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THE FARRELL–TATE AND BREDON HOMOLOGY FOR PSL4(Z)

AND OTHER ARITHMETIC GROUPS

ANH TUAN BUI, ALEXANDER D. RAHM AND MATTHIAS WENDT

Abstract. We provide some new computations of Farrell–Tate and Bredon (co)homology for arith-
metic groups. For calculations of Farrell–Tate or Bredon homology, one needs cell complexes where
cell stabilizers fix their cells pointwise. We provide an algorithm computing an efficient subdivision
of a complex to achieve this rigidity property. Applying this algorithm to available cell complexes
for PSL4(Z) and PGL3(Z[i]) provides computations of Farrell–Tate cohomology for small primes
as well as the Bredon homology for the classifying spaces of proper actions with coefficients in the
complex representation ring. On the other hand, in order to check correctness of the computer cal-

culations, we describe the Farrell–Tate cohomology in some rank-one cases, using Brown’s complex
and a number-theoretic description of the conjugacy classification of cyclic subgroups.

1. Introduction

Understanding the structure of the cohomology of arithmetic groups is a very important problem
with relations to number theory and various K-theoretic areas. Explicit cohomology computations
usually proceed via the study of the actions of the arithmetic groups on their associated symmetric
spaces, and recent years have seen several advances in algorithmic computation of equivariant cell
structures for these actions. To approach computations of Farrell–Tate and Bredon (co)homology of
arithmetic groups, one needs cell complexes having a rigidity property: cell stabilizers must fix their
cells pointwise. The known algorithms (using Voronoi decompositions and such techniques, cf. e.g. [6,
7]) do not provide complexes with this rigidity property, and this leads to a significant bottleneck,
both for the computation of Farrell–Tate cohomology (resp. the torsion at small prime numbers in
group cohomology) of arithmetic groups as well as for the computation of Bredon homology.

In theory, it is always possible to obtain this rigidity property via the barycentric subdivision.
However, the barycentric subdivision of an n-dimensional cell complex can multiply the number of
cells by (n + 1)! and thus easily let the memory stack overflow. We provide an algorithm, called
rigid facets subdivision, cf. Section 3, which subdivides cell complexes for arithmetic groups such that
stabilisers fix their cells pointwise, but only leads to a controlled increase (in terms of sizes of stabilizer
groups) in the number of cells, avoiding an explosion of the data volume. An implementation of the
algorithm, cf. [4], shows that cases like PSL4(Z) or PGL3(Z[i]) can effectively be treated with it, using
commonly available machine resources. For the sake of comparison, barycentric subdivison and rigid
facets subdivision applied to the cell complex for PSL4(Z) from [5] leads to the following numbers of
cells in the individual dimensions:

• (2832, 14160, 56640, 169920, 339840, 339840) using barycentric subdivision,
• (1632, 6000, 7776, 3840, 1152, 96) using rigid facets subdivision.

1.1. Computations of Farrell–Tate cohomology. Farrell–Tate cohomology is a modification of
cohomology of arithmetic groups which is particularly suitable to investigate torsion related to finite
subgroups (in particular, the torsion in cohomological degrees above the virtual cohomological di-
mension). While the known cell complexes for arithmetic groups can deal very well with the rational
cohomology and torsion at primes which do not divide orders of finite subgroups, computations with
these complexes run into serious trouble for small prime numbers because the differentials in the
relevant spectral sequence are too complicated to evaluate. There is a suitable new technique called
torsion subcomplex reduction, cf. [10], which produces significantly smaller cell complexes and there-
fore simplifies the equivariant spectral sequence calculations. To apply this simplification, however,
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one needs cell complexes with the abovementioned rigidity property. Using the rigid facets subdi-
vision, applied to cell complexes for PSL4(Z) and PGL3(Z[i]), we have computed the Farrell–Tate
cohomology of these groups, at the primes 3 and 5 for PSL4(Z) and at the prime 3 for PGL3(Z[i]).
These results can be found in Theorem 12, Proposition 27 and Section 6.2. Since the computation
proceeds through a complete description of the reduced torsion subcomplex, we can compute the
torsion above the virtual cohomological dimension in all degrees.

In the cases which are effectively of rank one (5-torsion in PSL4(Z), 3-torsion in PGL3 over ima-
ginary quadratic integers), we can check the results of the cohomology computation using torsion
subcomplex reduction by comparing to a computation using Brown’s formula. For this, we outline a
generalization of a theorem of Reiner [13], giving a description of conjugacy classes of cyclic subgroups
and the group structure of their normalizers. These results are proved in Sections 5 and 6 and provide
generalizations of the computations in [12].

1.2. Computations of Bredon homology. For any group G, Baum and Connes introduced a
map from the equivariant K-homology of G to the K-theory of the reduced C∗-algebra of G, called
the assembly map. For many classes of groups, it has been proven that the assembly map is an
isomorphism; and the Baum–Connes conjecture claims that it is an isomorphism for all finitely
presented groups G (counter-examples have been found only for stronger versions of the Baum–
Connes conjecture). The assembly map is known to be injective for arithmetic groups. For an
overview on the conjecture, see the monograph [9].

The geometric-topological side of Baum and Connes’ assembly map, namely the equivariant K-
homology, can be determined using an Atiyah–Hirzebruch spectral sequence with E2-page given by
the Bredon homology HFin

n (EG; RC) of the classifying space EG for proper actions with coefficients
in the complex representation ring RC and with respect to the system Fin of finite subgroups of G.
This Bredon homology can be computed explicitly, as described by Sanchez-Garcia [14, 15].

While for Coxeter groups with a small system of generators [15] and arithmetic groups of rank 2 [11],
general formulae for the equivariant K-homology have been established, the only known higher-rank
case to date is the example SL3(Z) in [14]. Although there are by now considerably more arithmetic
groups for which cell complexes have been worked out [5–7], no further computations of Bredon

homology HFin
n (EG; RC) have been done since 2008 because the relevant cell complexes fail to have the

rigidity property required for Sanchez-Garcia’s method. We discuss an explicit example, cf. Section 2,
demonstrating that the rigidity property is essential for the computation of Bredon homology and
cannot be circumvented by a different method.

The application of the rigid facets subdivision to cell complexes for PSL4(Z) and PGL3(Z[i]) leads
to the following computations:

• Applying rigid facets subdivision to the cell complex for EPSL4(Z) from [5], we obtain

HFin
n (EPSL4(Z); RC) ∼=





0, n > 5,

Z10, n = 4,

Z, n = 3,

0, n = 2,

Z4, n = 1,

Z25 ⊕ Z/2, n = 0.

• Applying rigid facets subdivision to the cell complex for EGL3(Z[i]) from [1, 16], we obtain

HFin
n (EGL3(Z[i]); RC) ∼=





0, n > 5,

Z20, n = 4,

Z4 ⊕ (Z/8)4 ⊕ (Z/3)4, n = 3,

Z20, n = 2,

Z36, n = 1,

(Z36)3 ⊕ (Z/4)8, n = 0.
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• Applying rigid facets subdivision to the cell complex for EGL3(OQ(
√
−7))) from [1, 16], we

obtain

HFin
n (EGL3(OQ(

√
−7))); RC) ∼=





0, n > 5,

Z38, n = 4,

Z12 ⊕ (Z/4)4 ⊕ (Z/3)2 ⊕ (Z/2)2, n = 3,

Z14, n = 2,

Z24, n = 1,

Z30 ⊕ (Z/2)10, n = 0.

The correctness of our results depends of course heavily on the cell complexes for EG that we
take as input for the rigid facets subdivision algorithm and the subsequent calculations. Therefore,
for EGL3(Z[i]), we have compared two independent implementations, namely Sebastian Schönnen-
beck’s [1,16] and Mathieu Dutour Sikirić’s [5]. They produce the same group homology for PGL3(Z[i]).
We further have checked that the homology of the cell complex remains unchanged under our imple-
mentation of rigid facets subdivision, and that the equivariant Euler characteristic of EG vanishes
before and after subdividing.

Organization of the paper. In Section 2, we provide a counterexample in order to contradict the
possibility to compute the Bredon homology from an arbitrary non-rigid cell complex. In Section 3,
we provide the rigid facets subdivision algorithm. In Section 4, we apply the rigid facets subdivision
algorithm to a PSL4(Z), and compare the result with a computation using Brown’s conjugacy classes
cell complex. Concerning Brown’s conjugacy classes cell complex, in Section 5, we provide a slight
modification of a partial conjugacy classification of cyclic subgroups in general linear groups over
S-integer rings. In Section 6, we apply this modification in example computations on PSL4(Z) and
PGL3(Z[i]), and compare with the results that we obtain using the rigid facets subdivision algorithm.

Acknowledgements. We are grateful for support by Gabor Wiese’s Fonds National de la Recherche
Luxembourg grant (INTER/DFG/FNR/12/10/COMFGREP), which did facilitate meetings for this
project via visits to Université du Luxembourg by the first author (for one month) and the third
author. We would like to thank Graham Ellis for having supported the development of the first im-
plementation of our algorithms – the “Torsion Subcomplexes Subpackage” for his Homological Al-
gebra Programming (HAP) package in GAP. Very special thanks go to Sebastian Schönnenbeck
for having provided us the above-mentioned cell complexes, which has been an essential contribution
to our work.

2. Necessity of Rigidity for Bredon homology

From a non-rigid cell complex, i.e., a cell complex where cell stabilisers do not necessarily fix the
corresponding cell pointwise, one can compute classical group homology via the equivariant spectral
sequence with coefficients in the orientation module. Such an orientation module, where elements
of the stabilizer group act by multiplication with 1 or −1, depending on whether they preserve or
reverse the orientation of the cell, cannot exist for Bredon homology. We make this precise in the
following statement:

Proposition 1. There is no module-wise variation of the Bredon module with coefficients in the com-
plex representation ring and with respect to the system of finite subgroups such that Bredon homology
can be computed from a non-rigid cell complex.

Proof. We provide a counterexample in order to contradict the possibility to compute the Bredon
homology from an arbitrary non-rigid cell complex.

Consider the classical modular group PSL2(Z). A model for EPSL2(Z) is given by the modular
tree [17]. There is a rigid cell complex structure T1 on it, given as follows. By [17], the modular tree
admits a strict fundamental domain for PSL2(Z), of the shape

Z/3Z b b Z/2Z

with vertex stabilisers as indicated and trivial edge stabiliser. We obtain the cell complex T1 by
tessellating the modular tree with the PSL2(Z)-images of this fundamental domain. Obviously, T1 is
rigid, and it yields the Bredon chain complex

0 → RC(〈1〉) d−→ RC(Z/2Z)⊕RC(Z/3Z) → 0.
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The map d in the above Bredon chain complex is injective, and as RC(Z/nZ) ∼= Zn, we read off

HFin
1 (EPSL2(Z); RC) = 0, HFin

0 (EPSL2(Z); RC) ∼= Z4.

Now we equip the modular tree with an alternative equivariant cell structure T2, induced by the
non-strict fundamental domain

Z/3Z b b Z/3Z

where the (set-wise) edge stabilizer is Z/2Z, flipping the edge onto itself. It can be seen as a ramified
double cover of the fundamental domain for T1 discussed above. A system of representative cells for
T2 is given by the edge of double length, and one vertex of stabiliser type Z/3Z. This yields a chain
complex

0 → ˜RC(Z/2Z) → RC(Z/3Z) → 0,

where the tilde could be any construction which takes the non-trivial Z/2Z-action on the edge of
double length into account (similar to the coefficients in the orientation module for group homo-
logy computed from non-rigid cell complexes). But no matter how this construction is done, from

RC(Z/3Z) ∼= Z3, we can never reach HFin
0 (EPSL2(Z); RC) ∼= Z4. Hence T2 is our desired counter-

example. �

Remark 2. We could of course drop the condition “module-wise” in the above proposition, and
investigate whether there is a reasonable construction which maps the representation ring to a com-
plex of modules and yields a quasi-isomorphism from the total complex to the Bredon complex for
the subdivided tree. But with such a construction, one would only superficially hide the fact that
one needs to know how to subdivide in order to get the constructed complexes right. This means
that it will not be practicable to compute Bredon homology with respect to the system of finite
subgroups and coefficients in the complex representation ring without subdividing the cell complex
under consideration to make it rigid.

3. The rigid facets subdivision algorithm

In this section, we discuss the rigid facets subdivision algorithm which rigidifies equivariant cell
complexes. The core of the method is Algorithm 2, which is expected to run in reasonable time for
input coming from cell complexes for arithmetic groups. The key fact which guarantees that rigid
facets subdivision works, is Lemma 9.

Definition 3. Following the notation in [3], we use the term Γ-equivariant CW-complex, or simply
Γ-cell complex, to mean a CW-complex X on which a discrete group Γ acts cellularly, i.e., in such a
way that the action induces a permutation of the cells of X . We say the cell complex is rigid if each
element in the stabilizer of any cell fixes the cell pointwise.

Remark 4. The algorithm producing the subdivision of the Γ-equivariant CW-complex X only
modifies combinatorial data, based on the barycentric subdivison of individual cells. We require X to
come with a geometric realization, equipped with a metric such that each of the cells of X is convex,
the restriction of the metric to each cell is CAT(0) and the cell stabilizers act by CAT(0)-isometries.
We are not requiring that the metric is CAT(0) on the whole CW-complex. However, the examples
we are most interested in are those where Γ is an arithmetic group and the geometric realization of
X is the associated symmetric space.

Definition 5. A rigidification X̂ of a Γ-cell complex X is a rigid Γ-cell complex X̂ with the same
underlying topological space as X . The map passing through the underlying topological space is then
a Γ-equivariant homeomorphism X̂ → X of Γ-spaces. Note that a Γ-equivariant homeomorphism of
Γ-spaces does not need to preserve existing cell structure, so X̂ is allowed to have more cells than X .

The outer shell of the rigid facets subdivision is Algorithm 1, which subdivides (whenever necessary)
representatives of cell orbits using Algorithm 2.

Proposition 6. Let Γ be a discrete group, and let X be a Γ-equivariant CW-complex having finitely
many Γ-orbits and finite cell stabilizers. Assume furthermore that X is equipped with a metric as in
Remark 4. Then Algorithm 1 finds a rigidification of X (with respect to the Γ-action). It terminates
in finite time.
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Algorithm 1 Subdivide to get stabilisers which fix their cells pointwise

Input: An n-dimensional Γ-equivariant CW-complex X with finite cell stabilizers and a metric as
in Remark 4.
Output: A rigidification of X .

for m running from 0 to n do

for σ running through lifts of m-cells in Γ\X(m) do

if σ is not rigid then

Use Algorithm 2 to subdivide σ into a partition P , which is a union of rigid m-cells,
disjoint up to boundaries, with a fundamental domain F for the Γσ-action on P .
Run through all the (m+ 1)-cells; if their boundaries contain σ,

then replace σ by its partition P .
Replace the cell σ by F in Γ\X(m).

end if

end for

end for

Proof. The key step of the algorithm is proved by Lemma 9 below; the rest is a routine induction.
Lemma 9 is the point where the convexity and isometry requirements are needed. By the finiteness
assumptions for orbits and cell stabilizers, the loops are all deterministic over finite index sets. Each
operation inside them takes finite time, cf. Corollary 10, whence the claim. �

Observation 7. The outer shell Algorithm 1 can be used with any subdivision algorithm for the
cells. In particular, replacing the use of Algorithm 2 by the barycentric subdivision in Algorithm 1,
the claims of Proposition 6 still hold. However, as mentioned in the introduction, the reason for
developing Algorithm 2 is to reduce the blow-up in the number of cells, so as to make the algorithm
practically applicable to cell complexes for higher-rank arithmetic groups.

We now discuss the actual subdivision to rigidify cells, Algorithm 2.

Algorithm 2 — Rigid Facets Subdivision

Input: An m-cell σ with stabilizer group Γσ, with rigid faces, equipped with a metric as in
Remark 4.
Output: A Γσ-equivariant set of rigid m-cells, disjoint up to boundaries, consituting a partition
P of σ, together with a fundamental domain F for the action of Γσ on P .

• Sort the (m− 1)-faces of σ into orbits {{gjtσj}t}j under the action of Γσ, where j is indexing
the orbits and t is indexing the cells inside each orbit.

• Let T be the list containing the element g11σ1.
• In each orbit {gjtσj} with j > 2, choose one cell such that its union with the cells in T is

connected. Add the chosen cell to T .
• Use Algorithm 3 to construct the m-cell F :=

⋃
τ∈T convex envelope(τ , barycenter(σ)).

• Let Γpw
σ be the subgroup of Γσ which fixes the cell σ pointwise.

• Then P :=
∑

16t6|Γσ/Γ
pw
σ | g1tF is the desired partition of σ.

• Return P and F .

Remark 8. Essentially, Algorithm 2 produces a convex union of cells of the barycentric subdivision
which is a fundamental domain for the Γσ-action. The slight complications arise from the fact that
we don’t actually want to compute the full barycentric subdivision, to gain computational feasibility.

Lemma 9 (Rigid Facets Lemma). Let σ be a cell (with stabilizer Γσ), whose faces are all rigid and
which is equipped with a metric as in Remark 4. Let Γpw

σ be the subgroup of Γσ which fixes the cell
σ pointwise. Then there is a fundamental domain F for the action of Γσ/Γ

pw
σ on σ such that σ is

tessellated by |Γσ/Γ
pw
σ | copies of F .
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Proof. First we have to check that the statement is well defined in the sense that Γσ/Γ
pw
σ is a group.

This is the case because for all g in Γσ, for all γ in Γpw
σ , for all x in σ we have (g−1γg)x = g−1(γ(gx)) =

g−1(gx) = x. Therefore, as the kernel of the action of Γσ on σ, Γpw
σ is a normal subgroup; and there

is a short exact sequence of groups,

1 → Γpw
σ → Γσ → Γσ/Γ

pw
σ → 1,

which makes our statement well defined.
Suppose that α is one of the facets of σ. We are going to prove that the size of the orbit of α, under

the action of Γσ on the set of facets of σ, is |Γσ/Γ
pw
σ |. Let Γα be the stabilizer of α. We claim that

Γα ∩ Γσ = Γpw
σ . The action of Γσ on the compact set closure(σ) is by homeomorphisms; therefore,

any element of Γσ fixing σ pointwise also fixes the boundary ∂σ pointwise. Hence Γα ∩ Γσ ⊃ Γpw
σ .

On the other hand, let g ∈ Γα ∩ Γσ. Then by assumption on the rigidity of the facets, g fixes the cell
α pointwise. Since the cell σ is convex and the group acts by CAT(0)-isometries, the barycenter of σ
preserves its distances to the boundary ∂σ under the action of Γσ on σ, and hence remains fixed. As
a further consequence of the CAT(0) isometry, the fixed point set of g extends, by preservation of the
distances, from the convex envelope of α and the barycenter of σ to the whole cell σ. Hence, g is an
element of Γpw

σ . Thus, we can conclude that Γα ∩Γσ = Γpw
σ . Whence, the size of the orbit of α under

the action of Γσ is |Γσ/Γ
pw
σ |.

Furthermore, from Γα ∩Γσ = Γpw
σ , we see that Γσ/Γ

pw
σ acts freely on the set of facets of σ. So, we

can take one arbitrary representative αk for each orbit of facets, to unite to a fundamental domain
for Γσ/Γ

pw
σ on the set of facets of σ. Taking the convex envelope ek of αk and the barycenter of σ,

we get a fundamental domain F :=
⋃

k ek for Γσ/Γ
pw
σ on σ. By the above orbit size calculation, it

yields the desired tessellation. �

Corollary 10. Algorithm 2 terminates after finitely many steps and produces a rigid subdivision of
the cell σ.

Remark 11. The worst-case complexity of the above subdivision algorithm is not better than that
of the barycentric subdivision. If X is a single n-simplex with the natural permutation action of the
symmetric group Σn+1 acting on the vertices, then any rigidification will need to produce at least
(n+1)! = #Σn+1 top cells for X . However, the point is that the average cell complex for interesting
arithmetic groups has most of its cells rigid and only very few with maximally possible stabilizer.
Therefore, the average case complexity for the envisioned applications is significantly better than that
of the barycentric subdivision, as evidenced by the discussion in the introduction.

4. Example: Farrell–Tate cohomology of PSL4(Z) at the prime 3

Applying the rigid facets subdivision algorithm to the PSL4(Z)-equivariant cell complex from [5],
extracting the 3-torsion subcomplex, and reducing it using the methods of [10], we get the following
graph of groups T , decorated with the groups stabilizing the cells that are the pre-images of the
projection to the quotient space.

bb

S3

S3

S3 × S3 S3 × S3
C3 × S3 C3

b S3b
C3 × S3

The machine computation provided the following system of morphisms among the above cell stabil-
izers. The C3 × S3 edge stabilizer admits an isomorphism of groups (not the identity, though) to the
C3 × S3 vertex stabilizer and an inclusion into the S3 × S3 vertex stabilizer. Of the two S3 edge sta-
bilizers, one has maps diag(1, 1) and diag(1, 0) to the two S3 × S3 vertex stabilizers, and the other one
has maps diag(1,−1) and diag(−1,−1) to the two S3 × S3 vertex stabilizers. The C3 edge stabilizer
admits an inclusion into the second factor of the C3 × S3 vertex stabilizer, and an inclusion into the
S3 vertex stabilizer.
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Algorithm 3 Constructing the union of convex envelopes

Input: A list T of j-cells and an m-cell σ such that all τ ∈ T are faces of σ.
Output: A (j + 1)-cell F which has the same underlying topological space as⋃

τ∈T convex envelope(τ , barycenter(σ)).

Record the barycenter of σ as a new vertex, with stabilizer Γσ.
Enumerate the finite set S := {ρ is (j − 1)-cell | ∃! τ ∈ T : ρ ∈ ∂τ}.
Then S contains all the (j − 1)-faces ρ of all τ ∈ T such that ρ is not a common face of any two
j-cells τ1, τ2 ∈ T .

• For each s ∈ S, take the convex envelope e(s) of s and the barycenter of σ.
• Record e(s) as an oriented j-cell, with boundary

∂e(s) = {s} ∪
⋃

ε∈∂s

{convex envelope(ε, barycenter(σ))}.

For the stabilizers, we record Γe(s) = Γs∩Γσ and Γconvex envelope(ε,barycenter(σ)) = Γε∩Γσ. The
(j + 1)-cell F is determined by all the j-faces τ ∈ T and e(s) (for all s ∈ S). Here, we have
to take care of which of the newly constructed cells e(s) are on the same Γσ-orbit. In order to
decide this, we make use of their common vertex, the barycenter of σ :

• Identify the orbits e(s1) and e(s2) if and only if ∃ γ ∈ Γσ : γs1 = s2.
• Attribute arbitrary orientations to Γσ-representatives of the new cells e(s), and spread them

on their Γσ-orbit using the above identifications.
• Return the (j + 1)-cell F with boundary

∂F =
⋃

τ∈T

τ ∪
⋃

s∈S subject to the above identifications

e(s)

and stabilizer Γσ ∩⋂
τ∈T Γτ .

By the properties of torsion subcomplex reduction, the PSL4(Z)-equivariant cohomology of the
3-torsion subcomplex is isomorphic to the PSL4(Z)-equivariant cohomology of the above graph of
groups T . Similarly, the Farrell–Tate cohomology of PSL4(Z) at the prime 3 is isomorphic to the
Farrell–Tate cohomology of the above graph of groups. In the following, we evaluate the isotropy
spectral sequence

Ep,q
1 =

⊕

σ∈Tp

Hq(Stab(σ);F3) ⇒ Ĥ
p+q

(PSL4(Z);F3)

converging to Farrell–Tate cohomology. As we only consider a graph, the spectral sequence is concen-
trated in the two columns p = 0, 1. The differential d1 is induced from the inclusions of subgroups,
up to the sign coming from the choice of orientation of the graph. Since the spectral sequence is
only concentrated in the first two columns, we will have E2 = E∞. Since we are interested in field
coefficients, there are no extension problems to solve at the E∞-page.

The relevant cohomology groups of the finite groups are:

• H•(C3;F3) ∼= F3[x](a) with deg a = 1 and deg x = 2.
• H•(S3;F3) ∼= F3[y](b) with deg b = 3 and deg y = 4.
• By the Künneth formula,

H•(S3 × S3;F3) ∼= H•(S3;F3)
⊗2, H•(C3 × S3;F3) ∼= H•(C3;F3)⊗H•(S3;F3).

To describe the d1-differential, it is enough to note that the restriction map associated to the inclusion
C3 →֒ S3 is the inclusion of Z/2Z-invariants.

Now, for the evaluation of the spectral sequence, we first deal with the edges attached to the loop.

(1) The restriction map

φ⊕ (ResS3

C3
◦ pr∗2) : F3[x2](a1)⊗ F3[y4](b3) ∼= H•(C3 × S3;F3)

→ H•(C3 × S3;F3)⊕H•(C3;F3)
∼= F3[z2](c1)⊗ F3[w4](d3)⊕ F3[u2](e1)

is injective with cokernel isomorphic to H•(C3;F3). Here φ denotes the isomorphismC3 × S3 ∼=
C3 × S3 appearing as stabilizer inclusion in the reduced torsion subcomplex.
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(2) The inclusion of the dihedral vertex group into the cyclic edge group is an injection

ResS3

C3
: H•(S3;F3) →֒ H•(C3;F3)

given by the inclusion of the invariant elements for the C2-action by −1. Therefore, the
cokernel is concentrated in degrees 1, 2 mod 4 (except for the degree 0).

Therefore, we can reduce the E1-page of the spectral sequence as follows: from (1), we find that
we can remove the two summands for C3 × S3 from the columns p = 0 and p = 1, respectively; but in
turn, we have to replace the restriction map for C3 × S3 →֒ S3 × S3 by a map from the cohomology
of S3 × S3 to the cokernel of the restriction map in (2). However, since the latter is concentrated
in degrees 1 and 2, the induced restriction map is trivial in the generating degrees 3 and 4, hence
it is trivial. Therefore, the E1-page decomposes: one contribution comes from the cokernel of the
restriction map H•(S3;F3) →֒ H•(C3;F3), the other contribution comes from the loop connecting the
two copies of S3 × S3 via the S3-edges.

The cohomology of the loop is computed as follows:

(3) The restriction maps diag(1, 1), diag(1, 0), diag(1,−1) and diag(−1,−1) :

F3[x4, y4](a3, b3) ∼= H•(S3 × S3;F3) → H•(S3;F3) ∼= F3[z4](c3)

are surjective. On the kernel of diag(1, 1), the restriction of diag(1,−1) is still surjective. On
the kernel of diag(−1,−1), the restriction of diag(1, 0) is still surjective.

Therefore, the cohomology of one edge of the loop is killed already by the restriction map from
any one of the vertex groups. Number the S3 × S3-vertices by 1 and 2, and the S3-edges by a and
b. The restriction from the vertex group 1 to the edge a is surjective. Removing this part from the
spectral sequence, the restriction from the vertex group 2 to the edge a is trivial, but we still have
the restriction to the edge b. This kills the edge cohomology b, showing that the differential d1 is
surjective in the loop part of the E1-page. The kernel of the differential consists then exactly of two
copies of the kernel of a restriction map ResS3 × S3

S3
.

Theorem 12. The Farrell–Tate cohomology of the group PSL4(Z) (with coefficients in F3) in degrees
> 2 is given as follows:

Ĥ
•
(PSL4(Z);F3) ∼=

(
kerResS3 × S3

S3

)⊕2

⊕ coker
(
H•−1(S3;F3) → H•−1(C3;F3)

)
.

This, in particular also computes the 3-torsion group cohomology of PSL4(Z) above the virtual co-
homological dimension.

The cokernel of the d1-differential in degree 0 and hence the first cohomology Ĥ
1
(PSL4(Z);F3) is

of F3-rank 1, coming from the loop of the 3-torsion graph.

Remark 13. The kernel comes from the p = 0 column of the E2 = E∞-page. The cokernel comes
from the p = 1 column and consequently has a shift.

Inspired by Grunewald, we consider the Hilbert–Poincaré series of the Farrell–Tate cohomology of
PSL4(Z) with coefficients in Fℓ :

HPPSL4(Z)(T ; ℓ) :=

∞∑

q=1

dim Ĥ
q
(PSL4(Z);Fℓ) · T q.

Corollary 14. The Hilbert–Poincaré series of the 3-torsion Farrell–Tate cohomology of PSL4(Z) (for
degrees > 1) is then

HPPSL4(Z)(T ; 3) = T +
2(T 3 + T 4 + T 6 + T 7)

(1− T 4)2
+
T 2 + T 3

1− T 4
.

Remark 15. Note that the above calculation describes the Farrell–Tate cohomology in all degrees,
not just some small ones. Essentially, the computer calculation produces the reduced torsion subcom-
plex (which encodes the cohomology for all degrees). The spectral sequence is evaluated using the
cup-product structure. Note that the finiteness results for group homology imply that the cup-product
structure for both group and Farrell–Tate cohomology is finitely generated. Using suitable commut-
ative algebra packages, such computations of the ring structure (and therefore additive computations
for all cohomological degrees) could probably also be automated.
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We make the following consideration on the compatibility of our result for Farrell–Tate cohomology
with the result of Dutour–Ellis–Schürmann [5] for group homology in low degrees. The isomorphism
types computed in the latter article are to correspond as follows to the evaluation of our above
Hilbert-Poincaré series in those degrees.

Hq(PSL4(Z);Z) ∼=



























0, q = 1,

(Z/2)3, q = 2,

Z ⊕ (Z/4)2 ⊕ (Z/3)2 ⊕ Z/5, q = 3,

(Z/2)4 ⊕ Z/5, q = 4,

(Z/2)13, q = 5,

— dim Ĥ
q
(PSL4(Z);F3) =



























1, q = 1,

1, q = 2,

3, q = 3,

2, q = 4,

0, q = 5.

For this to be consistent, the Farrell–Tate cohomology groups in degrees 1 and 2 need to vanish
in group homology; so, these should be annihilated by differentials from the orbit space. We have
evidence for this in degree 1, since the loop in the graph becomes contractible in the orbit space of
the full locally symmetric space. In degree 3, one of the summands in H3(PSL4(Z);Z) is rationally
non-trivial and must come from the orbit space. This means that only the submodule (Z/3)2 can
come from Farrell–Tate cohomology, and the third dimension that we observe in degree 3 Farrell–Tate
cohomology must belong to the degree 2 stabilizer cohomology class that is annihilated by the above
mentioned differentials from the orbit space.

From Theorem 12, we deduce that the degree 2 Farrell–Tate class can only come from

coker
(
H•−1(S3;F3) → H•−1(C3;F3)

)
.

Then, this class and its group homology counterpart sit at position p = 1, q = 1 in the respective
equivariant spectral sequence, and hence the annihilating differential, emanating from the orbit space
homology module Z ⊂ H3(PSL4(Z);Z) sitting at position p = 3, q = 0, must be of second degree.

In degrees 4 and 5, the dimensions already agree via the Universal Coefficient Theorem, so here
we infer that the submodule (Z/3)2 in degree 3 should actually come from Farrell–Tate cohomology,
so it should be stabilizer cohomology that is not hit by higher degree differentials.

5. Conjugacy classification of cyclic subgroups

In this section, we will provide a slight modification of a partial conjugacy classification of cyclic
subgroups in general linear groups over S-integer rings. Most of what follows is essentially based on
Reiner’s article [13] on the isomorphism classification of modules over the integral group ring Z[Cℓ].

Denote by OK,S a ring of S-integers in a global field K, and let Cℓ be the cyclic group of or-
der ℓ. The goal is the conjugacy classification of embeddings Cℓ →֒ GLn(OK,S). As first step, the
classical argument, cf. [8], provides a relation between the conjugacy classification and isomorphism
classification of modules over group rings.

Proposition 16. There is an injection from conjugacy classes of embeddings Cℓ →֒ GLn(OK,S) to
isomorphism classes of OK,S [Cℓ]-modules whose underlying OK,S-module is free of rank n. The only
isomorphism class not in the image is the one where the Cℓ-action is trivial.

Proof. (i) Assume we have a subgroup Cℓ →֒ GLn(OK,S). In particular, we have a non-trivial action
of Cℓ on M = O⊕n

K,S . We use this action to turn M into an OK,S [Cℓ]-module by letting the element

[g] for g ∈ Cℓ act via the embedding Cℓ →֒ GLn(OK,S).
(ii) Assume we have two subgroups φ, φ′ : Cℓ →֒ GLn(OK,S) which are conjugate. Then any

conjugating matrix A gives rise to commutative diagrams

O⊕n
K,S

φ(g)
//

A

��

O⊕n
K,S

A

��

O⊕n
K,S φ′(g)

// O⊕n
K,S

showing that the two OK,S [Cℓ]-modules associated to φ and φ′ are isomorphic via A.
(iii) Conversely, assume we have an OK,S [Cℓ]-module M whose underlying OK,S-module is free of

rank n. We choose an OK,S-basis for M . The representing matrices for the automorphisms [g] for
g ∈ Cℓ provide an embedding Cℓ →֒ GLn(OK,S) since by assumption the action of [g] ∈ Cℓ is non-
trivial. Different choices of basis will give rise to subgroups which are conjugate via change-of-basis
matrices.
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(iv) Assume we have an isomorphism f : M ∼= M ′ of OK,S [Cℓ]-modules as in (iii). Then a choice
of basis for M induces a choice of basis for M ′ via f . With these choices of bases, the modules M
and M ′ give rise to the same subgroup of GLn(OK,S). The independence-of-basis statement in (iii)
implies that the subgroups associated to M and M ′ (for arbitrary choices of bases) are conjugate. �

Let φ : Cℓ → Cℓ be an automorphism of the cyclic group. Then φ induces an OK,S-linear
automorphism of OK,S [Cℓ] in the obvious way. For the purposes of the next result, we call such
automorphisms special.

Corollary 17. Under the bijection of Proposition 16, the centralizer of a subgroup Cℓ →֒ GLn(OK,S)
is isomorphic to the OK,S [Cℓ]-automorphism group of the corresponding module M . The normalizer
is isomorphic to the group of OK,S-automorphisms which are semilinear with respect to a special
automorphism of OK,S [Cℓ].

Proof. We consider a fixed subgroup (as opposed to a conjugacy class), and consider the associated
module M , equipped with the corresponding choice of basis. Then a matrix A in the centralizer of
ι : Cℓ →֒ GLn(OK,S) provides commutative diagrams for all g ∈ Cℓ:

O⊕n
K,S

ι(g)
//

A

��

O⊕n
K,S

A

��

O⊕n
K,S ι(g)

// O⊕n
K,S .

As in the proof of Proposition 16, this provides an automorphism of the OK,S [Cℓ]-module M . This
construction is obviously compatible with composition.

Conversely, an OK,S [Cℓ]-automorphism of the module M corresponding to ι provides a change-of-
basis matrix which is in the centralizer of ι. Again, this is obviously compatible with composition.

The two constructions above are inverses, proving the claim for the centralizer. The claims for the
normalizer are proved in the same way, changing the lower morphism in the commutative diagram
from ι(g) to φ ◦ ι(g). �

To compute the relevant examples of Farrell–Tate cohomology of linear groups, we will use Brown’s
formula for ℓ-rank 1, cf. [2, Corollary X.7.4]. For this, we need to determine conjugacy classes of cyclic
subgroups as well as the structure of their normalizers. The above statements translate these questions
to an isomorphism classification of modules over groups rings, and the question of automorphism
groups of such modules. For cyclic groups, these questions can be approached using the classical
work of Reiner, cf. [13].

5.1. Relative integral bases. Reiner’s analysis of the modules over the group ring Z[Cℓ] is es-
sentially based on the class group theory for cyclotomic integers. In the generalization to rings of
S-integers, we will therefore need some assumption on the situation.

As usual, denote by Φℓ(T ) the cyclotomic polynomial. If Φℓ(T ) is notK-irreducible, then the degree
of ζℓ overK is a strict divisor of the degree of Φℓ(T ). In this case, we haveOK,S [ζℓ] = OK,S [T ]/(Ψℓ(T ))
where Ψℓ(T ) is the minimal polynomial of ζℓ over K.

To get a full analogue of Reiner’s result, we assume that the ring OK,S [T ]/(Φℓ(T )) is
a Dedekind domain. Some results will work under the weaker hypothesis that OK,S [ζℓ]
is a Dedekind domain. We will make these cases explicit.

Note that even if OK,S [ζℓ] is a Dedekind domain, OK,S [T ]/(Φℓ(T )) need not be a Dedekind domain.
If Φℓ(T ) is not K-irreducible, then the total ring of fractions is K[T ]/(Φℓ(T )) which is a direct sum
of copies of K(ζℓ), corresponding to the number of K-factors of Φℓ(T ).

Example 18. In the case K = Q(
√
−7) and ℓ = 7, denote by N7 the norm element in Z[C7]. Then

OK [Cℓ]/(N7) is a fiber product of two copies of OK [ζ7] over the quotient OK [ζ7]/(
√
−7

3
) where

√
−7

3

is the resultant of the two K-factors of Φ7(T ). �

The Dedekind domain requirement is crucial because it provides a bijection between finitely gen-
erated torsion-free modules of fixed rank n and the class group. The ring OK,S [ζℓ] is a Dedekind ring
precisely when the relevant powers of ζℓ form a relative integral basis of K(ζℓ)/K. For most of our
purposes, the following statement will be sufficient.
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Lemma 19. Let K/Q be Galois extension such that (ℓ, dK) = 1. Then

OK(ζℓ) = OK [ζℓ] ∼= OK [T ]/(Φℓ(T )).

Proof. The discriminant of Q(ζℓ)/Q is a power of ℓ so that by assumption the discriminants of K
and Q(ζℓ) are coprime. Then the product of the integral bases of K/Q and Q(ζℓ)/Q is an integral

basis of K(ζℓ)/Q. In particular, any element of OK(ζℓ) is an OK-linear combination of 1, ζℓ, . . . , ζ
ℓ−1
ℓ ,

hence these form a relative integral basis of K(ζℓ)/K. �

5.2. Conjugacy classification. In this section, we provide a recollection and slight extension of
Reiner’s study of isomorphism classification of modules over group rings for cyclic groups.

Our situation is the following: let K be a number field, let S be a finite set of places containing
the infinite ones, and denote by OK,S the ring of S-integers in K. Denote by Cℓ the cyclic group of
order ℓ where ℓ is a prime. In some cases relevant to the Farrell–Tate cohomology computation, we
will give a classification of OK,S [Cℓ]-modules which are OK,S-free.

We now proceed with the analysis of the finitely generated OK,S-free OK,S [Cℓ]-modules under the
assumption that OK,S [T ]/(Φℓ(T )) is a Dedekind domain. Note that in this case we actually have
OK,S [T ]/(Φℓ(T )) ∼= OK,S [ζℓ]. The argument essentially follows [13].

Let M be an OK,S-free OK,S [Cℓ]-module. Denote by N =
∑

g∈Cℓ
[g] the norm element. The set

MN = {m ∈M | N ·m = 0} of elements of M annihilated by the norm element has a natural module
structure over the quotient ring OK,S [Cℓ]/(N). The kernel of the natural surjective morphism

OK,S [Cℓ] → OK,S [T ]/(Φℓ(T )) : [1] 7→ T

is generated by Φℓ([1]) = N. In particular, we get an induced isomorphism

OK,S [Cℓ]/(N) ∼= OK,S [T ]/(Φℓ(T )) ∼= OK,S [ζℓ],

From the above, the module MN embeds into a direct sum of copies of K(ζℓ) and hence is finitely
generated and torsion-free over OK,S [ζℓ]. By assumption, OK,S [ζℓ] is a Dedekind ring, hence finitely
generated and torsion-free implies projective and the general theory states that MN is of the form
OK,S [ζℓ]

r⊕a with a a fractional ideal of OK,S [ζℓ]. The OK,S [ζℓ]-module (and the restricted OK,S [Cℓ]-
module) MN is completely determined by r and the ideal class of a.

There is an inclusion of OK,S [ζℓ]-modules

MN ⊃ ([1]− 1)M ⊃ (ζℓ − 1)MN,

where [1] denotes the element of OK,S [ζℓ] corresponding to a (choice of) generator of Cℓ. From
standard results on Dedekind rings (as in Reiner’s paper), we find that the quotient ([1]− 1)M/(ζℓ −
1)MN is a free module over the quotient ring OK,S [ζℓ]/(ζℓ − 1). It should be noted at this point that
OK,S [ζℓ]/(ζℓ − 1) ∼= OK,S/(ℓ) (because the same is true over Z).

The quotient M/MN is a finitely generated torsion-free OK,S-module. Hence it is projective and
the sequence 0 → MN → M → M/MN → 0 splits (as OK,S-modules). The module M is OK,S-free
by assumption. Therefore, as OK,S-modules, we have MN

∼= Oa
K,S ⊕ b and M/MN

∼= Ob
K,S ⊕ b−1 for

some fractional OK,S-ideal b. The module M/MN (both as OK,S-module and as OK,S [Cℓ]-module)
is determined up to isomorphism by b and the ideal class of b. Since the ideal b is equivalent to the
norm of the ideal a in the extension OK,S [ζℓ]/OK,S , its ideal class is determined by the one of a.

It remains to identify the OK,S [Cℓ]-module structure of M in terms of the module structures of
MN and M/MN. For this, it suffices to determine the action of [1]. We noted above that MN

∼=
OK,S [ζℓ]

r ⊕ a and there is a surjection MN ։ (OK,S [ζℓ]/(ζℓ − 1))
s
=: B compatible with the above

decomposition. Choose β1, . . . , βs preimages of 1: in the summands OK,S [ζℓ] we can just choose 1, in
the a-summand we can choose any element not contained in (ζℓ − 1)a. As in Reiner’s paper, we have

([1]− 1)M = (ζℓ − 1)MN + ([1]− 1)X,

where X is a choice of OK,S-complement of MN lifting M/MN. Therefore, any element of the form
(g− 1)x for x ∈M/MN is congruent module (ζℓ − 1)MN to an OK,S/(ℓ)-linear combination of the βi.
The normalization of the action for the OK,S-free part is done as in [13, Lemma 4].

To deal with the non-free part b of M/MN, denote by β the choice of lift of 1 ∈ OK,S/(ℓ) ∼=
a/(ζℓ − 1)a to a. The norm NmK(ζℓ)/K(β) is an element of Nm(a) ∼= b. Then ([1]− 1)x for x ∈ b is

congruent to β · ev(Nm(β), x), by an appropriate version of [13, Lemma 4]. Here ev : b⊗b−1 → OK,S

is the evaluation pairing.
To sum up, this shows the following
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Theorem 20. Let OK,S be a ring of S-integers in a number field, let ℓ be a prime and assume that
OK,S [T ]/(Φℓ(T )) is a Dedekind domain. Then the isomorphism classes of finitely generated OK,S-free
OK,S [Cℓ]-modules are parametrized by

(1) the OK,S [ζℓ]-rank of MN,
(2) the ideal class of the determinant of the OK,S [ζℓ]-module MN,
(3) the OK,S-rank of M/MN,
(4) the OK,S/(ℓ)-rank of the quotient ([1]− 1)M/(ζℓ − 1)MN.

In the above, any integer n > 0 is possible in (i) and (iii), but the integer in (iv) is bounded above by
min(i,iii). Any ideal class is possible.

We now outline a very special case of the classification which works under the weaker assump-
tion that OK,S [ζℓ] is a Dedekind ring but in which Φℓ(T ) need not be K-irreducible. We restrict
to the case where MN has OK,S [ζℓ]-rank 1. In this case, base-change to K results in one of the
irreducible K-representations of Cℓ. The OK,S [T ]/(Φℓ)-module structure factors through a projec-
tion OK,S [T ]/(Φℓ) ։ OK,S [ζℓ] and is completely determined by this. Again, the OK,S [Cℓ]-module
structure of MN is completely determined by a fractional ideal a in OK,S [ζℓ]. The rest of the analysis
goes through to show the following

Proposition 21. Let OK,S be a ring of S-integers in a number field, let ℓ be a prime and assume
that OK,S [ζℓ] is a Dedekind domain. Then the isomorphism classes of finitely generated OK,S-free
OK,S [Cℓ]-modules M where MN has OK,S [ζℓ]-rank 1 are parametrized by

(1) the ideal class of the OK,S [ζℓ]-module MN,
(2) the OK,S-rank of M/MN,
(3) the OK,S/(ℓ)-rank of the quotient ([1]− 1)M/(ζℓ − 1)MN.

In the above, any integer n > 0 is possible in (ii), but the integer in (iii) can only be 0 or 1. Any
ideal class is possible.

Remark 22. Pulling back modules along the two projections OQ(
√
−7)[T ]/(Φ7(T )) → OQ(ζ7) results

in non-isomorphic modules, belonging to non-isomorphic Q(
√
−7)-representations of C7. However,

this effectively only amounts to different choices of generators of conjugate subgroups. If we are only
interested in counting subgroups, this doesn’t affect the end result.

5.3. Centralizers and normalizers. We now need to describe centralizers and normalizers of the
corresponding Cℓ-subgroups of GLn(OK,S). For the purpose of the following section, fix a subgroup
ι : Cℓ →֒ GLn(OK,S) and the corresponding OK,S [Cℓ]-module M . Since our intended application
is to essential rank one cases, most notably GL3(OK,S), we assume throughout the section that the
associated module M is such that its associated representation over K is of the form K ×K(ζℓ). We
also assume in the following section that OK,S [ζℓ] is a Dedekind domain.

First, we can embed GLn(OK,S) →֒ GLn(K). The centralizer of Cℓ →֒ GLn(K) is the automorph-
ism group of the representation M ⊗OK,S

K ∼= K × K(ζℓ) of Cℓ over K. Under our assumptions
ζℓ 6∈ K the Cℓ-representation K(ζℓ) is K-irreducible. In particular,

HomK[Cℓ](K(ζℓ),K) ∼= HomK[Cℓ](K,K(ζℓ)) ∼= 0.

From this, any K[Cℓ]-automorphism φ of K ⊕K(ζℓ) must be of the form φK ⊕ φK(ζℓ) where φK and
φK(ζℓ) are K[Cℓ]-automorphisms of K and K(ζℓ), respectively. Via the embedding GLn(OK,S) →֒
GLn(K), the same must be true for automorphisms of the OK,S [Cℓ]-modules. In terms of the central-
izer as a subgroup of GLn(OK,S), this means that the centralizer must be conjugate to a block-diagonal
matrix. For the normalizer, similar statements apply. The only additional elements in the normalizer
would come from K-linear automorphisms of K(ζℓ) which are accounted for by the Galois group
Gal(K(ζℓ)/K).

Now we need some induction-type theorems to determine the automorphism groups of the indi-
vidual almost-direct summands of the module M .

Lemma 23. Let M be an OK,S [Cℓ]-module such that multiplication with the norm element N is the
zero map and assume that the OK,S [ζℓ]-rank of M is 1. Then

AutOK,S [Cℓ](M) ∼= AutOK,S[ζℓ](M) ∼= OK,S [ζℓ]
×.

Proof. Since the norm element N annihilates M , it has an induced module structure for

OK,S [Cℓ]/(N) ∼= OK,S [ζℓ].
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This yields a homomorphism AutOK,S[Cℓ](M) → AutOK,S [ζℓ](M). This homomorphism is injective,
since both automorphism groups embed into AutOK,S

(M). The natural restriction map along the
homomorphism OK,S [Cℓ] → OK,S [ζℓ] provides an inverse, establishing the first isomorphism.

For the second isomorphism, we know by Reiner’s classification result that M is a finitely generated
projective OK,S [ζℓ]-module, and our additional assumption is that its rank is 1. Since local units can
be patched to global units, the automorphism group of a finitely generated projective OK,S [ζℓ]-module
of rank 1 is isomorphic to OK,S [ζℓ]

×. �

Lemma 24. Let M be an OK,S [Cℓ]-module such that multiplication with the norm element N is
injective and M is OK,S-free of rank 1. Then

AutOK,S [Cℓ](M) ∼= AutOK,S
(M) ∼= O×

K,S .

Proof. Injectivity of multiplication with the norm implies that the action of Cℓ is trivial, by Reiner’s
classification result [13].

By assumption we have M ∼= OK,S (as OK,S-modules), and therefore the second isomorphism
AutOK,S

(M) ∼= O×
K,S follows immediately.

An OK,S [Cℓ]-automorphism ofM is in particular an OK,S-automorphism, giving rise to an injective
restriction map AutOK,S [Cℓ](M) → AutOK,S

(M). Since any OK,S-automorphism of M automatically
commutes with the trivial Cℓ-action we get the first isomorphism. �

The above results now imply that we have an induced morphism

AutOK,S [Cℓ](M) → OK,S [Cℓ]
× ×O×

K,S .

where M is a module corresponding to a Cℓ-subgroup of GL3(OK,S). For the split module, this
actually describes the full centralizer. For the non-split module where there is an additional unipotent
action, we have morphisms OK,S [ζℓ] → OK,S/(ℓ) and OK,S → OK,S/(ℓ) given by reduction mod ℓ.
These ring homomorphisms induce maps on the unit groups.

Lemma 25. Assume M is the OK,S [Cℓ]-module associated to a Cℓ-subgroup of GL3(OK,S) where
[K(ζℓ) : K] = 2. The induced morphism from the automorphism group above factors through an
isomorphism

AutOK,S [Cℓ](M) → OK,S [Cℓ]
× ×(OK,S/(ℓ))

× O×
K,S .

Proof. It remains to identify the image of the induced morphism. Let

(φ, ψ) ∈ OK,S [Cℓ]
× ×(OK,S/(ℓ))× O×

K,S .

To set up notation, let M = a ⊕ OK,S with the action specified as in Reiner’s results. We need to
check when (φ, ψ) commutes with the action on the summand OK,S . This action sends a generator y
to (β, y) where β ∈ a is a choice of preimage of 1 in OK,S/(ℓ). Formulated differently, the action on

x ∈ OK,S adds a specific choice of lift x̃ ∈ a of the reduction x of x mod ℓ. For notational purposes,

we denote x̃ by β(x).
Now we want to determine when the action commutes with the automorphism (φ, ψ). If we first

apply the action and then the automorphism, then we get φ(β(y)) in the component a. If, on the
other hand, we first apply the automorphism and then the action, we get β(ψ(y)) in the component
a. For φ(β(y)) = β(ψ(y)), it is necessary and sufficient that the reduction of φ and ψ to OK,S/(ℓ)
are the same. This is precisely the claim. �

Lemma 26. Assume M is the OK,S [Cℓ]-module associated to a Cℓ-subgroup of GL3(OK,S) with
[K(ζℓ) : K] = 2. In particular, M ∼= a ⊕OK,S for an ideal class a of OK,S [ζℓ]. The group of special
semilinear automorphisms of M is of the form

(
AutOK,S[Cℓ](M)

)
⋊ Stab(a,Gal(K(ζℓ)/K)).

The action is the natural Galois action on the automorphism group, viewed as fiber product of unit
groups as in Lemma 25.

Proof. By embedding OK,S [Cℓ] →֒ K[Cℓ], we already know that the only semilinear automorphisms
that are not in the automorphism group come from the Galois-action of Gal(K(ζℓ)/K). However, the
Galois group does not need to stabilize the isomorphism class of the module; this happens whenever
we have a non-trivial Galois action on the class group of K(ζℓ). The semilinear automorphisms
modulo the linear ones are exactly identified with the stabilizer of the ideal class a in the Galois
group, as claimed. �
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6. Example cases

Now we discuss a couple of example cases to compare them to the computer calculations as sanity
check. Actually, the following examples can be generalized to computations of Farrell–Tate cohomo-
logy of groups PGL3(OK,S) provided ζℓ 6∈ K and OK,S [ζℓ] is a Dedekind ring.

6.1. Homological 3-torsion in PGL3 over quadratic imaginary integers. We applied the rigid
facets subdivision algorithm to the PGL3(Z[i]) cell complex of Mathieu Dutour Sikiric [5] and the
GL3(Z[i]) cell complex of Sebastian Schoennenbeck [16], extracted the 3-torsion subcomplex, and
reduced it using the methods of [10], in both cases obtaining the following graph T consisting of two
equivalent connected components.

C3b bD3 D3
C3b bD3 D3

Because there is up to conjugating isomorphism just one inclusion C3 → D3, the dp,q1 -differentials of
the equivariant spectral sequence with F3-coefficients on T have the maximal possible ranks, i.e., they
are surjective whenever both originating domain and target contain 3-torsion. Then the E2 = E∞
page yields

dimF3 Ĥ
p+q

(PGL3(Z[i]);F3) =



















0, p + q ≡ 1 mod 4,

2, p + q ≡ 2 mod 4,

4, p + q ≡ 3 mod 4,

2, p + q ≡ 4 mod 4.

In order to check the above result, we compute now the Farrell–Tate cohomology of PGL3(OQ(
√
−d))

with F3-coefficients, for positive square-free d, using the Brown complex. To be able to use Lemma 19
to get relative integral bases we are excluding the problematic cases where 3 | d. Restricting further
to the short list of those d where Q(

√
−d) has class number 1, we can then apply Reiner’s result,

cf. Theorem 20. These results tell us that there are 2 hQ(
√
−d,ζ3)

conjugacy classes of embeddings

C3 →֒ GL3(OQ(
√
−d)); for each element of the class group of Q(

√
−d, ζ3), we have the two possible

choices of either the split module or the fiber product over OQ(
√
−d)/(3). However, for the imaginary

quadratic fields with class number 1 and discriminant coprime to 3, i.e., the fields Q(
√
−d) with

d ∈ {1, 2, 7, 11, 19, 43, 67, 163}, the extension fields Q(
√
−d, ζ3) also all have class number 1. Therefore,

for these d, the group GL3(OQ(
√
−d)) has exactly 2 conjugacy classes of cyclic subgroups of order 3.

The corresponding centralizers are of the form

O×
Q(

√
−d,ζ3)

×O×
Q(

√
−d)

and O×
Q(

√
−d,ζ3)

×(OQ(
√

−d)/(3))
× O×

Q(
√
−d)

,

respectively, and the normalizers will be extensions of these by the group

Gal(Q(
√
−d, ζ3)/Q(

√
−d)) ∼= Z/2Z

acting as multiplication by −1 on the first factor and trivially on the second. Note that these actions
are actually compatible via the reduction to OQ(

√
−d)/(3) because the extension Q(

√
−d, ζ3)/Q(

√
−d)

is completely ramified over (3).
By Dirichlet’s unit theorem, we have

(
O×

Q(
√
−d,ζ3)

×O×
Q(

√
−d)

)
⋊ Z/2Z ∼= ((Z× µ3)⋊ Z/2Z)× µ×2

n

where n = 2 except in the case K = Q(i) where n = 4.
For the normalizers of the non-split representation, denote by E = OQ(

√
−d)/(3). We have two

cases: E ∼= F3 × F3 if −d is a square mod 3 (i.e. for d ∈ {2, 11}) and E ∼= F9 if not (i.e. for
d ∈ {1, 7, 19, 43, 67, 163}). We have (F3 × F3)

× ∼= (Z/2Z)×2 and F×
9

∼= Z/8Z. The reduction map
O×

Q(
√
−d)

→ E× is injective for any d. For O×
Q(

√
−d,ζ3)

∼= Z×µ3n, the reduction map O×
Q(

√
−d,ζ3)

→ E×

is injective on µn and the zero map on µ3. In particular, we have
(
O×

Q(
√
−d,ζ3)

×E× O×
Q(

√
−d)

)
⋊ Z/2Z ∼= ((Z× µ3)⋊ Z/2Z)× µn

We can now state the computation of the Farrell–Tate cohomology of PGL3(OQ(
√
−d)).

Proposition 27. Let d ∈ {1, 2, 7, 11, 19, 43, 67, 163}. Then we have

Ĥ
• (

PGL3(OQ(
√
−d));F3

)
∼= Ĥ

•
((Z× µ3)⋊ Z/2Z;F3)

⊕2

More explicit information on the Farrell–Tate cohomology of such groups can now be obtained via
the following computation included in [12]:
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Proposition 28. Let A = Z/nZ×Zr, and let ℓ be an odd prime with ℓ | n. Then, with b1, x1, . . . , xr
denoting classes in degree 1 and a2 a class of degree 2, we have

Ĥ
•
(A;Fℓ) ∼= Ĥ

•
(Z/nZ;Fℓ)⊗Fℓ

•∧
Fr
ℓ
∼= Fℓ[a2, a

−1
2 ](b1, x1, . . . , xr).

The Hochschild–Serre spectral sequence associated to the semi-direct product A⋊Z/2Z (where Z/2Z
acts as −1 on A) degenerates and yields an isomorphism

Ĥ
•
(A⋊ Z/2Z;Fℓ) ∼= Ĥ

•
(A;Fℓ)

Z/2Z.

The invariant classes are then given by a⊗2i
2 tensor the even exterior powers plus a

⊗(2i+1)
2 tensor the

odd exterior powers.

As a direct application, the Farrell–Tate cohomology of a group like

OK [ζℓ]
× ⋊Gal(K(ζℓ)/K) ∼= (Z× Z/nZ)⋊ Z/2Z

with K = Q(
√
−d) (where the action in the semidirect product on the right is consequently given

by multiplication with −1) looks like the direct sum of two copies of the cohomology of the dihedral
group with 2n elements, with one copy shifted by one.

The algebra in Proposition 27 is given by the Z/2Z-invariant elements in F3[a
±1
2 ](b1, x1), where

the action of Z/2Z is by multipliation with −1 on all the generators. The invariant subalgebra is then
generated by the classes b1x1 in degree 2, b1a2 and x1a2 in degree 3, and a22 in degree 4. Consequently,
the Hilbert–Poincaré series for the positive degrees is

2
T 2 + 2T 3 + T 4

1− T 4
= 2

T 2(1 + T )2

1− T 4
.

Actually, similar results are true for real quadratic fields of class number one with discriminant
coprime to 3. There are two conjugacy classes of order 3 subgroups. Their normalizers, however, are
of the form (µ3 ⋊ Z/2Z)× Z2. The Farrell–Tate cohomology algebra for this is

F3[a
±2
2 ](b31, x1, y1)

⊕2.

6.2. Homological 5-torsion in PSL4(Z). We applied the rigid facets subdivision algorithm to the
PSL4(Z)-equivariant cell complex of [5], extracted the 5-torsion subcomplex, and reduced it using the
methods of [10] to the following graph T .

bD5 D5

The d1-differential of the equivariant spectral sequence on T is zero, because the isomorphisms at
edge end and edge origin cancel each other. Then the E1 = E∞ page is concentrated in the columns
p = 0 and 1, with dimensions over F5 being 1 in rows q congruent to 3 or 4 mod 4, and zero otherwise.
This yields

dimF5 Ĥ
p+q

(PSL4(Z);F5) =



















1, p + q ≡ 1 mod 4,

0, p + q ≡ 2 mod 4,

1, p + q ≡ 3 mod 4,

2, p + q ≡ 4 mod 4.

We check this result with a computation of Ĥ
•
(PSL4(Z);F5) using Brown’s complex [2, last chapters].

In this case, it is standard that the set {1, ζ5, ζ32 , ζ35} is an integral basis of OQ(ζ5) and in particular
Z[ζ5] = OQ(ζ5) is a Dedekind ring.

We can therefore use Reiner’s result to determine conjugacy classes of C5-subgroups in GL4(Z).
Since both Z and Z[ζ5] have trivial class group, there is only one isomorphism class of Z[C5]-module
with nontrivial action and Z-rank 4. Hence, there is a unique conjugacy class of cyclic order 5
subgroup in GL4(Z). Since the center of GL4(Z) is of order 2, the same is true for PGL4(Z).

Now there is a necessary modification to deal with the case SL4(Z), along the lines of the discussion
in [12]. While conjugacy classes of C5-subgroups in GL4(Z) correspond to isomorphism classes of
Z[C5]-modules, the conjugacy classes of C5-subgroups in SL4(Z) correspond to such modules equipped

with an additional orientation, i.e., a choice of isomorphism detM ∼=
∧4

ZM
∼= Z. The conjugacy class

in GL4(Z) lifts to SL4(Z), and the corresponding module has two different choices of orientation.
The Galois group Gal(Q(ζ5)/Q) ∼= Z/4Z acts on the set of oriented modules. The action exchanges
the orientations. Therefore, there is one conjugacy class of C5-subgroup in SL4(Z) stabilized by
Z/2Z →֒ Gal(Q(ζ5)/Q).
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The centralizer of this C5-subgroup is the group of norm-1 units of Z[ζ5], which by Dirichlet’s unit
theorem is isomorphic to

ker
(
Z[ζ5]

× → Z×) ∼= Z/10Z× Z.

As before, the normalizer is an extension of the centralizer by an action of the stabilizer of the
corresponding oriented module in the Galois group. We noted above that the Galois group Z/4Z
exchanges the two orientations of the trivial module, hence the stabilizer is the subgroup Z/2Z ⊂
Z/4Z. The normalizer therefore is of the form (Z/10Z× Z)⋊Z/2Z. The action of Z/2Z on Z/10Z is by
multiplication with −1 because the action of the Galois group is via the identification Z/4Z ∼= Z/5Z×.
The action of Z/2Z on Z is trivial: the full Galois group acts on Z via a surjective homomorphism
Z/4Z → Z× ∼= Z/2Z. The stabilizer of the oriented module in the Galois group lies in the kernel of
the above action, as claimed. Therefore, the normalizer is in fact of the form D10 ×Z.

By Proposition 28, the Farrell–Tate cohomology of the normalizer is of the form F5[a
±2
2 ](b31)

⊕2 ⊕
F5[a

±2
2 ](b31)

⊕2
−1 where the lower subscript −1 indicates a degree shift by −1. The Hilbert–Poincaré

series for the positive degrees is

T 3 + 2T 4 + T 5

1− T 4
=
T 3(1 + T )2

1− T 4
.

The computations in [5] show that the 5-torsion in integral homology of PSL4(Z) of dimension 1
in degrees 0, 3 mod 4 and trivial otherwise. By the universal coefficient theorem, this agrees with the
above computation.

References

[1] Oliver Braun, Renaud Coulangeon, Gabriele Nebe, and Sebastian Schönnenbeck, Computing in arithmetic groups

with Voronoï’s algorithm, J. Algebra 435 (2015), 263–285. Zbl 1323.16014
[2] Kenneth S. Brown, Cohomology of groups, Graduate Texts in Mathematics, vol. 87, Springer-Verlag, New York,

1994. Corrected reprint of the 1982 original. MR1324339
[3] Anh Tuan Bui and Graham J. Ellis, Computing Bredon homology of groups, accepted for publication in Journal

of Homotopy and Related Structures, 2016.
[4] Anh Tuan Bui and Alexander D. Rahm, Torsion Subcomplexes Subpackage, accepted sub-package in HAP

(Homological Algebra Programming) in the computer algebra system GAP., 2016, Source code available at
http://math.uni.lu/~rahm/subpackage-documentation/TorsionSubcomplexesSubpackage.tar.gz .

[5] Graham J. Ellis, Achill Schuermann, and Mathieu Dutour Sikirić, On the integral homology of PSL4(Z) and

other arithmetic groups, J. Number Theory 131 (2011), no. 12, 2368–2375. Zbl 1255.11028
[6] Herbert Gangl, Paul E. Gunnells, Jonathan Hanke, Achill Schuermann, Mathieu Dutour Sikirić, and Dan Yasaki,

On the cohomology of linear groups over imaginary quadratic fields, to appear in Journal of Pure and Applied
Algebra, arXiv: 1307.1165 (2016).

[7] Philippe Elbaz-Vincent and Herbert Gangl and Christophe Soulé, Perfect forms, K-theory and the cohomology of

modular groups, Adv. Math. 245 (2013), 587–624, DOI 10.1016/j.aim.2013.06.014. Zbl 1290.11104
[8] Claiborne G. Latimer and C. C. MacDuffee, A correspondence between classes of ideals and classes of matrices,

Ann. of Math. (2) 34 (1933), no. 2, 313–316, DOI 10.2307/1968204. MR1503108
[9] Guido Mislin and Alain Valette, Proper group actions and the Baum–Connes conjecture, Advanced Courses in

Mathematics. CRM Barcelona, Birkhäuser Verlag, Basel, 2003. MR2027168 (2005d:19007), Zbl 1028.46001
[10] Alexander D. Rahm, Accessing the cohomology of discrete groups above their virtual cohomological dimension, J.

Algebra 404 (2014), 152–175. MR3177890
[11] , On the equivariant K-homology of PSL2 of the imaginary quadratic integers, Annales de l’Institut Fourier

66 (2016), no. 4, 1667–1689.
[12] Alexander D. Rahm and Matthias Wendt, On Farrell–Tate cohomology of SL2 over S-integers, arXiv:1411.3542v2.
[13] Irving Reiner, Integral representations of cyclic groups of prime order, Proc. Amer. Math. Soc. 8 (1957), 142–146.

MR0083493
[14] Rubén J. Sánchez-García, Bredon homology and equivariant K-homology of SL(3,Z), J. Pure Appl. Algebra 212

(2008), no. 5, 1046–1059. MR2387584 (2009b:19007)
[15] Rubén J. Sánchez-García, Equivariant K-homology for some Coxeter groups, J. Lond. Math. Soc. (2) 75 (2007),

no. 3, 773–790, DOI 10.1112/jlms/jdm035. MR2352735 (2009b:19006)
[16] Sebastian Schoennenbeck, Resolutions for unit groups of orders, ArXiv e-prints, math.KT 1609.08835 (2016).
[17] Jean-Pierre Serre, Trees, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 2003. Translated from the

French original by John Stillwell; Corrected 2nd printing of the 1980 English translation. MR1954121

Anh Tuan Bui, University of Science - Ho Chi Minh City, Faculty of Math & Computer Science, 227

Nguyen Van Cu St., District 5, Ho Chi Minh City, Vietnam batuan@hcmus.edu.vn

Alexander D. Rahm, Mathematics Research Unit of Université du Luxembourg, 6, rue Richard

Coudenhove-Kalergi, L-1359 Luxembourg Alexander.Rahm@uni.lu

Matthias Wendt, Institut für Algebraische Geometrie, Leibniz-Universität Hannover, Welfengarten

1, 30167 Hannover, Germany wendt@math.uni-hannover.de

http://math.uni.lu/~rahm/subpackage-documentation/TorsionSubcomplexesSubpackage.tar.gz

	1. Introduction
	1.1. Computations of Farrell–Tate cohomology
	1.2. Computations of Bredon homology
	Organization of the paper.
	Acknowledgements.

	2. Necessity of Rigidity for Bredon homology
	3. The rigid facets subdivision algorithm
	4. Example: Farrell–Tate cohomology of PSL4Z at the prime 3
	5. Conjugacy classification of cyclic subgroups
	5.1. Relative integral bases
	5.2. Conjugacy classification
	5.3. Centralizers and normalizers

	6. Example cases
	6.1. Homological 3-torsion in PGL3 over quadratic imaginary integers
	6.2. Homological 5-torsion in PSL4Z

	References

