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Frozen impacted drop : From fragmentation to hierarchical crack patterns

We investigate experimentally the quenching of a liquid pancake, obtained through the impact of a water drop on a cold solid substrate (0 to -60 • C). We show that, below a certain substrate temperature, fractures appear on the frozen pancake and the crack patterns change from a 2D fragmentation regime to a hierarchical fracture regime as the thermal shock increases. The different regimes are discussed and the transition temperatures are estimated through classical fracture scaling arguments. Finally, a phase diagram presents how these regimes can be controlled by the drop impact parameters.

When molten glass drips into cold water, the outside cools -and shrinks -faster than the inside, creating pentup tension in the so-called Prince Rupert's drop, known since before 1625 to have very striking mechanical properties [START_REF] Merrett | The Art of Glass[END_REF][START_REF] Chandrasekar | [END_REF]. Indeed, while the drop's head stays impervious to even the strongest blows, flick the tail and the whole drop shatters in a myriad of small pieces, in less than a millisecond. In the same way, fragmentation is in fact present in many physical processes, from jet atomization to bubble bursting in fluids [3][4][5], from spaghetti breaking [6] to popping balloons [7] or broken windows in solids [8,9]. It is related to diverse applications such as comminution [10], shell case bursting [11,12], ash generation during eruption [13,14], cooling lava [START_REF] Goehring | Proc. Natl. Acad. Sci[END_REF] or meteoric cratering [START_REF] Sagy | [END_REF] for instance.

Fragmentation is thus a sudden process, where the whole considered domain divides extremely rapidly. At least as ubiquitous, there exists a complete different crack morphology where space-dividing pattern shows a strong hierarchy of slower fractures [17]. Fractures develop successively, and each new fracture joins older fractures at a typical angle close to ninety degrees [18,19]. Such patterns are usually observed when the shrinking of a material layer is frustrated by its deposition on a non shrinking substrate, such as drying-induced cracks in mud [20,21], coffee [22], colloidal silicas [23], industrial coating [24] or artistic painting [25].

In this paper, we investigate experimentally the quenching of a liquid pancake (Fig. 1) that is obtained through the impact of a water drop on a cold solid substrate. We show for the first time that, as a function of the substrate temperature, the crack patterns produced by the thermal shock, change from a 2D fragmentation regime to a hierarchical fracture regime (Fig. 2 (a)).

The experimental setup consists in releasing a drop of water, with a diameter D 0 = 3.9 mm, on a steel substrate, so as to form a liquid pancake of radius R and typical thickness h 0 (Fig. 1). At room temperature, both are determined by the impact parameters (see e.g. [26] for the exact expression). The impact velocity is close to the free fall one : U 0 ∼ √ gH where H is the falling height. Throughout most of the paper, falling height will be kept constant at H = 36 cm. Subsequent pancake radius is : R 8 mm, from which pancake thickness can be estimated by balancing the volume of the drop with that of the cylindrical pancake h 0 = D 3 0 /6R 2 150µm. The temperature of the substrate T s is homogeneous, measured by contact thermometers at different locations, and typically varied from the water freezing temperature, 0 • C, to -60 • C. The desired temperature is reached by plunging a large cube of stainless steel (10 3 cm 3 ) into a liquid nitrogen. The whole experiment is made into a glove box where humidity is controlled in order to avoid frost formation. Because of the small experiment time (max. ∼ 1 s), we can consider that the substrate remains at constant temperature during the dynamics. The drop dynamics is visualized using a high-speed camera recording the spreading from the top.
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Scheme of the frozen pancake obtained after a liquid drop impacted a cold substrate. The pancake has a radius R and a typical thickness h0. The substrate, at a temperature Ts, cools the pancake, so that a layer of thickness h(t) is frozen, above which the liquid is at freezing temperature T0. C and -60 • C. In both impact sequences, the drop spreads on the substrate until it reaches its maximum diameter, captured on the second image. During this phase, the droplet remains liquid but a thin layer of ice forms upon contact with the substrate. In contrast with the situation at room temperature [26], almost no retraction of the drop is further observed since it is pinned on the so- lid substrate, most probably by this ice layer. Instead, capillary waves propagate on the spread droplet that has now the shape of a pancake. In the mean time, the solidification of the drop occurs, observed on Fig. 2 (b) through a front that develops radially from the pancake edge towards its center, forming eventually a donuts that solidifies (t ∼ 500ms), and that is due to the complex dynamics of the solidification front [27]. After that point (t ∼ 500ms on Fig. 2 (b)), the whole pancake is frozen and keeps cooling. It is therefore shrinking, but the adhesion to the solid substrate limits this ice contraction. This frustration causes mechanical tensions that are suddenly relaxed by the formation of a pattern of fractures. This remarkable dynamics, called fragmentation, is a 2D equivalent to the Prince Rupert's drops shattering, described in the introduction. This solid fragmentation seems to propagate radially from a nucleation point. Experimental estimation gives a high front propagation velocity, typically between 800 and 1000 m.s -1 , which is a fraction of the Rayleigh wave speed.

Figure 2 (c) presents the same drop impact experiment but on even colder substrate (-46 • C). In this case, shortly after the drop has pinned, while ripples are still visible, first fractures are observed on a growing ice layer (t ∼ 28 ms). Then more cracks propagate, hierarchically, by successive division of the frozen drop. The crack pattern is here typical of hierarchical fractures [17], with younger crack joining the older one at an angle close to 90 • . The domains are larger and consequently less numerous than in the fragmentation regime. Note that, if this particular cracking dynamics is very similar to what is observed in the case of desiccation [22], here the time scales are much shorter.

To summarize the qualitative description of our experiment, the main different patterns are shown on Fig. 2 (a) as a function of the temperature difference ∆T = T 0 -T s , where T s is the substrate temperature and T 0 = 0 • C is the water freezing temperature. They are gathered in three different regimes :

• I : at low ∆T , the solid pancake remains smooth, no cracks are present. • II : the fragmentation regime, at intermediate ∆T , the cracks appear suddenly from a nucleation point. • III : the hierarchical regime, at high ∆T , the cracks are formed step by step. The two sequences described above, Fig. 2 (b) and (c), belong respectively to the beginning of regime II and the end of regime III. We observe that, close to the transition between the regimes, intermediate cases appear, with fragmentation only on the edge of the pancake or mix between fragmentation and hierarchical fractures. It is also worth emphasizing that while the fragmentation occurs after the whole pancake has solidified, the hierarchical cracks are usually formed during the solidification phase : if the bottom part of the pancake is solid, a liquid layer is still present on the top. Finally, this experiment is, to our knowledge, the first example where it is possible to pass continuously from a fragmentation to a hierarchical regime using a simple control parameter. Thermal shock in ceramic [28,[START_REF] Lahlil | The Old Potter's Almanack[END_REF] might have comparable behavior, but this has not been observed so far.

These different regimes can be understood using classical fracture arguments [START_REF] Freund | Dynamic Fracture Mechanics[END_REF] : indeed, since the freezing of the liquid is at 0 • C, the new solid is submitted to a rapid thermal contraction as substrate temperature is below. If the ensuing deformation energy is high enough, fractures can appear in the frozen pancake. This mechanisms can be quantified using energy balance [START_REF] Adda-Bedia | [END_REF]32]. : we assume a linear isotropic elastic behavior of ice, with a Young's modulus E = 9.33 GPa. Its thermal contraction induces a deformation tensor field ε th (x, t) = αδT I where α = 5.3 • 10 -5 K -1 is the ice thermal expansion coefficient taken constant here [START_REF] Petrenko | Physics of ice[END_REF], I the identity tensor and δT = T 0 -T (x, t), with T (x, t) the local timedependent temperature in the ice domain. The density of elastic energy induced by this thermal contraction reads therefore E = 3 2 Eα 2 δT 2 . A fracture in a brittle material consists in the formation of a new interface, associated to an energy per unit surface, the so-called Griffith energy, G c 1 kg • s -2 [START_REF] Schulson | Creep and fracture of ice[END_REF]. Balancing the elastic energy due to the thermal contraction of a cubic ice of length L c , with homogeneous temperature T s , 3E(α∆T ) 2 L 3 c /2, with the energy of a crack breaking the cube in two part 2G c L 2 c , leads to the introduction of the Griffith length :

L c = 4G c 3Eα 2 ∆T 2 .
(

) 1 
Above this typical length, breaking the shrunk solid becomes energetically favorable.

In our system, three regimes can therefore be identified in the crack formation, depending on the ratio between the Griffith length L c and the typical height h 0 of the liquid pancake [START_REF] Gauthier | [END_REF]. If h 0 L c , no crack formation is expected by the thermal shock, this first regime is observed on the first image of Fig. 2 (a). On the other hand, for h 0 L c one expects that the cracks appear before the whole solidification of the pancake, when a solid ice layer of thickness of the order of L c is formed. This is the behaviour observed on Fig. 2 (c) and therefore corresponding to regime III. In between, for h 0 ∼ L c , one expects the cracks to be formed when the whole pancake is solid and we identified this latter behaviour with the regime II (Fig. 2 (b)) where the frozen pancake fragments into a myriad of small pieces of typical size h 0 [17].

Let us start by estimating the appearance temperature of the first cracks at the frontier between regime I and II, ∆T I-II . Energy balance imposes that the total elastic energy in the frozen pancake is greater than the surface energy of all the fractures, namely :

3 2 Eα 2 ∆T 2 πR 2 h 0 ≥ 4 πR 2 h 2 0 G c h 2 0 ,
where the ratio πR 2 /h 2 0 is the number of pieces of typical size h 0 formed by the fragmentation. It leads to the relation :

∆T 2 ≥ ∆T 2 I-II = 8G c 3Eα 2 h 0 . (2) 
With, for ∆T > ∆T I-II cracks are energetically favorable while no cracks should be observed otherwise. At this transition temperature the pancake thickness is then found to be twice the Griffith length. Taking the values of E, G c and h 0 given above, leads to ∆T I-II ∼ 26 • C, which is in excellent agreement with the experimental transition temperature to fragmentation ∆T (exp) I-II ∼ 27 • C (Fig. 2). On the other hand, when h 0 L c , fractures can form before the full solidification of the liquid pancake and we identify there the regime III, where the cracks appear step by step. In this case, the solid layer of thickness h(t) grows with time as the pancake freezes (see Fig. 1), while the liquid temperature can be considered constant and equal to T 0 because of the high contrast between water and air thermal conductivities. The diffusive heat flux through this solid layer, Q = -λ∂ z T , is then balanced, at the solidification front, by the solidification rate -ρ s L ḣ(t). Here, L = 333.5 kJ • kg -1 is the ice-water latent heat per unit mass, ρ s = 920 kg • m -3 the density of ice and λ = 2.4 W • m -1 • K -1 its thermal conductivity [START_REF] Petrenko | Physics of ice[END_REF]. This gives a time scale for the solidification process, τ s = ρsLh 2 λ∆T . Comparing this latter to the time scale of heat diffusion τ d = h 2 D leads to the Stefan number :

St = C p ∆T L = τ d τ s , where, D = λ ρsCp = 1.3 • 10 -6 m 2 • s -1
is the heat diffusion coefficient of the ice. In our experiments, the Stefan number is always smaller than one, indicating that the diffusion process is always faster than the solidification dynamics. Therefore, we can consider that the temperature field in the ice layer is in a quasi-stationary regime, obeying to the stationary diffusion equation. Taking a simple horizontal ice layer of heigh h(t) it reads ∂ zz T = 0, with the boundary conditions T (0, t) = T s and T (h(t), t) = T 0 since the temperature at the solidification front z = h(t) is the freezing temperature. It leads to the linear temperature field :

T (z, t) = T s + ∆T z h(t) . (3) 
Now, balancing the time dependent diffusive heat flux through the ice Q = -λ∂ z T = -λ∆T /h(t) with the solidification rate -ρ s L ḣ(t), gives the following time evolution for the ice layer

h 2 (t) = 2λ∆T ρ s L t = 2StD t,
with h(0) = 0. Considering that the formation of the first crack happens when h(t c ) ∝ L c (Eq. 1), it gives for the time of cracks appearance in regime III :

t c ∝ 8ρ s LG 2 c 9λE 2 α 4 ∆T 5 . (4) 
This first crack time t c has been measured for all our experiments, varying both the impact velocity and the substrate temperature and is shown on figure 3. The closed triangles correspond to the appearance of the first crack in regime III, in reasonable agreement with the ∆T -5 variation predicted by the relation ( 4), plotted with a dashed line. This confirms our model where quasi stationary heat diffusion in the ice layer drives the solidification rate and the first crack appears when the thickness of the ice layer is close to the Griffith length. On the contrary, the open diamonds corresponding to the fragmentation time in regime II do not follow the same scaling since the solidification dynamics and temperature fields in the solid are different.

Finally, the transition between regimes II and III is expected when h 0 ∼ L c . Then, the elastic energy in the ice block has to be estimated at the time when the dification ends, namely when h(t) = h 0 . Integrating the elastic energy density E on the pancake volume, with the corresponding temperature field (Eq. 3) yields :

3Eα 2 2 ∆T 2 II-III πR 2 h0 0 (1 - z h 0 ) 2 dz = Eα 2 2 ∆T 2 II-III πR 2 h 0 .
Balancing this energy with the minimal elastic energy needed to fragment ( 3 2 Eα 2 ∆T 2 I-II πR 2 h 0 ), allows us to obtain the transition temperature ∆T II-III separating the two fracture regimes :

∆T II-III = √ 3∆T I-II . (5) 
Taking ∆T I-II ∼ 26 • computed above leads to ∆T II-III ∼ 45 • , which is in very good agreement with the experimental transition temperature T (exp) II-III = 42 • . Note that this gives a pancake thickness six times larger than the Griffith length at the transition.

Finally, until now only one falling height H has been considered for the drop, which signifies that the shape of the pancake has been kept almost constant. However, drop impact enables a control of the pancake aspect ratio and further on of the cracks patterns of thin structures. Indeed, by varying the impact parameters and the substrate temperature, our experimental set-up allows us to span a large range of spreading dynamics, leading to a broad variety of frozen drop shapes [26,36,37]. Figure 4 displays the phase diagram as both H and ∆T vary, where the three main domains of Fig. 2 are retained, proving their universality. However, we observe that the transition temperatures vary non monotonically with the drop falling height : since increasing H decreases the pancake thickness (h 0 ), we would expect the transition temperatures ∆T I-II ∝ h -1/2 0 (Eq. 2) and ∆T II-III = √ 3∆T I-II (Eq. 5) to increase with H, which is only compatible in our experiment for H greater than 25-30 cm. Below this height, the transition temperature decreases which is not predicted by our model, probably because the frozen drop does not have the pancake cylindrical shape of Fig. 1 anymore.

In conclusion, in this paper the different crack regimes of a frozen water pancake shrunk by cooling and pinned on a non shrinking substrate, are investigated using classical fracture scaling arguments. By increasing the thermal shock, the pancake undergoes two regimes : from fragmentation to hierarchical fracture. The appearance temperature of both regimes are determined, along with the scaling of the first crack time in the hierarchical fracture regime. This original experiment therefore constitutes a model system enabling to easily investigate a broad range of fracture mechanisms and to progress in the understanding of the multi-physic aspects of crack patterns due to thermal shocks.
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 2 Figure 2 (b) and (c) present time sequences, for different substrate temperatures, respectively -31• C and -60 • C. In both impact sequences, the drop spreads on the substrate until it reaches its maximum diameter, captured on the second image. During this phase, the droplet remains liquid but a thin layer of ice forms upon contact with the substrate. In contrast with the situation at room temperature[26], almost no retraction of the drop is further observed since it is pinned on the so-
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 2 Figure 2. (a) Frieze presenting snapshots of the frozen pancakes formed after a water drop impacted, from a falling height H = 36 cm, a cold substrate at various temperature Ts = -20.0 • , -31.1 • , -41.2 • , -50.3 • and -59.6 • C from left to right (with ∆T = -Ts). Depending on ∆T the frozen pancake presents different crack patterns that can be gathered into three different regimes : I -no cracks, II -fragmentation regime, III -hierarchical fractures regime. The transition temperatures are : ∆T (exp) I-II ∼ 27 • C and ∆T (exp) II-III ∼ 42 • C. (b) Sequence showing the drop impact and solidification dynamics preceding the fracture pattern observed on the second image of the frieze (a) : Ts = -31.1 • C. (c) Sequence preceding the fracture pattern observed on the fifth image of the frieze (a) : Ts = -59.6 • C. On these two sequences, the time and the scale bar are on the images.
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 53 Figure 3. Appearance time of the first crack, tc, plotted as function of ∆T = T0 -Ts = -Ts with Ts the substrate temperature, for five different falling heights of the impacting drop. tc is determined considering initial time when drop reached its maximum spreading diameter after impact. The open diamonds correspond to the fragmentation regime (II) while the closed triangles correspond to the hierarchical fracture regime (III). The dashed line, representing tc ∝ ∆T -5 , follows reasonably well the points in the regime III.
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 4 Figure 4. Phase diagram for the cracks pattern as the substrate temperature (-∆T ) and the drop impact velocity (here noted by H the height of drop fall) vary. The three regimes observed are represented with the same symbols and same color as on Fig. 2 : white square for regime I, red diamond for regime II and blue triangle for regime III.