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Elastic wave turbulence and intermittency

We investigate the onset of intermittency for vibrating elastic plate turbulence in the framework of the weak wave turbulence theory using a numerical approach. The spectrum of the displacement field and the structure-functions of the fluctuations are computed for different forcing amplitudes. At low forcing, the spectrum predicted by the theory is observed, while the fluctuations are consistent with gaussian statistics. When the forcing is increased, the spectrum varies at large scales, corresponding to the oscillations of nonlinear structures made of ridges delimited by d-cones. In this regime, the fluctuations exhibit small-scale intermittency that can be fitted via a multifractal model. The analysis of the nonlinear frequency shows that the intermittency is linked to the breakdown of the weak turbulence at large scales only.

Introduction Random interacting waves, often called wave turbulence [START_REF] Zakharov | Kolmogorov spectra of turbulence 1. Wave turbulence[END_REF][START_REF] Nazarenko | Wave turbulence[END_REF][START_REF] Rumpf | [END_REF], are present in different systems such as oceans [START_REF] Komen | Dynamics and modelling of ocean waves[END_REF][START_REF] Falcon | [END_REF][6], capillary or Alvèn waves [7][8][9][10], non-linear optics [11] and elastic plates [12]. Understanding the statistical properties of such structures is crucial since intermittency and/or anomalous scalings may have important practical interest, for instance in predicting the frequency of extreme events such as rogue waves in oceans [6,13]. At variance with hydrodynamics turbulence, a linear order is present, consisting of independent dispersive waves, and a perturbative statistical approach converges asymptotically for weak nonlinearities, the so-called weak wave turbulence theory (WWT) [START_REF] Zakharov | Kolmogorov spectra of turbulence 1. Wave turbulence[END_REF][START_REF] Nazarenko | Wave turbulence[END_REF][START_REF] Rumpf | [END_REF]. WWT can be seen as a "mean-field theory" for the spectrum n(k, t), which neglects fluctuations and supports non-equilibrium cascade solutions. The asymptotic closure suggests that the Fourier modes are somehow close to joint gaussianity, even though it is not a necessary condition and the detailed statistics of the fluctuations is still debated [START_REF] Rumpf | [END_REF]. Indeed, large discrepancies to the WWT predictions have been observed in some cases [14], motivating the theoretical analysis of possible onset of strong fluctuations and intermittency [10,[15][16][17][18][19][20][21][22]. Moreover, when nonlinearities are not weak anymore, a breakdown of weak turbulence occurs, since the WWT is not formally valid, and anomalous scalings for the fluctuations are then expected. Nevertheless, turbulent spectra are usually still observed, involving the spectrum of strong nonlinear dynamical structures, leading for example to the so-called Phillips spectrum [23,24]. First evidences of these non-trivial behaviors have been observed for gravity waves both numerically [25] and experimentally [26][27][28]. However, because of the difficulties of gravity wave dynamics [27,29], a detailed understanding of the origin of this intermittent behavior is still lacking. In fact, although a potential link between the breakdown of WWT and the appearance of intermittency has been invoked, the underlying mechanisms need still to be identified.

The goal of this letter is to investigate the occurrence of intermittency and the breakdown of WWT by analyzing numerically the vibrations of elastic plates, prototype of wave turbulence [12,30], that is also well suited for ex-perimental investigations [31][32][33][34].

Wave turbulence in plates Elastic vibrating plates are The dashed lines represent the two limit curves |ζ k | 2 ∼ k -4 for the theoretical KZ spectrum (up to the logarithmic correction) and k -6 that describes the ridge turbulence. In all the simulations, the plate is a 1024 × 1024 square and in order to correctly describe the high forcing amplitudes, we have varied accordingly the mesh from 1024 × 1024 grid points at small forcings up to 4096 × 4096 for the highest ones. The two images show the surface plate deflection ζ(x, y) in the two extreme regimes analyzed here, the lowest forcing amplitude (bottom) and the largest one (up), exhibiting ridge-like deformation. modeled using the dynamical version of the Föppl-von Kármán (FVK) equations [START_REF] Landau | Theory of Elasticity[END_REF]. These equations describe the evolution of the out-of-plane displacement ζ(x, y, t) of a plane plate of thickness h of an elastic material of density ρ, Young modulus E and Poisson coefficient σ.

It reads in a dimensionless form:

∂ 2 ζ ∂t 2 = - 1 4 ∆ 2 ζ + {ζ, χ}; (1) 
∆ 2 χ = - 1 2 {ζ, ζ}. (2) 
where the lengths have been rescaled by h/ the wave frequency), so that the WWT formalism can be applied [12]. WWT consists then of a small frequency correction quantifying the (weak)-nonlinear interactions: 

ω (1) k = π 2 k 0 ω q q 2 k 2 |ζ q | 2 qdq + ∞ k ω q k 2 q 2 |ζ q | 2 qdq . (3) 
|ζ k | 2 KZ = CP 1/3 ln 1/3 (k * /k) k 4 . (4) 
The logarithm correction comes from the degeneracy of the Rayleigh-Jean solutions, similarly to the WWT for the nonlinear Schrödinger equation in 2D [START_REF] Dyachenko | [END_REF]37]. P is the energy flux density involved in the energy cascade, k * a critical wave number and C is a pure number .

For the present study, the FVK equations (1,2) are solved numerically using a pseuso-spectral method on a square plate with periodic boundary conditions. The linear wave dynamics is solved exactly in the Fourier space while the nonlinear terms are evaluated in the real space using Fast Fourier Transform [12]. Dissipation at small scales and forcing at large ones are added in the equation (1) to simulate a turbulent process. Realistic dissipation in plates is in fact present at all scales, affecting the spectra of vibrating plates [34,38,39]. In order to avoid this problem that is not related to the present issue, we have chosen to model the dissipation using a classical diffusion process D(x, t) = γ∆ ζ, where γ represents the relevant viscosity and ζ the vertical velocity. It presents the advantage of being mostly relevant at small scales in agreement with the WWT and of remaining reasonably close to the real dissipation [34,41]. The forcing is added as a white random force at large scales, whose amplitude in Fourier space follows V Θ(k 0 -k) where Θ(•) is the Heavyside function. Here, the amplitude V is varied over a large range of values with a constant characteristic wave length k 0 = 0.05. The simulations start with a plate at rest. Then, after a transient, a statistically stationary regime is reached, where the field and the energy are fluctuating around mean values. The amplitude V is directly related to the power injected in the system ǫ that corresponds, in this stationary regime, to the dissipation, following ǫ ∝ V 2 .

Numerics and spectra

In figure 1, we show the numerical representation of the plate deflection together with the corresponding displacement spectrum, for different forcing. Firstly, it should be emphasized that for all the spectra computed here, no anisotropy of the fields have been observed, as already noticed in experiments [40].Two different groups of spectra are identified, separating low from high forcing regimes: for the four smallest forcing (corresponding to V ≤ 10 -5 ), the k -4 slope is observed over an inertial range separating the forcing from the damping scales, in line with theoretical predictions. For the larger forcing (V ≥ 5 • 10 -5 ) the k -4 slope is still present at large wave numbers, whereas a steeper spectrum consistent with |ζ k | 2 ∼ k -6 appears at low wavenumbers, as recently highlighted experimentally and numerically [33]. There, most of the energy is concentrated in coherent deformations, which have been identified to be dynamical ridges limited by d-cones. More precisely, since ridges correspond to lines separating planar domain, they can be described by the relation

∂ x ζ ∼ Θ(x-x 0 )
where Θ is the Heavyside function. Such displacement fields exhibit a 1/k 4 spectrum similar to the KZ one but the logarithm correction. On the other hand, one should notice that such ridges exhibit d-cones at their edges whose spectra scale like 1/k 6 : indeed, close to its center a d-cone can be described in polar coordinates following ζ(x) ∼ rf (θ), where f (•) is a function of θ only. Its Fourier transform reads

ζ k ∼ rf (θ)e ik•x rdrdθ ∝ 1 k 3
leading to a 1/k 6 spectrum. Thus in the high forcing regime, the spectrum is dominated by the contribution of the d-cones, so that the plate dynamics can be interpreted as oscillating ridges with moving d-cones at their edges. Interestingly, it is also different from the Phillips spectrum, that is obtained by balancing the nonlinear with the linear timescales [START_REF] Rumpf | [END_REF] 

leading to a 1/k 2 scaling. Assuming |ζ k | 2 ∼ k -x , we obtain ω (1) k ∼ k 4-x so that the condition ω (1)
k /ω k ∼ 1 gives x = 2, leading to the same spectrum than the Rayleigh-Jeans one.

Intermittency Intermittency for these structures have in fact already been noticed through the computation of the flatness in numerical simulations showing a non Gaus- p for p = 2, 6 and 8 are plotted as function of r/L, for the strong forcing case (V 7). They are compensated (divided) by a scaling factor of the form (r/L) ξp . For p = 2, the best fit corresponds to ξp = 3.2 due to the high forcing, different from ξp = 2 that would be expected for a the k -4 spectrum. For p = 6 and p = 8 both the gaussian predictions (ξp = 9.6 and 12.8 respectively) and the best 'guessed' scalings (ξ6 = 8.48 and ξ8 = 10.8) are presented.

sian behavior [30,33]. To analyse further intermittency and anomalous scaling, that is the lack of self-similarity, it is interesting to investigate higher moments using the structure-functions [START_REF] Monin | Statistical fluid mechanics: mechanics of turbulence[END_REF]: S p (r) = |δζ(x, r)| p , where the increment is defined as δζ(x, r) ≡ ζ(x + r) -ζ(x). It is worth emphasizing that statistics of displacement and velocity are the same, since normal variables are a linear combination of both. For plates, the scaling of the energy spectrum is of the form E ζ = k|ζ| 2 k ∼ k -n , with n ≥ 3 but a possible logarithmic correction. With this exponent, the cascade is not local and the Wiener-Kintchine theorem does not apply [START_REF] Monin | Statistical fluid mechanics: mechanics of turbulence[END_REF], so that the ζ field is expected to be smooth leading to S 2 (r) ∼ r 2 , independent of n. Therefore, second-order difference should be used [27], defined as δζ 2 (x, r) = ζ(x+r)-2ζ(x)+ζ(x-r). While in hydrodynamic turbulence, we have the remarkable Kolmogorov four-fifth law for the correlation of third order [START_REF] Monin | Statistical fluid mechanics: mechanics of turbulence[END_REF], no similar relationship exists for the plate equations. However, a semi-analytical result can be deduced here from the K-Z spectrum: for small forcing the spectrum |ζ| 2 k ∼ k -4 suggests S 2 2 ∼ r 2 while a steeper exponent is expected at higher forcing, where the spectrum can be seen as a mix of k -4 at small scales, and k -6 at larger ones (corresponding to S 2 2 ∼ r 4 ). That leads to the scaling S 2 2 ∼ r 2α , with 1 ≤ α ≤ 2. Then, in the case of gaussian statistics, one would expect for higher-order structure functions S 2 p (r) ∼ r p , for low forcing (neglecting the logarithmic correction), and S 2 p (r) ∼ r αp for high forcing. The numerical results for the structure-function of order 2 are in line with these findings: for the smallest forcing, we find S 2 2 ∼ r ξ2 = r 2.2 , whereas for a stronger one (V 7 here), S 2 2 ∼ r ξ2 = r 3.2 (see figure 2), leading to α = 1.6. Figure 2 compares the structure-functions of order p = 6 and p = 8 compensated by the expected self-similar scalings (αp) with those compensated using a best fit scaling-law. We find lower exponent values with the fitted scalings (8.48 instead of 6α = 9.6 for p = 6 and 10.8 instead of 8α = 12.8 for p = 8), demonstrating a discrepancy between Gaussian predictions and actual data for strong forcing, indicating that an intermittent regime is at play. However, the structure functions still exhibit an inertial-range over a decade (around r/L ≈ 10 -2 ). To investigate further this intermittent property, we extract systematically in all our simulations the exponents ξ p for the structure functions S 2 p (r) up to p = 12. This is done using the extended-self-similarity (ESS) technique [START_REF] Benzi | [END_REF], that consists in computing the logarithmic slope of the curves obtained by plotting S 2 p (r) as a function of S 2 2 (r), as shown in figure 3. This slope gives in fact directly the ratio ξ p /ξ 2 . While ESS was originally proposed as a form of self-similarity appearing even when inertial-range is not detectable [START_REF] Benzi | [END_REF], we use it here only as a technical tool to extend the range where the scaling can be measured. In particular, we use S 2 2 (r) to probe the scaling and to determine a clear inertial range for the calculations.

Figure 4 presents the ratio of the exponents extracted in this way, ξ p /ξ 2 as function of p, for the different forcings up to the twelfth order. A gaussian statistics would correspond to the straight line ξ p /ξ 2 = p/2 drawn in the figure. We observe that for the low forcing V 1, the results are in agreement with a gaussian statistics, as expected by the WWT. This is however in contradictions with former results obtained experimentally for gravity waves where anomalous scalings were already present at the smallest forcings available [27]. Yet, a clear discrepancy is present for stronger forcing: the variation for the twelfth order is about 20% for V 7, comparable to what is found for hydrodynamics turbulence (30%). Remarkably, the intermittency saturates for high forcing, at least in the high amplitude limit that we have been able to reach numerically. Such anomalous scaling of the structure functions cannot be reproduced by a linear model, indicating a non-trivial multifractal spectrum of exponents [44,[START_REF] Frisch | Turbulence: the legacy of AN Kolmogorov[END_REF]. As shown in wave turbulence in the context of magnetohydrodynamics [22], it is useful to build a model which fits the data. Among the various models available [START_REF] She | [END_REF]47], we have chosen the random-β model [48], with the KZ spectrum considered as a physical constraint. The model describes the cascade in real space looking at scales of size r j = 2 -j L, with L the length at which energy is injected. At the n-step of the cascade, the scale r n splits into scales of size r n+1 , but only a fraction β n (0 < β n ≤ 1) is considered as active. The β j are independent, identically distributed random variables. Therefore, the field fluctuations ζ n at scale r n receive contributions only by a fraction Π n j=1 β j . Taking into account the KZ constraint, one has

ζ n ∼ ζ 0 r 3/2 n Π n j=1 β -1/2 j
. All the physics is contained in the distribution of β j . A simple phenomenological choice is to take β j = 1 with probability x and β j = B = 2 DF -2 with probability (1 -x), where D F is the dimension of the most singular structures. The corresponding scaling exponents are given in terms of these two parameters ξ p = 3 2 -log 2 x + (1 -x)B 1-p/2 . The case x = 1 gives the Kolmogorov-Zakharov scaling. We shall consider x as a free parameter to be estimated by data. Instead, it seems appropriate to consider the ridges between d-cones as the most singular and oscillating structures, so that we take D F = 1. The plot of the model deduced shows a very good agreement with numerical results for the highest forcing choosing x = 0.65, fig. 4. From such an agreement, it may be inferred that intermittency is dominated by the oscillations of the ridges. In particular, our results suggest that 35% of the fluctuations are given by these structures.

Discussion In order to tackle the intermittency origin, some basic hypothesis behind WWT need to be questioned. Since the nonlinear energy terms always remain much lower than the linear ones, varying between 5 and 10% for all the forcings (inset of figure 5), no global breakdown of WWT is responsible of the intermittency. But, analyzing locally in Fourier space the frequency ratio ω

(1) k /ω k , figure 5 shows that the nonlinear frequencies remain small at large wavenumbers for all the forcings, while they become comparable with the linear one at small wavenumbers for the highest forcings. 

k /ω k as a function of the wave number for the different forcings. The inset shows the ratio between the nonlinear and the linear energy as a function of time for the highest forcing V 8.

The breakdown of WWT appears thus first at largescales although the spectrum in the inertial ranges still remains within WWT. We can clearly separate our results in two groups: for the four smaller forcings the frequency ratios are everywhere smaller than 10 -2 , while for the four higher ones, large scales are clearly out of the WWT validity. These two groups are the same than those observed for the spectra in figure 1 demonstrating the direct link between the oscillating d-cone spectra, the breakdown of wave turbulence and the onset of intermittency. Nonetheless, the anomalous scaling was observed for higher statistics at smaller scales, showing that the cascade process triggers a multiplicative amplification of fluctuations.

In conclusion, our numerics show that WWT implies gaussian statistics at small forcing for vibrating plate turbulence. When the forcing increases, the spectrum changes exhibiting dynamical ridges and d-cones with the breakdown of WWT occuring at large scales. Intermittency appears simultaneously characterized by a multifractal spectrum of exponents which is observed in the inertial range. Observations of intermittency remain an experimental challenge in wave turbulence [26]. In the case of the vibrating plates, the ridge-like structures have been observed mostly numerically, while they were smoothed experimentally by the plate dissipation acting at all scales [33,34]. We hope that this work will motivate experimental estimation of the structure functions of the displacement or the velocity fields, particularly for higher moments than the flatness already studied. More importantly, it would be interesting to characterize experimentally the influence of the oscillating ridges in the dynamics at high forcing and try to relate them to the multifractal model.

4 FIG. 1 .

 41 FIG. 1. Wave spectrum |ζ k | 2 for the different forcings studied. We have used 8 forcing amplitudes spanning two orders of magnitude (the smallest is V 1 = 10 -6 and the strongest V 8 = 5 × 10 -4 , corresponding to energy flux ranging from ǫ = 4.45 • 10 -10 to ǫ = 10 -4 , following ǫ ∝ V 2 ). The curves correspond to increasing forcing from the bottom to the top, with V 2 = 2 • 10 -6 , V 3 = 5 • 10 -6 , V 4 = 10 -5 , V 5 = 5 • 10 -5 , V 6 = 10 -4 and V 7 = 2 • 10 -4The dashed lines represent the two limit curves |ζ k | 2 ∼ k -4 for the theoretical KZ spectrum (up to the logarithmic correction) and k -6 that describes the ridge turbulence. In all the simulations, the plate is a 1024 × 1024 square and in order to correctly describe the high forcing amplitudes, we have varied accordingly the mesh from 1024 × 1024 grid points at small forcings up to 4096 × 4096 for the highest ones. The two images show the surface plate deflection ζ(x, y) in the two extreme regimes analyzed here, the lowest forcing amplitude (bottom) and the largest one (up), exhibiting ridge-like deformation.

where ζ k = 1 2πζ

 1 (x, t)e ik•x d 2 x is the Fourier transform of the displacement field ζ and the brackets • indicate statistical average. The next order of the WWT is a kinetic equation for the spectrum of the displacement |ζ k | 2 involving four-wave nonlinear interactions, that exhibits two types of stationary solutions. In addition to the Rayleigh-Jeans equilibrium distribution which reads |ζ k | 2 = T ω k , where T plays the role of a temperature, WWT predicts a constant flux of energy from the large to the small scales solution, the Kolmogorov-Zakharov spectrum (KZ):
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 482 FIG. 2. Compensated structure functions S 2p for p = 2, 6 and 8 are plotted as function of r/L, for the strong forcing case (V 7). They are compensated (divided) by a scaling factor of the form (r/L) ξp . For p = 2, the best fit corresponds to ξp = 3.2 due to the high forcing, different from ξp = 2 that would be expected for a the k -4 spectrum. For p = 6 and p = 8 both the gaussian predictions (ξp = 9.6 and 12.8 respectively) and the best 'guessed' scalings (ξ6 = 8.48 and ξ8 = 10.8) are presented.

FIG. 3 .

 3 FIG. 3. Plot of the structure function S 2 p versus S 2 2 , for p = 10, 8, 6 and 4 from top to bottom. Lines have slopes ξp/ξ2, computed as the logarithmic local slopes shown in the inset as function of r/L. Clear constant slope can be estimated, giving ξp/ξ2 = 4.05, 3.4 ,2.65 and 1.85 respectively.
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 64 FIG. 4. Structure functions exponent ratio ξp/ξ2 computed using the ESS technique are shown as a function of p for four different forcings. The gaussian statistics line ξp = p 2 is shown in dashed line for comparison. The results can be fitted using the multifractal random β model (solid line), as shown here for the highest forcing V 7 taking DF = 1 and x = 0.65. The inset shows a zoom of the exponent ratio at large p
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 5 FIG. 5. Nonlinear to linear frequency ratio ω
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