edge a is trivial, but we still have
the restriction to the edge b. This kills the edge cohomology b, showing that the differential d1 is
surjective in the loop part of the E1-page. The kernel of the differential consists then exactly of two
copies of the kernel of a restriction map ResS3 × S3

S3
.

Theorem 12. The Farrell–Tate cohomology of the group PSL4(Z) (with coefficients in F3) in degrees
> 2 is given as follows:

Ĥ
•
(PSL4(Z);F3) ∼=

(
kerResS3 × S3

S3

)⊕2

⊕ coker
(
H•−1(S3;F3) → H•−1(C3;F3)

)
.

This, in particular also computes the 3-torsion group cohomology of PSL4(Z) above the virtual co-
homological dimension.

The cokernel of the d1-differential in degree 0 and hence the first cohomology Ĥ
1
(PSL4(Z);F3) is

of F3-rank 1, coming from the loop of the 3-torsion graph.

Remark 13. The kernel comes from the p = 0 column of the E2 = E∞-page. The cokernel comes
from the p = 1 column and consequently has a shift. The cup product on the kernel is the one induced
from cohomology of S3 × S3, and cup-product with classes in the cokernel is always 0.

Inspired by Grunewald, we consider the Hilbert–Poincaré series of the Farrell–Tate cohomology of
PSL4(Z) with coefficients in Fℓ :

HPPSL4(Z)(T ; ℓ) :=

∞∑

q=1

dim Ĥ
q
(PSL4(Z);Fℓ) · T

q.

Corollary 14. The Hilbert–Poincaré series of the 3-torsion Farrell–Tate cohomology of PSL4(Z) (for
degrees > 1) is then

HPPSL4(Z)(T ; 3) = T +
2(T 3 + T 4 + T 6 + T 7)

(1− T 4)2
+

T 2 + T 3

1− T 4
.

Remark 15. Note that the above calculation describes the Farrell–Tate cohomology in all degrees,
not just some small ones. Essentially, the computer calculation produces the reduced torsion subcom-
plex (which encodes the cohomology for all degrees). The spectral sequence is evaluated using the
cup-product structure. Note that the finiteness results for group homology imply that the cup-product
structure for both group and Farrell–Tate cohomology is finitely generated. Using suitable commut-
ative algebra packages, such computations of the ring structure (and therefore additive computations
for all cohomological degrees) could probably also be automated.

We make the following consideration on the compatibility of our result for Farrell–Tate cohomology
with the result of Dutour–Ellis–Schürmann [6] for group homology in low degrees. The isomorphism
types computed in the latter article are to correspond as follows to the evaluation of our above
Hilbert-Poincaré series in those degrees.
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Hq(PSL4(Z);Z) ∼=



























0, q = 1,

(Z/2)3, q = 2,

Z ⊕ (Z/4)2 ⊕ (Z/3)2 ⊕ Z/5, q = 3,

(Z/2)4 ⊕ Z/5, q = 4,

(Z/2)13, q = 5,

— dim Ĥ
q
(PSL4(Z);F3) =



























1, q = 1,

1, q = 2,

3, q = 3,

2, q = 4,

0, q = 5.

For this to be consistent, the Farrell–Tate cohomology groups in degrees 1 and 2 need to vanish
in group homology; so, these should be annihilated by differentials from the orbit space. We have
evidence for this in degree 1, since the loop in the graph becomes contractible in the orbit space of
the full locally symmetric space. In degree 3, one of the summands in H3(PSL4(Z);Z) is rationally
non-trivial and must come from the orbit space. This means that only the submodule (Z/3)2 can
come from Farrell–Tate cohomology, and the third dimension that we observe in degree 3 Farrell–Tate
cohomology must belong to the degree 2 stabilizer cohomology class that is annihilated by the above
mentioned differentials from the orbit space.

From Theorem 12, we deduce that the degree 2 Farrell–Tate class can only come from

coker
(
H•−1(S3;F3) → H•−1(C3;F3)

)
.

Then, this class and its group homology counterpart sit at position p = 1, q = 1 in the respective
equivariant spectral sequence, and hence the annihilating differential, emanating from the orbit space
homology module Z ⊂ H3(PSL4(Z);Z) sitting at position p = 3, q = 0, must be of second degree.

In degrees 4 and 5, the dimensions already agree via the Universal Coefficient Theorem, so here
we infer that the submodule (Z/3)2 in degree 3 should actually come from Farrell–Tate cohomology,
so it should be stabilizer cohomology that is not hit by higher degree differentials.

10. Homological 5-torsion in PSL4(Z)

We applied the rigid facets subdivision algorithm to the PSL4(Z)-equivariant cell complex of [6],
extracted the 5-torsion subcomplex, and reduced it using the methods of [14] to the following graph

T :
bD5 D5

The d1-differential of the equivariant spectral sequence on T is zero, because the
isomorphisms at edge end and edge origin cancel each other. Then the E1 = E∞ page is concentrated
in the columns p = 0 and 1, with dimensions over F5 being 1 in rows q congruent to 3 or 4 mod 4,
and zero otherwise. This yields

Proposition 16. We observe on Farrell cohomology: dimF5
Ĥ

p+q
(PSL4(Z);F5) =



















1, p + q ≡ 1 mod 4,

0, p + q ≡ 2 mod 4,

1, p + q ≡ 3 mod 4,

2, p + q ≡ 4 mod 4.

We check this result with a computation of Ĥ
•
(PSL4(Z);F5) using Brown’s complex [2, last

chapters]. In this case, it is standard that the set {1, ζ5, ζ
3
2 , ζ

3
5} is an integral basis of OQ(ζ5) and

in particular Z[ζ5] = OQ(ζ5) is a Dedekind ring.
We can therefore use Reiner’s result [17] to determine conjugacy classes of C5-subgroups in GL4(Z).

Since both Z and Z[ζ5] have trivial class group, there is only one isomorphism class of Z[C5]-module
with nontrivial action and Z-rank 4. Hence, there is a unique conjugacy class of cyclic order 5
subgroup in GL4(Z). Since the center of GL4(Z) is of order 2, the same is true for PGL4(Z).

Now there is a necessary modification to deal with the case SL4(Z), along the lines of the discussion
in [16]. While conjugacy classes of C5-subgroups in GL4(Z) correspond to isomorphism classes of
Z[C5]-modules, the conjugacy classes of C5-subgroups in SL4(Z) correspond to such modules equipped

with an additional orientation, i.e., a choice of isomorphism detM ∼=
∧4

Z M
∼= Z. The conjugacy class

in GL4(Z) lifts to SL4(Z), and the corresponding module has two different choices of orientation.
The Galois group Gal(Q(ζ5)/Q) ∼= Z/4Z acts on the set of oriented modules. The action exchanges
the orientations. Therefore, there is one conjugacy class of C5-subgroup in SL4(Z) stabilized by
Z/2Z →֒ Gal(Q(ζ5)/Q).

The centralizer of this C5-subgroup is the group of norm-1 units of Z[ζ5], which by Dirichlet’s unit
theorem is isomorphic to

ker
(
Z[ζ5]

× → Z×
)
∼= Z/10Z× Z.

As in [16, Section 5], the normalizer is an extension of the centralizer by an action of the stabilizer
of the corresponding oriented module in the Galois group. We noted above that the Galois group
Z/4Z exchanges the two orientations of the trivial module, hence the stabilizer is the subgroup
Z/2Z ⊂ Z/4Z. The normalizer therefore is of the form (Z/10Z× Z)⋊ Z/2Z. The action of Z/2Z on
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Z/10Z is by multiplication with −1 because the action of the Galois group is via the identification
Z/4Z ∼= Z/5Z×. The action of Z/2Z on Z is trivial: the full Galois group acts on Z via a surjective
homomorphism Z/4Z → Z× ∼= Z/2Z. The stabilizer of the oriented module in the Galois group lies
in the kernel of the above action, as claimed. Therefore, the normalizer is in fact of the form D10 ×Z.

Applying the formulas from [16, Section 3], the Farrell–Tate cohomology of the normalizer is of
the form F5[a

±2
2 ](b31)

⊕2 ⊕ F5[a
±2
2 ](b31)

⊕2
−1 where the lower subscript −1 indicates a degree shift by −1.

The Hilbert–Poincaré series for the positive degrees is T 3+2T 4+T 5

1−T 4 = T 3(1+T )2

1−T 4 .

The computations in [6] show that the 5-torsion in integral homology of PSL4(Z) of dimension 1
in degrees 0, 3 mod 4 and trivial otherwise. By the universal coefficient theorem, this agrees with the
above computation.
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