
HAL Id: hal-01398126
https://hal.science/hal-01398126

Submitted on 16 Nov 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Elastic wave turbulence and intermittency
Sergio Chibbaro, Christophe Josserand

To cite this version:
Sergio Chibbaro, Christophe Josserand. Elastic wave turbulence and intermittency. Physical Review
E , 2016, 94, pp.011101(R). �10.1103/PhysRevE.94.011101�. �hal-01398126�

https://hal.science/hal-01398126
https://hal.archives-ouvertes.fr


Elastic wave turbulence and intermittency

Sergio Chibbaro and Christophe Josserand
Sorbonne Universités, UPMC Univ Paris 06, UMR 7190,

Institut Jean Le Rond d’Alembert, F-75005, Paris, France

CNRS, UMR 7190, Institut Jean Le Rond d’Alembert, F-75005, Paris, France

We investigate the onset of intermittency for vibrating elastic plate turbulence in the framework of
the weak wave turbulence theory using a numerical approach. The spectrum of the displacement field
and the structure-functions of the fluctuations are computed for different forcing amplitudes. At low
forcing, the spectrum predicted by the theory is observed, while the fluctuations are consistent with
gaussian statistics. When the forcing is increased, the spectrum varies at large scales, corresponding
to the oscillations of nonlinear structures made of ridges delimited by d-cones. In this regime,
the fluctuations exhibit small-scale intermittency that can be fitted via a multifractal model. The
analysis of the nonlinear frequency shows that the intermittency is linked to the breakdown of the
weak turbulence at large scales only.

Introduction Random interacting waves, often called
wave turbulence[1–3], are present in different systems
such as oceans [4–6], capillary or Alvèn waves [7–10],
non-linear optics[11] and elastic plates [12]. Understand-
ing the statistical properties of such structures is crucial
since intermittency and/or anomalous scalings may have
important practical interest, for instance in predicting
the frequency of extreme events such as rogue waves in
oceans [6, 13]. At variance with hydrodynamics turbu-
lence, a linear order is present, consisting of indepen-
dent dispersive waves, and a perturbative statistical ap-
proach converges asymptotically for weak nonlinearities,
the so-called weak wave turbulence theory (WWT) [1–3].
WWT can be seen as a “mean-field theory” for the spec-
trum n(k, t), which neglects fluctuations and supports
non-equilibrium cascade solutions. The asymptotic clo-
sure suggests that the Fourier modes are somehow close
to joint gaussianity, even though it is not a necessary
condition and the detailed statistics of the fluctuations is
still debated [3]. Indeed, large discrepancies to the WWT
predictions have been observed in some cases [14], moti-
vating the theoretical analysis of possible onset of strong
fluctuations and intermittency[10, 15–22]. Moreover,
when nonlinearities are not weak anymore, a breakdown
of weak turbulence occurs, since the WWT is not for-
mally valid, and anomalous scalings for the fluctuations
are then expected. Nevertheless, turbulent spectra are
usually still observed, involving the spectrum of strong
nonlinear dynamical structures, leading for example to
the so-called Phillips spectrum [23, 24]. First evidences of
these non-trivial behaviors have been observed for grav-
ity waves both numerically[25] and experimentally[26–
28]. However, because of the difficulties of gravity wave
dynamics [27, 29], a detailed understanding of the origin
of this intermittent behavior is still lacking. In fact, al-
though a potential link between the breakdown of WWT
and the appearance of intermittency has been invoked,
the underlying mechanisms need still to be identified.

The goal of this letter is to investigate the occurrence
of intermittency and the breakdown of WWT by analyz-
ing numerically the vibrations of elastic plates, prototype
of wave turbulence [12, 30], that is also well suited for ex-

perimental investigations [31–34].

Wave turbulence in plates Elastic vibrating plates are
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FIG. 1. Wave spectrum 〈|ζk|
2〉 for the different forcings stud-

ied. We have used 8 forcing amplitudes spanning two orders
of magnitude (the smallest is V 1 = 10−6 and the strongest
V 8 = 5 × 10−4, corresponding to energy flux ranging from
ǫ = 4.45 · 10−10 to ǫ = 10−4, following ǫ ∝ V 2). The curves
correspond to increasing forcing from the bottom to the top,
with V 2 = 2 · 10−6, V 3 = 5 · 10−6, V 4 = 10−5, V 5 = 5 · 10−5,
V 6 = 10−4 and V 7 = 2 · 10−4 The dashed lines represent the
two limit curves |ζk|

2 ∼ k−4 for the theoretical KZ spectrum
(up to the logarithmic correction) and k−6 that describes
the ridge turbulence. In all the simulations, the plate is a
1024×1024 square and in order to correctly describe the high
forcing amplitudes, we have varied accordingly the mesh from
1024×1024 grid points at small forcings up to 4096×4096 for
the highest ones. The two images show the surface plate de-
flection ζ(x, y) in the two extreme regimes analyzed here, the
lowest forcing amplitude (bottom) and the largest one (up),
exhibiting ridge-like deformation.

modeled using the dynamical version of the Föppl–von
Kármán (FVK) equations [35]. These equations describe
the evolution of the out-of-plane displacement ζ(x, y, t)
of a plane plate of thickness h of an elastic material of
density ρ, Young modulus E and Poisson coefficient σ.
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It reads in a dimensionless form:

∂2ζ

∂t2
= −

1

4
∆2ζ + {ζ, χ}; (1)

∆2χ = −
1

2
{ζ, ζ}. (2)

where the lengths have been rescaled by h/
√

3(1− σ2),

the time by h
√

ρ/(3E(1− σ2)) and the Airy stress
function χ(x, y, t) that describes the plate stresses by
Eh2/(3(1−σ2)). ∆ = ∂xx+∂yy is the usual Laplacian and
the bracket {·, ·} is defined by {f, g} ≡ fxxgyy+fyygxx−
2fxygxy, so that Eq. (1) preserves the momentum of the
center of mass, namely ∂tt

∫

ζ(x, y, t)dxdy = 0. The first
term on the right hand side of (1) represents the bending
while the second one {ζ, χ}, a cubic nonlinearity, rep-
resents the stretching. The second equation (2) relates
the Airy stress function to the Gaussian curvature of the
plate {ζ, ζ}. Linear elastic waves obey a quadratic dis-
persive relation ωk = k2/2, (k the wave number and ωk

the wave frequency), so that the WWT formalism can
be applied [12]. WWT consists then of a small frequency
correction quantifying the (weak)-nonlinear interactions:

ω
(1)
k =

π

2

[

∫ k

0

ωqq
2

k2
〈|ζq |

2〉 qdq +

∫

∞

k

ωqk
2

q2
〈|ζq|

2〉 qdq

]

.

(3)
where ζk = 1

2π

∫

ζ(x, t)eik·xd2x is the Fourier transform
of the displacement field ζ and the brackets 〈·〉 indicate
statistical average. The next order of the WWT is a
kinetic equation for the spectrum of the displacement
〈|ζk|

2〉 involving four-wave nonlinear interactions, that
exhibits two types of stationary solutions. In addition to
the Rayleigh-Jeans equilibrium distribution which reads
〈|ζk|

2〉 = T
ωk

, where T plays the role of a temperature,
WWT predicts a constant flux of energy from the large
to the small scales solution, the Kolmogorov-Zakharov
spectrum (KZ):

〈|ζk|
2〉KZ = CP 1/3 ln

1/3(k∗/k)

k4
. (4)

The logarithm correction comes from the degeneracy of
the Rayleigh-Jean solutions, similarly to the WWT for
the nonlinear Schrödinger equation in 2D [36, 37]. P is
the energy flux density involved in the energy cascade,
k∗ a critical wave number and C is a pure number .
For the present study, the FVK equations (1,2) are solved
numerically using a pseuso-spectral method on a square
plate with periodic boundary conditions. The linear wave
dynamics is solved exactly in the Fourier space while the
nonlinear terms are evaluated in the real space using Fast
Fourier Transform [12]. Dissipation at small scales and
forcing at large ones are added in the equation (1) to sim-
ulate a turbulent process. Realistic dissipation in plates
is in fact present at all scales, affecting the spectra of vi-
brating plates [34, 38, 39]. In order to avoid this problem
that is not related to the present issue, we have chosen to
model the dissipation using a classical diffusion process

D(x, t) = γ∆ζ̇, where γ represents the relevant viscosity

and ζ̇ the vertical velocity. It presents the advantage of
being mostly relevant at small scales in agreement with
the WWT and of remaining reasonably close to the real
dissipation[34, 41]. The forcing is added as a white ran-
dom force at large scales, whose amplitude in Fourier
space follows VΘ(k0 − k) where Θ(·) is the Heavyside
function. Here, the amplitude V is varied over a large
range of values with a constant characteristic wave length
k0 = 0.05. The simulations start with a plate at rest.
Then, after a transient, a statistically stationary regime
is reached, where the field and the energy are fluctuating
around mean values. The amplitude V is directly related
to the power injected in the system ǫ that corresponds,
in this stationary regime, to the dissipation, following
ǫ ∝ V 2.

Numerics and spectra In figure 1, we show the nu-
merical representation of the plate deflection together
with the corresponding displacement spectrum, for dif-
ferent forcing. Firstly, it should be emphasized that
for all the spectra computed here, no anisotropy of the
fields have been observed, as already noticed in experi-
ments [40].Two different groups of spectra are identified,
separating low from high forcing regimes: for the four
smallest forcing (corresponding to V ≤ 10−5), the k−4

slope is observed over an inertial range separating the
forcing from the damping scales, in line with theoretical
predictions. For the larger forcing (V ≥ 5 · 10−5) the
k−4 slope is still present at large wave numbers, whereas
a steeper spectrum consistent with |ζk|

2 ∼ k−6 appears
at low wavenumbers, as recently highlighted experimen-
tally and numerically[33]. There, most of the energy
is concentrated in coherent deformations, which have
been identified to be dynamical ridges limited by d-cones.
More precisely, since ridges correspond to lines separat-
ing planar domain, they can be described by the relation
∂xζ ∼ Θ(x−x0) where Θ is the Heavyside function. Such
displacement fields exhibit a 1/k4 spectrum similar to the
KZ one but the logarithm correction. On the other hand,
one should notice that such ridges exhibit d-cones at their
edges whose spectra scale like 1/k6: indeed, close to its
center a d-cone can be described in polar coordinates fol-
lowing ζ(x) ∼ rf(θ), where f(·) is a function of θ only.
Its Fourier transform reads ζk ∼

∫

rf(θ)eik·xrdrdθ ∝ 1
k3

leading to a 1/k6 spectrum. Thus in the high forcing
regime, the spectrum is dominated by the contribution
of the d-cones, so that the plate dynamics can be inter-
preted as oscillating ridges with moving d-cones at their
edges. Interestingly, it is also different from the Phillips
spectrum, that is obtained by balancing the nonlinear
with the linear timescales [3] leading to a 1/k2 scaling.

Assuming |ζk|
2 ∼ k−x, we obtain ω

(1)
k ∼ k4−x so that the

condition ω
(1)
k /ωk ∼ 1 gives x = 2, leading to the same

spectrum than the Rayleigh-Jeans one.

Intermittency Intermittency for these structures have
in fact already been noticed through the computation of
the flatness in numerical simulations showing a non Gaus-
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FIG. 2. Compensated structure functions S2
p for p = 2, 6 and

8 are plotted as function of r/L, for the strong forcing case
(V 7). They are compensated (divided) by a scaling factor
of the form (r/L)ξp . For p = 2, the best fit corresponds
to ξp = 3.2 due to the high forcing, different from ξp = 2
that would be expected for a the k−4 spectrum. For p = 6
and p = 8 both the gaussian predictions (ξp = 9.6 and 12.8
respectively) and the best ’guessed’ scalings (ξ6 = 8.48 and
ξ8 = 10.8) are presented.

sian behavior [30, 33]. To analyse further intermittency
and anomalous scaling, that is the lack of self-similarity,
it is interesting to investigate higher moments using the
structure-functions [42]: Sp(r) = 〈|δζ(x, r)|p〉, where the
increment is defined as δζ(x, r) ≡ ζ(x+ r)− ζ(x). It
is worth emphasizing that statistics of displacement and
velocity are the same, since normal variables are a linear
combination of both. For plates, the scaling of the energy
spectrum is of the form Eζ = k|ζ|2k ∼ k−n, with n ≥ 3
but a possible logarithmic correction. With this expo-
nent, the cascade is not local and the Wiener-Kintchine
theorem does not apply [42], so that the ζ field is ex-
pected to be smooth leading to S2(r) ∼ r2, indepen-
dent of n. Therefore, second-order difference should be
used [27], defined as δζ2(x, r) = ζ(x+r)−2ζ(x)+ζ(x−r).
While in hydrodynamic turbulence, we have the remark-
able Kolmogorov four-fifth law for the correlation of third
order [42], no similar relationship exists for the plate
equations. However, a semi-analytical result can be de-
duced here from the K-Z spectrum: for small forcing the
spectrum |ζ|2k ∼ k−4 suggests S2

2 ∼ r2 while a steeper ex-
ponent is expected at higher forcing, where the spectrum
can be seen as a mix of k−4 at small scales, and k−6 at
larger ones (corresponding to S2

2 ∼ r4). That leads to
the scaling S2

2 ∼ r2α, with 1 ≤ α ≤ 2. Then, in the case
of gaussian statistics, one would expect for higher-order
structure functions S2

p(r) ∼ rp, for low forcing (neglect-

ing the logarithmic correction), and S2
p(r) ∼ rαp for high

forcing. The numerical results for the structure-function
of order 2 are in line with these findings: for the smallest
forcing, we find S2

2 ∼ rξ2 = r2.2, whereas for a stronger
one (V 7 here), S2

2 ∼ rξ2 = r3.2 (see figure 2), leading
to α = 1.6. Figure 2 compares the structure-functions
of order p = 6 and p = 8 compensated by the expected

self-similar scalings (αp) with those compensated using a
best fit scaling-law. We find lower exponent values with
the fitted scalings (8.48 instead of 6α = 9.6 for p = 6 and
10.8 instead of 8α = 12.8 for p = 8), demonstrating a dis-
crepancy between Gaussian predictions and actual data
for strong forcing, indicating that an intermittent regime
is at play. However, the structure functions still exhibit
an inertial-range over a decade (around r/L ≈ 10−2).
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FIG. 3. Plot of the structure function S2
p versus S2

2 , for p = 10,
8, 6 and 4 from top to bottom. Lines have slopes ξp/ξ2,
computed as the logarithmic local slopes shown in the inset
as function of r/L. Clear constant slope can be estimated,
giving ξp/ξ2 = 4.05, 3.4 ,2.65 and 1.85 respectively.

To investigate further this intermittent property, we
extract systematically in all our simulations the expo-
nents ξp for the structure functions S2

p(r) up to p = 12.
This is done using the extended-self-similarity (ESS)
technique [43], that consists in computing the logarith-
mic slope of the curves obtained by plotting S2

p(r) as a

function of S2
2(r), as shown in figure 3. This slope gives

in fact directly the ratio ξp/ξ2. While ESS was originally
proposed as a form of self-similarity appearing even when
inertial-range is not detectable [43], we use it here only
as a technical tool to extend the range where the scaling
can be measured. In particular, we use S2

2(r) to probe
the scaling and to determine a clear inertial range for the
calculations.

Figure 4 presents the ratio of the exponents extracted
in this way, ξp/ξ2 as function of p, for the different forc-
ings up to the twelfth order. A gaussian statistics would
correspond to the straight line ξp/ξ2 = p/2 drawn in the
figure. We observe that for the low forcing V 1, the results
are in agreement with a gaussian statistics, as expected
by the WWT. This is however in contradictions with for-
mer results obtained experimentally for gravity waves
where anomalous scalings were already present at the
smallest forcings available [27]. Yet, a clear discrepancy is
present for stronger forcing: the variation for the twelfth
order is about 20% for V 7, comparable to what is found
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in dashed line for comparison. The results can be fitted using
the multifractal random β model (solid line), as shown here
for the highest forcing V 7 taking DF = 1 and x = 0.65. The
inset shows a zoom of the exponent ratio at large p

for hydrodynamics turbulence (30%). Remarkably, the
intermittency saturates for high forcing, at least in the
high amplitude limit that we have been able to reach nu-
merically. Such anomalous scaling of the structure func-
tions cannot be reproduced by a linear model, indicating
a non-trivial multifractal spectrum of exponents[44, 45].
As shown in wave turbulence in the context of magneto-
hydrodynamics [22], it is useful to build a model which
fits the data. Among the various models available[46, 47],
we have chosen the random-β model[48], with the KZ
spectrum considered as a physical constraint. The model
describes the cascade in real space looking at scales of size
rj = 2−jL, with L the length at which energy is injected.
At the n-step of the cascade, the scale rn splits into scales
of size rn+1, but only a fraction βn(0 < βn ≤ 1) is con-
sidered as active. The βj are independent, identically
distributed random variables. Therefore, the field fluc-
tuations ζn at scale rn receive contributions only by a
fraction Πn

j=1βj . Taking into account the KZ constraint,

one has ζn ∼ ζ0r
3/2
n Πn

j=1β
−1/2
j . All the physics is con-

tained in the distribution of βj . A simple phenomeno-
logical choice is to take βj = 1 with probability x and
βj = B = 2DF−2 with probability (1 − x), where DF

is the dimension of the most singular structures. The
corresponding scaling exponents are given in terms of
these two parameters ξp = 3

2 − log2
(

x+ (1− x)B1−p/2
)

.
The case x = 1 gives the Kolmogorov-Zakharov scaling.
We shall consider x as a free parameter to be estimated
by data. Instead, it seems appropriate to consider the
ridges between d-cones as the most singular and oscillat-
ing structures, so that we take DF = 1. The plot of the

model deduced shows a very good agreement with numer-
ical results for the highest forcing choosing x = 0.65, fig.
4. From such an agreement, it may be inferred that inter-
mittency is dominated by the oscillations of the ridges.
In particular, our results suggest that 35% of the fluctu-
ations are given by these structures.

Discussion In order to tackle the intermittency origin,
some basic hypothesis behind WWT need to be ques-
tioned. Since the nonlinear energy terms always remain
much lower than the linear ones, varying between 5 and
10% for all the forcings (inset of figure 5), no global
breakdown of WWT is responsible of the intermittency.
But, analyzing locally in Fourier space the frequency ra-

tio ω
(1)
k

/ωk, figure 5 shows that the nonlinear frequencies
remain small at large wavenumbers for all the forcings,
while they become comparable with the linear one at
small wavenumbers for the highest forcings.
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FIG. 5. Nonlinear to linear frequency ratio ω
(1)
k

/ωk as a func-
tion of the wave number for the different forcings. The inset
shows the ratio between the nonlinear and the linear energy
as a function of time for the highest forcing V 8.

The breakdown of WWT appears thus first at large-
scales although the spectrum in the inertial ranges still
remains within WWT. We can clearly separate our re-
sults in two groups: for the four smaller forcings the fre-
quency ratios are everywhere smaller than 10−2, while
for the four higher ones, large scales are clearly out of
the WWT validity. These two groups are the same than
those observed for the spectra in figure 1 demonstrating
the direct link between the oscillating d-cone spectra, the
breakdown of wave turbulence and the onset of intermit-
tency. Nonetheless, the anomalous scaling was observed
for higher statistics at smaller scales, showing that the
cascade process triggers a multiplicative amplification of
fluctuations.

In conclusion, our numerics show that WWT implies
gaussian statistics at small forcing for vibrating plate
turbulence. When the forcing increases, the spectrum
changes exhibiting dynamical ridges and d-cones with
the breakdown of WWT occuring at large scales. In-
termittency appears simultaneously characterized by a
multifractal spectrum of exponents which is observed in



5

the inertial range. Observations of intermittency remain
an experimental challenge in wave turbulence [26]. In
the case of the vibrating plates, the ridge-like structures
have been observed mostly numerically, while they were
smoothed experimentally by the plate dissipation acting
at all scales [33, 34]. We hope that this work will moti-
vate experimental estimation of the structure functions

of the displacement or the velocity fields, particularly for
higher moments than the flatness already studied. More
importantly, it would be interesting to characterize ex-
perimentally the influence of the oscillating ridges in the
dynamics at high forcing and try to relate them to the
multifractal model.
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