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We investigate the dynamics of drop impact on a thin liquid film at short times in
order to identify the mechanisms of splashing formation. Using numerical simulations
and scaling analysis, we show that it depends both on the inertial dynamics of the liquid
and the cushioning of the gas. Two asymptotic regimes are identified, characterized by a
new dimensionless number J : when the gas cushioning is weak, the jet is formed after a
sequence of bubbles are entrapped and the jet speed is mostly selected by the Reynolds
number of the impact. On the other hand, when the air cushioning is important, the
lubrication of the gas beneath the drop and the liquid film controls the dynamics, leading
to a single bubble entrapment and a weaker jet velocity.

1. Introduction

Droplet collisions and impacts are iconic multiphase flow problems: rain, atomization
of liquid jets, ink-jet printing or stalagmite growth involve impact in one manner or the
other (Rein 1993; Yarin 2006; Josserand & Thoroddsen 2016). The droplet may impact
on a dry surface, a thin liquid film or a deep liquid bath. In all cases, impact may lead
to the spreading of the droplet or to a splash where a myriad of smaller droplets are
ejected far away from the zone of impact (Rioboo et al. 2001). Control of the outcome of
impact is crucial for applications: for instance, spreading is desirable for coating or ink-
jet printing for instance while splashing may improve the e�ciency of evaporation and
mixing in combustion chambers. Two distinct types of splash, “prompt” and “ordinary”
are now usually distinguished. The prompt splash is defined as a very early ejection
of liquid at a time t ⌧ D/U

0

where D is the droplet diameter and U
0

its velocity. A
very thin liquid jet is formed, called the ejecta sheet (Thoroddsen 2002), projected at
high velocity, initially almost horizontally and it is expected to disintegrate eventually
in very small and rapid droplets. The second type of splash, often called also corolla or
crown splash, occurs at later times, through the formation of a vertical corolla ending in
a circular rim that destabilizes into fingers and droplets (Deegan et al. 2008; Agbaglah
et al. 2015).
Very often, these two mechanisms are not easy to distinguish cleary, since they happen

in a sequence, the ejecta sheet being a precursor of the corolla, as illustrated by the
numerical simulations of a droplet impact on a thin liquid film, shown in Figure 1.
The dynamics of droplet impact is complex, involving singular surface deformation

and pressure values in the inviscid limit and several instabilities of surface evolution,
so that an overall understanding of the whole process is still lacking. In particular, the
splash depends on many physical parameters, the most important being the impact
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Figure 1. Snapshots of a droplet impacting on a thin liquid film for parameters in Tables 1
and 2, i.e. We = 500, Re = 2000 and St = 2.26 · 10�6 so that the jet number is J = 0.041. For
the sake of visualisation, the liquid of the droplet and of the layer have been colored in green
and blue respectively, although it is the same liquid. The gas phase is colored in dark blue. The
snapshots correspond to the dimensionless time U0t/D = �0.033, 0.0167,0.083, 0.133, 0.217 and
0.767 respectively.

velocity. Obviously, high velocities promote the splash while at low velocities the droplet
gently spreads. More precisely, the splashing-spreading transition depends mostly on the
balance, in the liquid, between inertial and viscous forces (Stow & Hadfield 1981; Mundo
et al. 1995; Yarin &Weiss 1995; Josserand & Zaleski 2003), characterized by the Reynolds
and the Weber numbers defined below. Although droplet impact on solid surfaces or
on liquid films show similar outputs, the physical mechanisms leading to these e↵ects
often have di↵erent origins. For droplet impact on solids, the surface properties play an
important role, through its roughness and the contact line dynamics for instance. There,
a remarkable discovery has been done recently: the surrounding gas (usually air) also
plays a crucial role in splash formation (Xu et al. 2005), and understanding in detail the
influence of the gas still remains a challenge (Mandre & Brenner 2012; Riboux & Gordillo
2014; Klaseboer et al. 2014). In particular, the formation of a thin air layer at the instant
of impact smoothes the singularity expected in the absence of any gas and thus “cushions”
the impact, leading to the entrapment of an air bubble (Thoroddsen et al. 2003; Mehdi-
Nejad et al. 2003; Thoroddsen et al. 2005; Mandre et al. 2009; Duchemin & Josserand
2011). For drop impact on liquid, the thickness of the liquid film is crucial and the corolla
splash can be seen as the results of the collision between the spreading drop and the
liquid layer at rest Yarin & Weiss (1995). There also, it has been noticed experimentally
and numerically that air bubbles were entrapped by the impact dynamics (Thoroddsen
et al. 2003; Thoraval et al. 2012), although the e↵ect of the surrounding air has been
shown not to be as dramatic as on solid surfaces. However, a systematic study of its
influence on the impact outputs is still lacking and a potential interplay between the
bubble entrapment and the ejecta sheet still needs to be elucidated. In 2003, two of
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Figure 2. Sketch of the numerical simulation, a spherical droplet of radius R and velocity U0

is considered at a distance h0 from a liquid film of thickness e.

us (Josserand & Zaleski 2003, which we further refer to as JZ03) have proposed that the
splashing/spreading transition observed in experiments and in numerics was controlled
by the capillary-inertia balance within the ejecta sheet. The thickness in this theory was
selected by a viscous boundary layer. In such a model, scaling laws for the jet thickness
and velocity were deduced neglecting totally the gas dynamics and the existence of an
entrapped bubble was not considered at all.
The goal of this paper is therefore to determine the properties of the ejecta sheet for

the splashing of a drop on a thin liquid film with a particular emphasis on the interaction
between the jet formation and the gas dynamics. High resolution numerical simulations
of axisymmetric incompressible newtonian two-phase flow will be used in order to exhibit
the relevant physical mechanisms at the heart of the prompt splash in this framework.

2. The general problem

2.1. Geometry and dimensional analysis

We consider a droplet of diameter D impacting on a thin liquid film of thickness e with a
velocity U

0

normal to the film interface. Both liquid and gas have densities ⇢
l

and ⇢
g

, and
dynamical viscosities µ

l

and µ
g

respectively. The surface tension is �. In experiments the
droplet impact is typically produced by the release of a drop at some height H above the
film, falling under gravity g. In our case the simulation starts with a small initial air gap
h
0

between the film and the droplet and a velocity U
0

, as shown on Figure 2. The droplet
is assumed to be spherical. In order for this assumption to be valid we need a) to have as
little e↵ect of the air flow on the droplet shape as possible. This should be verified if the
gas Weber number We

g

= ⇢
g

U2

0

D/� is small or in a viscous regime and b) to assume
that the oscillations of the droplet shape caused by the droplet release mechanism (Wang
et al. 2012) are as small as possible. The Froude number Fr = U2

0

/(gD) that quantifies
the influence of the gravity during the impact is taken constant and high (Fr = 800) for
all the simulations, indicating that gravity has only a small e↵ect on the dynamics. We
will restrict this study to large liquid Weber numbers We = ⇢

l

U2

0

D/�.
The problem is then mostly characterized by the dimensionless numbers

Re =
⇢
l

U
0

D

µ
l

, St =
µ
g

⇢
l

U
0

D
and ↵ =

⇢
g

⇢
l

which are the liquid Reynolds and Stokes numbers of the impact, and the density ratio.
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These numbers compare the droplet inertia with viscous e↵ects in the liquid and gas
respectively, and compare the liquid to the gas inertia. We note that ⇢

l

/⇢
g

has to be
very large if one wants simultaneously to have We

g

⌧ 1 and We � 1. An additional
dimensionless number is the aspect ratio between the liquid film and the droplet e/D
which we keep relatively small and constant in this study. We expect the initial gas layer
aspect ratio h

0

/D to be irrelevant if the conditions described above (Fr � 1,We
g

< 1)
are satisfied and h

0

is larger than the characteristic thickness h
b

defined below. Com-
pressibility e↵ects are characterized by the Mach numbers Ma = U/a

l,g

, where a
l

(resp.
a
g

) is the speed of sound in the liquid (resp. gas) and in all our simulations, these Mach
numbers remained small enough so that compressibility e↵ects can be neglected (Lesser
& Field 1983).
We note that the axisymmetric flow assumption is not valid when digitations and

splash droplets form. However, at short time, before these instabilities can develop and
particularly before the jet is created, we can consider this assumption correct (Agbaglah
& Deegan 2014). Otherwise the general 3D problem remains a grand numerical challenge
because of the large range of scales involved (Rieber & Frohn 1998; Guey�er & Zaleski
1998). Despite some recent numerical results (Fuster et al. 2009) realistic 3D numerical
simulations of droplet impact at short times are yet hard to attain. Moreover a solid
basis for the analysis of the scaling of 3D flow may only be attained when the scaling of
2D flow has been uncovered. We thus postpone a detailed 3D study of droplet impact to
future work.

2.2. Scaling analysis

We analyze now the di↵erent mechanisms at play during droplet impact using simple
scaling arguments. Recall that surface tension and gravity can be neglected, and in a
first step, we will consider also that the surrounding gas has negligible e↵ects. We then
quite naturally define t = 0 as the time at which the undeformed, spherical droplet at
uniform velocity would touch the undeformed, planar liquid surface. With this definition
of the time, the origin initial time is t

0

= �h
0

/U
0

.
We will now use an important geometrical argument first suggested by Wagner (1932):

considering the intersection of the falling sphere with the impacted film, it is straightfor-
ward to define the vertical lengthscale as `

z

= U
0

t and the horizontal one r
g

=
p
D`

z

=p
DU

0

t. These apparently simple scalings arising purely from geometry are in fact very
robust and relevant to the description of impact at short times: for instance, it has been
shown that r

g

(t) gives a correct estimate of the so-called spreading radius defined as the
radius where the pressure is maximal (JZ03). Remarkably, the geometrical velocity of
this intersection

v
g

(t) =
dr

g

dt
=

1

2

r
DU

0

t
, (2.1)

diverges at t = 0, questioning the incompressible assumption. However, although formally
such a geometrical velocity diverges, fluid velocities remain much smaller and compress-
ibility can be safely neglected for small Mach numbers. To make the article self-contained,
we will now recall rapidly the results obtained by JZ03. The key point is the numerical
observation that the pressure field and the velocity field are perturbed over the length
scale r

g

(t) so that a kind of inner-outer asymptotic analysis can be performed, in which
the flow is uniform at scales larger that r

g

, potential at scales of order r
g

and viscous
at scales much smaller than r

g

(a more rigorous asymptotic analysis has been developed
later in Howison et al. (2005)). In this analysis the ejecta speed is obtained using a mass
conservation argument between the impacting droplet and the ejected sheet, assuming



Anatomy of the splash 5

that the thickness of the jet is selected by a viscous length. More precisely, one can
compute in this framework first the mass flux F

m

from the falling undeformed sphere
through the undeformed film surface

F
m

(t) ⇠ ⇢
l

⇡r2
g

U
0

. (2.2)

This flux can be absorbed either by surface deformation of the droplet and of the film or
by the formation of an ejecta sheet. In JZ03, we have assumed that the thickness of such
a sheet or jet is given by a viscous boundary layer formed at the basis of the jet leading
to a viscous length scale

e
j

(t) ⇠
r

µ
l

t

⇢
l

. (2.3)

Then conservation of the volume flux through this jet implies that the jet velocity U
j

has to satisfy

U
j

⇠
p
ReU

0

. (2.4)

Remarkably, this gives a nonlinear relationship between the jet and the impacting droplet

velocity since then U
j

/ U
3/2

0

. Such a law has obviously some physical restrictions: first
of all, the flux formula (2.2) is valid only for t ⌧ R/(2U

0

) since our whole analysis is for
short times, and makes no sense for times of order D/U

0

. Furthermore, the jet velocity
has to be larger than the geometrical velocity v

g

. Indeed if U
j

< v
g

(t) one would expect
the ejecta sheet to be overrun by the falling droplet. This condition together with (2.1)
yields a “geometric” limiting time t

g

t > t
g

⇠ 1

Re

D

U
0

. (2.5)

When the ejecta forms, a bulge or rim appears at its tip according to the mechanism
of Taylor (1959) and Culick (1960). This rim moves backwards at the Taylor-Culick
velocity

v
TC

=

s
2�

⇢
l

e
j

. (2.6)

where e
j

is the thickness of the ejecta sheet. The ejecta sheet cannot form if its velocity
is smaller than the Taylor-Culick velocity constructed with the thickness e

j

of the ejecta
sheet. We thus obtain that the ejecta can form only when U

j

> v
TC

which from equations
(2.4, 2.3, 2.6) yields

t > t
TC

=
2

We 2Re

D

U
0

. (2.7)

Both conditions (2.5) and (2.7) must be satisfied at short times t ⌧ D/U
0

because as
stated above the whole theory does not make sense for larger times. Then we must have
max(t

TC

, t
g

) ⌧ D/U
0

which yields the condition

min(We 2Re ,Re ) � 1.

Since we restrict the present study to the dynamics where splashing is always present,
we consider situations such that We � 1 and Re � 1, so that of the two conditions for
splashing given above, t > t

g

is always more restrictive than t > t
TC

. Therefore, in our
configuration, the jet appears only when its velocity is bigger than the geometrical one.
Interestingly, this analysis suggests that for t < t

g

, jets can form but are immediately
absorbed by the geometrical advancement of the drop on the liquid layer.
Finally, the inertial pressure of the impact P

imp

can be computed using the rate of
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change of vertical momentum in the droplet, following JZ03:

P
imp

⇡r2
g

⇠ 2⇡

3
⇢
l

r3
g

U
0

dr
g

dt
. (2.8)

In this equation, the vertical momentum in the droplet is a↵ected only in a half-sphere
of radius r

g

. Eq. (2.8) gives the impact pressure

P
imp

⇠ 2⇢
l

dr
b

dt
U
0

(2.9)

which leads to

P
imp

⇠
r

D

U
0

t
⇢
l

U2

0

(2.10)

as observed in numerical simulations (see JZ03). Note that a detailed analysis of the
potential flow for a droplet falling on a solid surface has been performed by Philippi
et al. (2016). The reasoning in the latter paper may be straightforwardly transposed to
the impact on a liquid surface to obtain for the pressure field in the neighborhood of
z = 0

p(r, t) ⇠ 3⇢
l

U2

0

⇡
q

3tU0
R

� r

2

R

2

(2.11)

which is very similar at r = 0 to the scaling in (2.10). However the pressure field of (2.11)
has an additional singularity for t > 0, not predicted by eq. (2.10) at r = ±p

3RU
0

t.
This singularity is indeed observed in our numerical simulations as well as in JZ03 and
in Philippi et al. (2016); Duchemin & Josserand (2011).
In the theory above, contact occurs at t = 0, the vertical length scales are U

0

t and e
j

,
the flow pressure and the geometric velocity are singular with an infinite limit at t = 0.
So far, the e↵ect of the gas layer is not considered at all. When instead the gas layer is
taken into account, the above analysis is an approximation valid at length scales ` � h

b

where h
b

is the thickness of the gas layer involved in the cushioning due to its viscosity.
The scale of the impact pressure is thus, following eq. (2.10)

P
imp

⇠
r

D

h
b

⇢
l

U2

0

(2.12)

The singularity of the velocity and the pressure is thus regularized by the gas viscosity
so that it can be said that the gas “cushions” the shock of the impact.
Furthermore, it is observed in experiments by Thoroddsen et al. (2003) and in nu-

merical simulations (Josserand & Zaleski 2003; Mehdi-Nejad et al. 2003; Korobkin et al.

2008) that contact does not occur on the symmetry axis r = 0 but on a circle of radius
r
b

so that a bubble is entrapped, as observed also for droplet impact on solid surfaces by
Thoroddsen et al. (2005); Kolinski et al. (2012). As before, horizontal and vertical length
scales are related at short times by l

z

⇠ l2
r

/D, so that we have the thickness h
b

of the
gas layer or entrapped bubble at the time of contact related to the contact radius r

b

by

h
b

= r2
b

/D. (2.13)

These short-time asymptotics have to match the initial conditions at negative time t =
�t

0

. Let z
+

(r, t), z�(r, t) be the positions of the drop and film surfaces respectively, and
h(r, t) = z

+

(r, t)� z�(r, t) be the thickness of the gas layer. To fix ideas, let us consider
initial conditions such that z�(r,�t

0

) = 0, h(r,�t
0

) = z
+

(r,�t
0

) close to the impact
time so that on the axis h(0,�t

0

) = h
0

⌧ D. The gas layer is therefore thin and there is
a separation of horizontal and vertical length scales so that the lubrication approximation
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is valid over distances l
r

⇠ p
h(0,�t)D. As long as the lubrication pressure (estimated

below) thus obtained in the gas layer is much smaller than the impact pressure P
imp

the
liquid advances almost undeformed while expelling the gas. In this regime

@
t

h(0, t) = �U
0

. (2.14)

When the lubrication pressure becomes large enough to deform the liquid and slow down
the thinning of the gas layer, the time is of order of a so called air-cushioning time
scale t

b

and the thickness reaches the air cushion length scale h
b

. Matching with the
initial velocity, eq. (2.14) then gives the relationship h

b

= U
0

t
b

which together with the
separation of scales condition (2.13) links the time and position of the contact through
t
b

⇠ r2
b

/(DU
0

).
In order to determine these air cushioning space and time scales, we find the dominant

balance in the lubrication equation, following in part recent works on impacts on solid
surfaces (Korobkin et al. 2008; Mandre et al. 2009; Hicks & Purvis 2010; Duchemin &
Josserand 2011; Hicks & Purvis 2011, 2013; Klaseboer et al. 2014). Our theory starts
from the incompressible lubrication equation in cylindrical geometry:

@
t

h =
1

12µ
g

r
@
r

(rh3@
r

P ) (2.15)

where P (r, t) is the pressure in the gas layer. The factor 1/12 in front of the lubrication
pressure comes from the Poiseuille velocity profile valid for laminar flows, obtained with
a zero radial velocity at z� and z

+

, which is assumed because of the small horizontal
velocity in the liquid before splashing. Using the above geometrical argument h ⇠ p

Dr
for the pressure term and @

t

h ⇠ �U
0

, we obtain the following scaling for the lubrication
pressure P

b

in the gas film of thickness h:

P
b

⇠ 3µ
g

U
0

D

h2

,

The usual lubrication scaling for the bubble entrapment is then obtained by writing that
during this “cushioning phase”, the air pressure for h ⇠ h

b

balances the impact pressure,
that is P

b

⇠ P
imp

yielding:

P
b

⇠ 3µ
g

U
0

D

h2

b

⇠ P
imp

⇠ ⇢
l

U2

0

r
D

U
0

t
b

⇠ ⇢
l

U2

0

r
D

h
b

.

using the relation h
b

= U
0

t
b

deduced above. This relation gives the following scalings for
the bubble entrapment:

h
b

⇠ St2/3D , r
b

⇠ St1/3D , t
b

⇠ h
b

U
0

⇠ St2/3
D

U
0

and P
b

⇠ 3µ
g

U
0

D

h2

b

⇠ 3⇢
l

U2

0

St�1/3.

(2.16)
The cushioning phase starts when t is negative and of order �t

b

and ends when first
contact occurs at a positive time t

b

. This leads to two remarks: one is that the time
of “cushioning” t

b

is both the time scale of the duration of this phase, and the time
coordinate of the two instants of the beginning of the cushioning phase and the end of
it at the first contact. We do not have strong arguments or data to show that this two
instants are symmetric around t = 0. However, interestingly, our numerical simulations
show that a kind of droplet/film symmetry holds, so that at t = 0, we have to a high
degree of accuracy z

+

(0, 0) = �z�(0, 0) (see Figure 4 below).
In this approach, in agreement with previous works (Mandre et al. 2009; Duchemin

& Josserand 2011), gas inertia e↵ects have been totally neglected although such an as-
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sumption is questionable, as suggested in a recent work on impact on solid surfaces (Mani
et al. 2010; Riboux & Gordillo 2014). Implementing the corrections due to inertial e↵ects
in thin film equation remains a di�cult problem to tackle analytically (Wilson & Du↵y
1998; Luchini & Charru 2010) so that we provide here only estimates based on scaling
analysis.
The variation of the film height is given by the divergence of the horizontal gas flux in

the layer

@
t

h = �1

r
@
r

(rhū),

where ū is the averaged horizontal velocity between z� and z
+

. We can determine the
scale u

b

for ū(r, t) by considering the momentum balance in a thin gas layer

@
t

ū+Aū@
r

ū = �1

⇢
g

@
r

p� 12µ
g

ū/h2 �Kū2/h

where A is a constant depending on the profile of the flow in the gas layer and K is
a constant characterizing turbulent friction. This equation will hold if the flow remains
thin (h ⌧ D) and does not separate. Since in incompressible flow the pressure is defined
up to a constant and the pressure at the exit of the thin gas layer flow (taken here for
r ⇠ r

g

(t)) is the pressure at infinity, it is convenient to set this pressure at the exit
to zero. Then P

b

equals the pressure di↵erence and it can be estimated at the bubble
entrapment yielding

P
b

= 12µ
g

r
b

u
b

/h2

b

+ C
1

⇢
g

u2

b

r
b

/h
b

+ C
2

⇢
g

u2

b

. (2.17)

Here, we have taken for the first (dominant) term the lubrication pressure already com-
puted above. The second and third terms result from two kinds of inertial e↵ects, the
turbulent friction term and a possible singular head loss due to flow separation. It is
readily seen that the ratio between the first two terms is the local Reynolds number of
the gas layer ⇢

g

u
b

h
b

/µ
g

. The third term is a singular head loss. The constant C
1

and
C

2

depend on the precise geometry of the flow and are di�cult to estimate. However,
it can be seen that the singular head loss is much smaller for our problem by a factor
h/r

g

= (DU
0

/t
b

)�1/2 than the turbulent friction term so that we will neglect the singular
head loss in the following developments.
The film pressure may be finally obtained by estimating the horizontal velocity scale

as u
b

= r
b

/t
b

which together with eq. (2.13) yields

P
b

⇠ 12µ
g

U
0

D

h2

b

+ C
1

⇢
g

U2

0

✓
D

h
b

◆
3/2

. (2.18)

Remarkably, the neglected singular head loss term would give an additional contribution
in the form C

2

⇢
g

U2

0

D/h
b

.
Finally, equating P

b

and P
imp

yields now an implicit equation for h
b

⇢
l

U2

0

✓
D

h
b

◆
1/2

=
12µ

g

U
0

D

h2

b

+ C
1

⇢
g

U2

0

✓
D

h
b

◆
3/2

(2.19)

which can be written in terms of the dimensionless variables ĥ
b

= h
b

/D, St and ↵

12 St = ĥ
3/2

b

� C
1

↵ĥ
1/2

b

(2.20)

The above equation is cubic in ⇠ = ĥ
1/2

b

and its solution gives the dimensionless height
of the film as a function of St and ↵ with two asymptotic regimes separated by a critical
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Stokes number

St
c

=
1

12
(C

1

↵)3/2. (2.21)

The first regime, for St � St
c

corresponds to the case computed above with lubrication
only (2.16) and is of the form

ĥ
b

⇠ St2/3

as also stated by Mandre et al. (2009); Mani et al. (2010). In the other regime, for
St ⌧ St

c

we get

ĥ
b

⇠ C
1

↵. (2.22)

The estimates for the time at which the bubble is entrapped results from the estimates
for h

b

through t
b

= h
b

/U
0

. For St � St
c

we recover eq. (2.16)

t̂
b

⇠ St2/3 (2.23)

where the dimensionless time is noted t̂ = U
0

t/D, and all the other scalings are obtained
straightforwardly from the scalings for the height ĥ

b

given above. In particular, the
timescale of bubble entrapment t̂

b

can be deduced from that of ĥ
b

accounting the inertial
correction eq. (2.20), yielding the same relation (since ĥ

b

= t̂
b

):

12 St = t̂
3/2

b

� C
1

↵t̂
1/2

b

(2.24)

Similarly from Equation (2.10) the pressure in and on top of the gas layer, neglecting
surface tension e↵ects is (eq. 2.16):

P
imp,max

⇠ ⇢
l

U2

0

St�1/3 (2.25)

This theory will now serve as a framework to interpret the numerical simulations reported
below. The main prediction is that air delays contact by a time of order t

b

and that a
bubble of typical radius r

b

is entrapped.
The above considerations however do not say how the time of formation of the jet

t
j

is a↵ected by the gas cushioning. It sets contraints on the air cushioning e↵ect and
we can a priori only turn to numerical simulations to see how the air layer dynamics
interacts with jet formation. However, the previous analysis suggest two distinct regimes
for the jet formation and thus for the value of t

j

. More precisely, if t
g

� t
b

, which means
that the jet forms after the bubble entrapment, one expects t

j

⇠ t
g

. On the other hand,
if t

g

⌧ t
b

, the jet can only forms after the bubble entrapment so that t
j

⇠ t
b

. These
results evidence a transition from a regime where the gas thickness and cushioning e↵ect
are insignificant on the jet dynamics to a regime where the air cushioning controls the
jet dynamics. This transition can be characterized by the ratio t

b

/t
g

and provided that
↵ = ⇢

g

/⇢
l

is small enough, it defines a new dimensionless number J for the jet formation:

J = St2Re 3 =

✓
t
b

t
g

◆
3

. (2.26)

Therefore, J � 1 suggests that the jet forms just after the bubble entrapment while
J ⌧ 1 would indicate that bubble is entrapped much before the jet is formed, creating
potentially a number a secondary bubbles. The above considerations however do not say
at what time t

j

the liquid sheet is ejected. It sets constrains on the air cushioning e↵ect
and we can only turn to numerical simulations to see how the air layer dynamics interacts
with jet formation. Remarkably, J = St2Re 3 = Reµ2

g

/µ2

l

varies only with Re for a given
liquid-gas pair, so it fixes a limiting U

0

D for which the regime changes for a given pair
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of fluids. For an air-water system for instance, taking µ
l

/µ
g

⇠ 50 it gives a transition at
Re ⇠ 3250 or U

0

= 3.25m/s for a D = 1 mmm droplet and µ
l

= 10�3Pa · s.
To conclude this scaling analysis, it is interesting to notice that an alternative theory

has been proposed recently (Klaseboer et al. 2014). There a di↵erent scaling for the
entrapment has been obtained (leading to h

b

⇠ St1/2D instead of h
b

⇠ St2/3D) based
on the balance between the lubrication pressure in the gas and the Bernoulli pression
in the drop ⇢

l

U2

0

. Although the pressure amplitude in numerical simulations of drop
impact has been shown to obey the singular law (2.11), experimental studies have yet to
distinguish between these two predictions.

3. Numerical method

In our continuum-mechanics modeling approach, fluid dynamics is Newtonian, incom-
pressible, with constant surface tension. In the “one-fluid approach” (Tryggvason et al.

2011) one considers a single fluid with variable viscosity and density, and a singular
surface tension force, yielding the Navier-Stokes equations that read:

⇢
@u

@t
+ ⇢r · uu = �rp+r · µ[ru+ (ru)T ] + �n�

s

. (3.1)

div(u) = 0 (3.2)

where u, p is the pressure, n denotes the unit normal to the interface and �
s

is the
two-dimensional Dirac distribution restricted to the interface, ⇢(x) and µ(x) are the
space-dependent fluid densities and viscosities equal to their respective values ⇢

l,g

and
µ
l,g

in each phase. This set of equations can be written using dimensionless variables,
rescaling lengths by D, velocities by U

0

, times by D/U
0

, densities by ⇢
l

and pressures by
⇢
l

U2

0

so that the Navier-Stokes equations become:

⇢
@u

@t
+ ⇢r · uu = �rp+r · µ

Re
[ru+ (ru)T ] +



We
n�

s

. (3.3)

where now ⇢ = µ = 1 in the liquid phase while ⇢ = ↵ = ⇢
g

/⇢
l

and µ = µ
g

/µ
l

in
the gas. Equation (3.3) is solved using the methods described in Popinet (2003, 2009);
Lagrée et al. (2011); Tryggvason et al. (2011), that is by discretizing the fields on an
adaptive quadtree grid, using a projection method for the pressure, the time stepping and
the incompressibility condition. The advection of the velocity fields is performed using
the second-order Bell-Collela-Glaz scheme, and momentum di↵usion is treated partially
implicitly. The interface is tracked using a Volume of Fluid (VOF) method with a Mixed
Youngs-Centered Scheme (Tryggvason et al. 2011) for the determination of the normal
vector and a Lagrangian-Explicit scheme for VOF advection. Curvature is computed
using the height-function method. Surface tension is computed from curvature by a well-
balanced Continuous-Surface-Force method. Density and viscosity are computed from the
VOF fraction C by an arithmetic mean. This arithmetic mean is followed by three steps
of iteration of an elementary filtering. This whole set of methods is programmed either
in the Gerris flow solver (Popinet 2014), or in the Gerris scripts that were designed to
launch these computations.
Four refinement criteria are used as follows 1) the local value of the vorticity, 2) the

presence of the interface as measured by the value of the gradient of the VOF “color
function” 3) a measure of the error in the discretisation of the various fields based on an a

posteriori error estimate of a given field as a cost function for adaptation. This a posteriori

error is estimated by computing the norm of the Hessian matrix of the components of the
velocity field, estimated using third-order-accurate discretisation operators, 4) when near
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Table 1. Dimensionless values of the parameters for all simulations reported

We Fr ⇢
l

/⇢
g

e/D h0/D

500 815 826.4 0.2 1/30

Table 2. Dimensional values of the main parameters for Figure 1

U0 D µ
l

µ
g

� e

4 m s�1 2 · 10�3m 4 · 10�3kg m�1s�1 18 · 10�6kg m�1s�1 64 · 10�3 kg s�2 4 · 10�4 m

the interface, the curvature is used as the adaptation criterion. To measure the degree of
refinement so obtained, recall that on a quadtree grid, a level of refinement n means that
the grid cell is 2n times smaller than the reference domain or “box”. When adaptively
refining, a predefined maximum level n

0

is used for the adaptation on curvature (4),
moreover adaptation on vorticity (1) and on the error (3) may lead to a maximum level
of refinement n

0

� 1 and finally cells near the interface (2) are always refined to level
n
0

�2 at the least. Note that criterion (3) is generally more e�cient than (1) so the latter
could have been dropped altogether.

4. Results of simulations

4.1. Impact dynamics

We perform series of simulations with parameters set as in Table 1. To illustrate these
values, for water-like fluids, these constant Weber and Froude numbers would correspond
to a 2 mm diameter drop falling at velocity 4 m · s�1. The numerical simulations are
performed for di↵erent liquid and gas viscosities characterized by the Reynolds and Stokes
numbers varying from 400 to 16000 and from 5.65 ·10�7 to 2.26 ·10�5 respectively. Again,
for a 2 mm diameter drop impacting at 4 m · s�1, it would typically cover the range
between one eighth to twenty times the water viscosity, and one fourth to ten times the
air viscosity. In particular, we have done most of the simulations for three Stokes numbers
(2.26 · 10�6, 9.05 · 10�6 and 2.26 · 10�5) and a large range of Reynolds numbers (400,
600, 800, 1000, 2000, 4000, 8000 and 16000) that will be used to analyse the dynamical
properties of the impact.
In an initial phase the droplet falls undeformed until air cushioning e↵ects set in. Then

at some point in time the jet forms and a reconnection of the interfaces on the droplet and
film occurs. Figure 1 shows a droplet impact with physical parameters approximating a
glycerinated water droplet falling in air. The main dimensional parameters are given in
Table 2, other parameters approximate air at ambient temperature, leading to the di-
mensionless numbers Re = 2000 and St = 2.26 10�6 in complement to the dimensionless
numbers of Table 1.
The grid is refined based on the four criteria above so that the smallest cell has size
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a) b)

Figure 3. The grid refinement used in a) Figure 5a and b) Figure 5d. Here, the viscosity is
twice that of Table 2, so that Re = 1000 with a gas viscosity such that St = 2.26 10�6 and
J = 0.005.

Figure 4. The dimensionless positions of the bottom of the droplet z+/D and the top of the film
on the axis z�/D as a function of the dimensionless time U0t/D for St = 2.26 10�5, Re = 1000
and thus J = 0.5. The dashed line represents the mean position that decreases like �0.5U0t.

�x = D/(3 · 213) ⇠ D/25000, corresponding to an e↵ective refinement level of 15 in
Gerris. Figure 3 shows two views of the grid refinement for a case where the liquid
viscosity is twice higher than in Table 2 and the gas density ten times larger, so that
Re = 1000 and St = 2.26 10�6, all the other parameters being the same than on Figure 1.
We have checked that higher h

0

/D does not change the results significantly. This can
also be verified from Figure 4 where it can be seen directly that the simulation starts at
a time t

0

= �D/(30U
0

), much larger than the apparent time scale of the air cushioning
e↵ect. In fact, the velocity of the south pole of the droplet in unperturbed until very
short times about t ⇠ �5 · 10�3D/U

0

.
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a) b)

c) d)

Figure 5. Successive zooms of the interface around the time of jet formation t
j

for Re = 1000,
We = 500, St = 2.26 10�6 so that J = 0.005. a) shows the general view; b) shows the zoom
of the interface corresponding to the square traced on Figure a) and so on from b) to c) and
c) to d). In the first and the last Figures, the physical scales are shown based on a D = 2
mm diameter drop for illustration. The 2 µm scale shown in the last Figure corresponds in fact
to twenty times the smallest mesh size of the numerical simulation. Remarkably, we observe a
sequence of bubble entrapment before the jet is formed, in agreement with J = (t

b

/t
g

)3 ⌧ 1.

In Figures 1 and 4, one can observe that a bubble is indeed entrapped by the impact
due to the cushioning of the gas beneath the droplet. A very thin ejecta sheet is formed,
followed by the growth of a thicker corolla. These Figures do not however give a full
account of the level of accuracy reached in the calculation, as shown on Figure 5 where
successive zooms of the interface are presented around the instant when the droplet
contacts the liquid film. The large range of scales between the droplet diameter and the
small features in Figure 5d is apparent, Figure 3 showing the corresponding grid.
In particular, small bubbles (which are actually toroidal because of the axial symme-

try) can be seen prior to the ejection of the thin liquid sheet. In this case, the liquid of the
droplet has already made contact with the liquid layer before the jet formation, which is
consistent with the small value of the jet number J = 0.005. Indeed, after the first entrap-
ment of the bubble, the jet cannot emerge from the connected interfaces so that additional
bubbles are eventually entrapped by the dynamics. These small toroidal bubble entrap-
ments might in fact correspond to those observed in experiments recently (Thoroddsen
et al. 2012). However it is also strongly controlled by the size of the grid, as reconnec-
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a) b)

Figure 6. (Color online) The vorticity field corresponding to Figure 5d : a) in the liquid (the
vorticity ranging here from �800 (blue) to 800 (red) in dimensionless unit) and b) in the gas
(ranging from �2000 to 2000).

tion in the VOF methods depends on the grid size, questioning their existence in the
continuum limit. In fact, a physical cut-o↵ length is present in this problem, due to the
mean free path in the gas under which the continuum mechanics is not valid and around
whichhysical toroidal bubbles are eventually expected to form. Anyway, numerical sim-
ulations should not be performed at length scales below this cut-o↵. Considering again
a D = 2mm droplet for illustration, the finer grid size is �x ⇠ 8 10�8m, only one or-
der of magnitude away from the molecular length scales. Thus, the VOF reconnection,
although not yet physically realistic, may, in the future, approach the length scales at
which molecular forces trigger reconnection in the real world. Finally, the mechanism of
jet formation can be observed in Figure 6, where the vorticity field both in the liquid
and gas phase is shown prior to the ejection corresponding to the zoom of Figure 5 d).
It exhibits a vortex dipole at the origin of the jet, as already described in JZ03.
In the following, we investigate the di↵erent quantities involved in the splashing dy-

namics as the liquid and gas viscosities vary.

4.2. Spreading radius

One of the crucial quantities involved in the scaling analysis is the geometrical radius
r
g

(t) that acts as the horizontal length scale. In order to verify that the horizontal scale
behaves like r

g

(t), we investigate the evolution with time of the spreading radius, defined
as the point in the liquid where the velocity is maximal. Figure 7 shows the evolution
of the spreading radius with time for all the simulations performed. The square-root
scaling (r

g

(t) =
p
DU

0

t) is observed over a large range of time with the same prefactor
for all simulations. Remarkably, the Figure shows that this geometrical argument for
the horizontal characteristic length is particularly robust and that the liquid properties
(viscosities, densities) only influence the dynamics at short times.

4.3. Initial gas sheet formation

We now study the formation of the gas sheet and its scaling. The transition from free fall
to air cushioning can be seen on the time history of the heights of the film and the bubble
z�(r, t) and z

+

(r, t). Figure 4 shows both heights z�(0, t) and z
+

(0, t) on the axis as a
function of time for St = 2.26 10�5 and Re = 1000. This corresponds to a value of the air
viscosity 10 times its ordinary value, while the liquid is 8 times more viscous than water.
It is seen that the heights behave linearly until some time near t = 0 (approximately
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Figure 7. The dimensionless spreading radius defined as the radius where the velocity is max-
imal in the liquid, as function of the dimensionless time U0t/D, in a log-log plot for all the
simulations performed in this study. The straight line indicates the slope 1/2 corresponding to
the geometrical law r

g

=
p
DU0t shifted below for eye guiding. As suggested by this geometrical

relation, the di↵erent curves collapse all on a single one parallel to the expected law, showing
that viscous, capillary and lubrication e↵ects only alter slightly this dynamics. Di↵erences can
however be seen at short times.

t ⇠ �5 · 10�3D/U
0

. The linear behavior of z
+

(0, t) before impact is an indication that
the bottom of the drop falls at the free fall velocity U

0

+O(g(t�t
0

)) (the gravity correction
is even smaller than Fr�1 due to the short time of observation) almost unperturbed from
its initial value. At t = 0 on the other hand the cushioning dynamics have fully set in.
After time 0, z

+

(0, t) ⇠ z�(0, t) ⇠ �U
0

t/2 and z
+

(0, t)� z�(0, t) remains approximately
constant. This half velocity linear decrease of both z

+

(0, t) and z�(0, t) can be understood
simply by momentum conservation as already suggested by Tran et al. (2013). The scale
h
b

of the gas layer may thus conveniently be defined as h
b

= z
+

(0, 0)� z�(0, 0).
To determine the scaling of h

b

two series of simulations have been performed at Re =
2000 and Re = 800 for variable Stokes number St. Together with the numbers in Table 1
these completely define the simulation parameters. The dimensionless height ĥ

b

= h
b

/D
is plotted on Figure 8 together with relation (2.20). The unknown turbulent friction
coe�cient C

1

has been fitted by trial and error to C
1

= 0.75± 0.1.
While the numerical data points are not exactly on top of the fit the hypothesis of a

transition from a ĥ
b

! ĥ
min

C
1

↵ limit at small St to a ĥ
b

⇠ Stn behavior at larger (but
still small St) is compatible with the data, with n in some range around 2/3. However,
it is worth to remark that the rightmost part of the graph is closer to a 1/2 power law
behavior, suggesting that the alternative scenario proposed by Klaseboer et al. (2014)
might be valid here. In order to test the scaling of ĥ

b

at very low St, when the e↵ect of
↵ = ⇢

g

/⇢
l

is most marked, we perform a series of simulations at the smallest value of
St available in our simulations in Figure 8 and variable ⇢

g

/⇢
l

, keeping all other numbers

constant. The results are plotted on Figure 9. We observe a linear increase of ĥ
b

with
⇢
g

/⇢
l

, in agreement with the linear relation (2.22), with a constant in the limit ⇢
g

/⇢
l

! 0
that should depend on the Stokes number. Therefore, as the analysis on the pressure will
confirm it below, the alternative scaling of Klaseboer et al. (2014) is not valid here and
the St1/2 has to be seen as a best fit scaling in the intermediate regime between ĥ

b

C
1

↵
at low St and ĥ

b

⇠ St2/3 at large St (Jian et al. 2015).
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Figure 8. Height scale h
b

/D of the gas layer as a function of the Stokes number for two values
of the Reynolds number Re = 800 (red square) and Re = 2000 (black circle). The fit using
equation (2.20) is shown (solid line) as well as the two scaling laws St2/3 (dotted line) and St1/2

(dashed line).

Figure 9. Height scale h
b

/D of the gas layer as a function of ⇢
g

/⇢
l

for St = 5.67 10�7 and
Re = 2000 and all other parameters as in Table 1.

4.4. Impact pressure

In order to investigate quantitatively the various mechanisms involved in the impact
dynamics and the jet formation, we follow the evolution in time of the maximum pressure
on the axis in the gas layer on Figure 10 for di↵erent Stokes number at constant Re =
2000, around the time of the jet formation. We see a very large pressure peak at the
formation of the jet up to ten times the Bernoulli pressure ⇢

l

U2

0

for the smallest St
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Figure 10. The pressure in the gas layer in the cushioning regime defined as the maximum
gas pressure on the axis down the drop. The dimensionless pressure (using ⇢

l

U2
0 ) is plotted as a

function of the dimensionless time U0t/D for a fixed Re = 2000 and for varying Stokes number
St = 5.66 · 10�7, 1.13 · 10�6, 2.26 · 10�6, 4.52 · 10�6, 9.05 · 10�6, 2.26 · 10�5, 4.52 · 10�5 and
1.13 · 10�4, from top to bottom. The insert shows the maximum pressure over time of these
curves as function of the Stokes number. The dashed line draws the expected St�1/3 scaling
following the prediction (2.25)

number. This peak is delayed and decreased as the St number increases. The insert of
Figure 10 plots the value of this peak pressure as a function of the St number, showing a
very good agreement with the scaling St�1/3 predicted in (2.25) by balancing the impact
pressure of the drop with the lubrication one of the gas. This dependence of the pressure
field with the Stokes number is clearly in disagreement with the Bernoulli argument
proposed in Klaseboer et al. (2014). Together with the variations of ĥ

b

described above, it
indicates that the lubrication is the dominant regime in the air cushioning, by opposition
to the alternative scenario of Klaseboer et al. (2014). We should also emphasize here that
this high pressure in the gas layer can lead to the compression of the gas, as it happens for
drop impact on solid substrate Mandre et al. (2009); Riboux & Gordillo (2014). Indeed,
taking for instance the typical values for water drop impact ⇢

l

= 1000 kg · m�3 and
U
0

⇠ 4m · s�3, we obtain an additional pressure in the air of the order of three fourth of
the atmospheric pressure.

4.5. Ejecta sheet velocity

The ejecta sheet velocity can be measured by following the evolution of the velocity
maximum in the liquid. This quantity is indeed an interesting proxy for several measure-
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a

Figure 11. The maximum velocity V
Max

/U0 as a function of the dimensionless time for
Re = 1000 and St = 9.05 10�6, so that J = 0.082. Other parameters as in Table 1.

ments and it is easier and less ambiguous to measure than the ejecta thickness, which
varies widely at its base. Figure 11 we show the maximum dimensionless velocity as a
function of the dimensionless time shifted to the beginning of the simulation U

0

t/D (re-
mind that the origin of time t = 0 corresponds to the time for which the geometrical
falling sphere would interact with the liquid layer), for Re = 1000 and St = 9.05 10�6,
and other parameters in Table 1. It is seen that the maximum velocity deviates from
the initial velocity U

0

around �U
0

t
b

/D ' �0.03, that is when the droplet approaches
the liquid film, after which it increases rapidly, then reaches a maximum and decreases
slowly. Finally, it has a telltale “spike” at the instant of jet ejection marking t

j

, the time
of emergence of the ejecta sheet.
Indeed, Figure 12 shows the value of the maximum velocity in the liquid and the

location at which it is reached as the time varies for the same parameters. It is clear in
that case that the sharp peak corresponding to the maximum velocity also corresponds
to the time of reversal of the curvature of the interface, marking the beginning of the
ejection of the jet. Detailed investigations show that in all cases investigated in this paper
this spike corresponds exactly to the time of formation of the ejecta sheet, and that the
maximum is located at its base.
However, zooming on the base of the jet as done in Figure 5d shows that a set of tiny

bubbles is already formed, meaning that first contact between the drop and the sheet has
already occurred before the jetting time in Figure 12. In other words in that case contact
happens markedly before jet formation, in agreement with the small value of J = 0.082.
Defining the speed of the jet as this spike velocity, we can investigate how the jet

velocity depends on the Reynolds numbers for the di↵erent Stokes numbers simulated.
This velocity is shown on Figure 13 as function of the Reynolds number in order to check
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Figure 12. Left: the maximum velocity as a function of the radius where it is located for
di↵erent times (indicated by the blue signs). Right: the interface profiles corresponding to the
same time. The position at which the velocity is maximum is again marked by blue + marks.
The location of the maximum velocity at time of reversal of the interface curvature, marking
the beginning of jet ejection, is marked with a red ⇥ sign.

the validity of the scaling law (2.4): U
j

/ p
ReU

0

. The results are somehow puzzling:
indeed, while a reasonably good agreement for ”low” Reynolds numbers (below 1000)
is observed, important deviations appear at larger Reynolds where another scaling is
apparently at play, consistent with a Re n fit with n ⇠ 1/5. Moreover, it is interesting
to notice that the jet velocity shows almost no dependence on the Stokes number below
Re ⇠ 1000, as suggested by the viscous length theory of JZ03, while a small dependance
can be identified in the higher Reynolds regime.
In order to better understand this discrepancy between the predicted law and the

numerical results, the dimensionless time t̂
j

= U
0

t
j

/D of the jet formation needs to
be investigated. Two scaling laws for this time are in competition, the ratio between
these two time scales being quantified by the number J . On the one hand the viscous
length theory without accounting for the gas lubrication e↵ect suggests that t̂

j

/ 1/Re
(relation 2.5); on the other hand, the cushioning of the gas suggests that this e↵ect is
delayed by the time t̂

b

⇠ St2/3 (relation 2.23).
First of all, Figure 14 exhibits parallel straight lines when plotting t̂

j

as a function of
1/Re for three di↵erent Stokes numbers, indicating a linear relationship between t̂

j

and
1/Re . However, although the straight lines have similar slope, they have di↵erent origin
for each Stokes number suggesting that a time delay depending on the Stokes number has
to be considered. This can be seen on Figure 15 where t̂

j

is plotted, for Re = 2000, as a

function of St2/3 as suggested by the theoretical law obtained for the bubble entrapment
t̂
b

(2.23).
Again a nice straight line is observed, demonstrating eventually that the t̂

j

obeys the
following relation:

t̂
j

= A
1

St2/3 +B
1

Re�1. (4.1)

This relation can be written using the parameter J , following:
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Figure 13. The jet velocities U
j

/U0 as function of the Reynolds number for all the simulations
performed in this study, in a log-log plot.The predicted power law relation 2.4 is plotted on
showing only a reasonable agreement at Reynolds number lower than 1000 (solid line). For
higher Reynolds numbers another scaling appears, consistent with a Re 1/5 law (dashed line).
For Re = 2000, where many Stokes numbers have been considered, remark a slight dependence
of the velocity with the Stokes number, following the higher the Stokes number, the lower is the
jet velocity.

Figure 14. t̂
j

= U0tj/D as a function of the inverse of the Reynolds number (1/Re ) for di↵erent
Stokes number: black circle St = 2.26 · 10�5, red square St = 9.05 · 10�6 and green diamond
St = 2.26 ·10�6. Parallel dashed straight lines are drawn for each Stokes number for guiding the
eyes.
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Figure 15. t̂
j

as a function of the Stokes number to the power predicted by the theory (2.23)
St2/3, for constant Reynolds number Re = 2000. The dashed line indicates a linear relationship
between these two quantities.

Figure 16. The data (black circles) for the jet formation time Re t̂
j

plotted as a function of
J1/3 for all the simulations performed in this study. The data align almost perfectly along a line
as suggested by the formula 4.2, that is used to fit the data (solid curve) using A1 = 13.2 and
B1 = 14.5.

Re t̂
j

= A
1

J1/3 +B
1

. (4.2)

with A
1

and B
1

fitting parameters. Figure 16 confirms this relation, by plotting t̂
j

Re as
a function of J1/3 for all the simulations performed here. A good collapse of the data is
obtained that is well fitted by formula (4.2) with A

1

= 13.2 and B
1

= 14.5.
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a) b)

Figure 17. a) Maximum velocity V
max

/U0 as function of time for St = 2.26·10�6 and for various
Reynolds number (Re = 400, 600, 800, 1000, 2000, 4000, 8000 and 16000 for the curves from
bottom to top). b) Same curves where the velocity has been rescaled by the theoretical predictionp
Re . In this case the order of the curves for increasing Reynolds numbers are reversed, ranging

from top to bottom. The initial velocity U0 has been subtracted at short time for clarity.

The above study suggests that the impact dynamics can be decomposed in two dy-
namical stages: a first one dominated by the cushioning dynamics involving a St2/3 time
scale dependence. Then, the ejection mechanism of the liquid sheet arises after a time
delay proportional to 1/Re .
These di↵erent regimes can now be investigated through the evolution of the maximum

velocity as function of time for all the parameters simulated here. Firstly, we show on
Figure 17 a), the maximum dimensionless velocity V̂

max

= V
max

/U
0

as function of the
dimensionless time t̂ = U

0

t/D for di↵erent Reynolds number for a fixed Stokes number
St = 2.26·10�6, where it can be observed that the higher the Reynolds number, the higher
is the velocity as expected by the JZ03 prediction (2.4). This is investigated in Figure 17
b), where these dimensionless velocities rescaled by the predicted scaling

p
Re are plotted

as function of time. If a reasonable collapse of the curve is obtained firstly at short times
and for Reynolds numbers below 1000, the curves for higher Reynolds numbers deviates
from the master curve starting at the dimensionless time t̂

j

of the jet formation. As
expected however, the time t̂

j

decreases as the Reynolds number increases, but for the
high Reynolds numbers, the velocity peak appears during the velocity rise indicating that
eventually the two mechanisms of air cushioning and jet formation interact. Somehow,
the air cushioning e↵ect is interrupted by the ejection of the liquid sheet. This explains
why the jet velocity at high Reynolds number does not follow the prediction (2.4). On
the other hand, for lower Reynolds numbers (and hence lower jet numbers J), one can
see that the two mechanisms of air cushioning and the jet formation are well separated
in time.
The dependence of the dynamics on the Stokes numbers can be observed on Figure

18 a) where the maximum velocity V
max

/U
0

is shown at Re = 2000 for di↵erent Stokes
numbers. As expected by the lubrication theory, the higher the Stokes number the slower
is the rise of the velocity. On the other hand, since the formation of the jet is delayed
by this cushioning dynamics, we observe that the velocity peak is also delayed and is
slightly decreasing as the Stokes number increases. This is in contradiction with the
JZ03 initial prediction (2.4) that was obtained neglecting the gas cushioning, explaining
why this relation is not verified. The velocity curves are rescaled on Figure 18 b) by

p
Re

as suggested by the prediction (2.4) for three Stokes numbers and di↵erent Reynolds
numbers (up to 8 for a given Stokes number). The curves arrange in three sets (one
for each Stokes number for all the Reynolds numbers) in time showing clearly that the
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a) b)

Figure 18. a) Maximum velocity V
max

/U0 as function of time for Re = 200 and for various
Stokes numbers (St = 5.65 ·10�7, 1.13 ·10�6, 2.26 ·10�6, 4.52 ·10�6, 9.05 ·10�6 and 2.26 ·10�5 for
the curves from left to right). b) For three Stokes numbers 2.26 ·10�6, 9.05 ·10�6 and 2.26 ·10�5

the maximum velocity rescaled by
p
Re are shown for di↵erent Reynolds numbers ranging from

400 to 16000, in a log-linear plot. Three sets of curves can be identified, one for each Stokes
number, from left to right as the Stokes number increases. Here, the initial velocity U0 has been
subtracted at short time for clarity.

Figure 19. Rescaled velocities by
p
Re for all the simulations performed in this study as function

of the rescaled time t/t
b

), where t
b

is computed using formula (2.24). The initial velocity U0 has
been subtracted at short time for clarity.

Stokes number influences mostly the accelerating regime. The
p
Re predicted scaling for

the jet velocity is seen through the maximum of these curves that are very close one
from each other. However, as observed in the jet velocity curve shown in Figure 13 and
on the Figures 17, many curves do not reach this maximum because of the cushioning
dynamics.
The curves for the three Stokes numbers on Figure 18 result in three di↵erent curves

which are roughly translated on the logarithmic time axis, suggesting a scaling depen-
dence on the Stokes number. The cushioning being characterized by the bubble entrap-
ment time t

b

, it is tempting to rescale the time by t
b

, which scale at first order like
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U
0

t/(DSt2/3). In fact, the best rescaling of the curve is obtained using the precise depen-
dence of t

b

with the Stokes number involving the inertial correction, formula (2.24), as
shown on Figure 19. There, a very good collapse of all the curves simulated in the study
is obtained, showing that the jet rise follows cushioning dynamics. These results suggest
that in this first dynamical stage, where the air cushioning is dominant, the velocity
obeys the following relation (taking the first order approximation t̂

b

⇠ St2/3):

V
max

⇠
p
ReU

0

f
c

[(U
0

t/D)St�2/3], (4.3)

using here as first order approximation t̂
b

⇠ St2/3. f
c

is the universal function that
describes this cushioning regime. Immediately after the jet formation, and in a kind of
plateau region, the velocity at the base of the jet does scale with Re 1/2 for intermediate
Reynolds numbers as predicted by Equation (2.4), while it departs slightly from this
scaling for high Reynolds numbers. Although this evolution is in agreement with the
initial theory of JZ03, it is important to notice that the velocity is not constant and is in
fact decreasing with time after the jet formation time t

j

. This second stage is determined
by the jet dynamics and is a priori not influenced by the surrounding gas. Recalling that
the timescale for the jet formation in the absence of gas cushioning is t

g

⇠ D/(ReU
0

), it
is tempting to investigate the evolution with time of the maximum velocity as a function
of the rescaled time t/t

g

= ReU
0

t/D, following:

V
max

⇠
p
ReU

0

f
j

(ReU
0

t/D), (4.4)

where f
j

is the universal function describing this second dynamical stage. The rescaled
velocities V

max

/
p
ReU

0

are shown on Figure 20 as function of the rescaled time ReU
0

t/D
for all the simulations performed in this study. Remarkably a nice collapse of the curves
is observed for the large time dynamics i. e. for the time after the jet formation (t > t

j

).
The dashed line in this log-log plot exhibits a good fit of the data in this regime, using
a �3/10 power law, so that the maximum velocity obeys eventually for t > t

j

:

V
max

⇠
p
ReU

0

f
j

(ReU
0

t/D) ⇠
p
ReU

0

✓
ReU

0

t

D

◆�3/10

. (4.5)

This behavior suggests an explanation for the selection of the maximum jet veloc-
ity, considering that this latter regime starts at the jetting time t

j

. Recall firstly the
asymptotic scalings observed for the jet maximum velocity shown on Figure 13, namely
V
max

⇠ p
ReU

0

for Re  1000 and V
max

⇠ Re 1/5U
0

otherwise. Interestingly, these two
asymptotics are consistent with the function f

j

(4.5) when considering the two asymp-
totics for the jet formation time t

j

. Indeed, for Re  1000 we have t
j

⇠ D/(ReU
0

)
so that, using 4.5, the first scaling isV

max

⇠ p
ReU

0

. On the other hand, in the other
regime, Re � 1000, for which t

j

⇠ St2/3D/U
0

we obtain:

V
max

⇠
p
ReU

0

(Re St2/3)�3/10 ⇠ Re 1/5St�1/5,

giving remarkably the velocity scaling for large Reynolds numbers. Note also that it
predicts a power law dependence on the Stokes number that we have not tested so far,
although it can be qualitatively seen on Figure 13. Finally, using the formula (4.2) for t̂

j

:

Re t̂
j

= A
1

J1/3 +B
1

,

and formula (4.5), we obtain an e↵ective formula for the maximum jet velocity:
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Figure 20. The rescaled maximum velocity V
max

/(
p
ReU0) shown as a function of the rescaled

time ReU0t/D based on the geometrical timescale for jet ejection t
g

(see relation 2.5) in a
log-log plot. The dotted-dashed line indicates the power law scaling (ReU0t/D)�3/10. The initial
velocity U0 has been subtracted at short time for clarity.

V
maxp
Re

= C
1

U
0

(A
1

J1/3 +B
1

)3/10
, (4.6)

where the initial theoretical law of JZ03 V
max

/ p
ReU

0

is corrected by the cushioning
dynamics quantified by the number J .
This formula is tested on Figure 21 where the measured jet velocity for all the numerical

simulations performed here, rescaled by the factor U0

(A1J
1/3

+B1)
3/10 , is plotted as a function

of the Reynolds number, showing the validity of the formula (4.6).

4.6. Bubble entrapment versus jet formation?

We have observed in our simulations that in most cases the jet emergence is simultaneous
with the connection of the two interfaces, that is the bubble becomes trapped at the time
of jet formation. In fact, the situation is more complex and can be analyzed using this
jet number J that quantifies the transition between a regime where the air cushioning is
insignificant (J ⌧ 1) to a regime when it is dominant (J � 1). When the air cushioning
is insignificant, we find that the jet forms at the geometrical time t

g

� t
b

(recall that
J = t3

b

/t3
g

), with a jet velocity of the order of Re 1/2 as predicted earlier in JZ03. Moreover,
we find that this velocity scale is present before jet formation indicating the existence
of a large velocity in the droplet prior to the formation of the jet. This large velocity
(asymptotically infinitely larger than U

0

) is indicative of the focusing of the liquid velocity
in a small region inside the droplet prior to the emergence of the jet. In this regime where
the gas cushioning e↵ect is insignificant, the first bubble entrapment occurs before jet
formation. A trace of that is seen in the presence of small bubbles on Figure 5d before
jet formation. This is even clearer on Figure 22 that shows the details of the interface



26 C. Josserand, P. Ray and S. Zaleski

Figure 21. Black circles: the numerically measured jet velocity rescaled by the dependance
in the J number following formula (4.6) (A1J

1/3 + B1)
3/10U

j

/U0 as function of the Reynolds
number. The

p
Re law is drawn (solid line) showing the validity of eq. (4.6) using C1 = 0.4.

dynamics between the time of the first contact between the drop and the liquid film and
the formation of the jet, for Re = 2000 and St = 5.66 · 10�7, leading to J = 2.56 · 10�3.
After the first contact between the drop and the liquid layer, no jet can form since t

b

⌧ t
g

so that additional bubbles (toroidal here because of the axial symmetry) are entrapped
by the falling drop before the jet can eventually escape the falling droplet.
We observe indeed that a delay exists between the first connexion of the interfaces (Fig-

ure 22 a) and the jet formation (Figure 22 d), during which small bubble are entrapped
by the thin gas film dynamics.
On the other hand, in the regime where J is large (and similarly t

b

� t
g

) it is not clear
how jet formation and air bubble closing interact but one expects that no small bubbles
are entrapped and that the jet is formed simultaneously to the bubble entrapment. This
is illustrated on Figure 23 for Re = 16000 and St = 2.26 · 10�7, so that J = 2700. Where
the jet expands as soon as the drop and the liquid layer have merged.

5. Conclusion

In our numerical experiments, we have focused on the jet velocity and the e↵ect of the
gas layer for the impact of a droplet on a thin film of the same liquid. The formation
and the scaling of the gas layer were analyzed. As the gas layer cushions the impact, a
large peak of pressure is observed which scales like P

imp

⇠ ⇢
l

U2

0

St�1/3 as predicted by
lubrication theory, leading eventually to bubble entrapment. The formation of the gas
layer itself shows interesting symmetry properties between the dynamics of the droplet
surface z

+

and the dynamics of the liquid layer z�. The two are equally deformed at the
time t = 0. The time during which deformation sets up is very short compared to the
characteristic time D/U

0

and also to the time of free fall h
0

/U
0

. The corresponding layer
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a) b)

c) d)

Figure 22. Zoom on the connexion of the upper interface of the drop with the liquid layer for
Re = 2000 and St = 5.66 · 10�7, the other parameters being that of table 1. The interfaces
are shown on time U0t/D = 3.67 · 10�3 a), 5.33 · 10�3 b), 7 · 10�3 c) and 1.03 · 10�2 d). The
jet number J = 2.56 · 10�3 ⌧ 1 and we thus observe that after the first connexion of the two
interfaces on Figure a), small bubbles are created at the front of the connexion by the retraction
of the thin gas layer that is still between the falling drop and the liquid film, Figure b) and c)
until the jet emerges on Figure d). On the other side of the connected region, the thin air film
forming the entrapped large bubble is also retracting by capillarity.

thickness exhibits an intermediate regime between the DSt2/3 scaling outlined by the
lubrication theory, and an inertial regime independent of the Stokes number at low St,
confirming however that the dominant mechanism for the air cushioning is determined
by the lubrication regime. The dependence of the layer thickness shows in addition a
linear relationship with the density ratio ⇢

g

/⇢
l

(Figure 9) as predicted by theory (eq.
2.22).
The results for the jetting time t

j

exhibit another interplay between the gas cushioning

(whose time scale is determined by St2/3, neglecting as a first approximation the inertial
correction) and the liquid viscous boundary layer mechanism described in JZ03 (with
a time scale in 1/Re ). This interplay is very well described by the new dimensionless
parameter J = St2Re 3 introduced in this work. This number J characterizes indeed the
influence of the gas cushioning in the splashing dynamics. At large J , the jet formation is
delayed by the bubble entrapment, while at small J a rosary of bubbles is formed before
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