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About Jarník’s-type relation in higher dimension

Antoine MARNAT
marnat@math.unistra.fr

Abstract

Using the Parametric Geometry of Numbers introduced recently by W.M. Schmidt and
L. Summerer [17, 18] and results by D. Roy [13, 14], we show that German’s transference
inequalities between the two most classical exponents of uniform Diophantine approximation
are optimal. Further, we establish that the n uniform exponents of Diophantine approxi-
mation in dimension n are algebraically independent. Thus, no Jarník’s-type relation holds
between them.

1 Introduction

Throughout this paper, the integer n ≥ 1 denotes the dimension of the ambient space,
θ = (θ1, . . . , θn) denotes an n-tuple of real numbers such that 1, θ1, . . . , θn are Q-linearly
independent.

Let d be an integer with 0 ≤ d ≤ n − 1. We define the exponent ωd(θ) (resp. the uniform
exponent ω̂d(θ)) as the supremum of the real numbers ω for which there exist rational affine
subspaces L ⊂ Rn such that

dim(L) = d , H(L) ≤ H and H(L)d(θ, L) ≤ H−ω

for arbitrarily large real numbers H (resp. for every sufficiently large real number H). Here
H(L) denotes the height of L (see [16] for more details), and d(θ, L) = minP ∈L d(θ, P ) is the
minimal distance between θ and a point of L.

These exponents were introduced originally by M. Laurent [11]. They interpolate be-
tween the classical exponents ω(θ) = ωn−1(θ) and λ(θ) = ω0(θ) (resp. ω̂(θ) = ω̂n−1(θ) and
λ̂(θ) = ω̂0(θ)) that were introduced by A. Khinchin [7, 8], V. Jarník [6] and Y. Bugeaud and
M. Laurent [1, 2].

We have the relations
ω0(θ) ≤ ω1(θ) ≤ · · · ≤ ωn−1(θ),
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ω̂0(θ) ≤ ω̂1(θ) ≤ · · · ≤ ω̂n−1(θ),

and Minkowski’s First Convex Body Theorem [12] and Mahler’s compound convex bodies
theory provide the lower bounds

ωd(θ) ≥ ω̂d(θ) ≥ d + 1

n − d
, for 0 ≤ d ≤ n − 1.

These exponents happen to be related, as was first noticed by Khinchin with his trans-
ference theorem [8]. The study of these transferences has two aspects. First, establishing
transference inequalities valid for every suitable point θ. Then, there is the reverse problem,
that consists in constructing points θ to show that these inequalities are sharp. For this, one
can prove that there exists points θ whose exponents satisfy the equality in the transference
inequalities. In this case, we say that the inequalities are best possible. A stronger result is to
prove that given k exponents e1, . . . , ek, the transference inequalities between these k expo-
nents define a subset of Rk that is exactly the set of all k-uples (e1(θ), . . . , ek(θ)) as θ runs
through all points θ = (θ1, . . . , θn) ∈ Rn such that 1, θ1, . . . , θn are Q-linearly independent.
The latter set is called the spectrum of the exponents (e1, . . . , ek).

When the dimension is n = 1, we have the equality ω̂0(θ) = ω̂(θ) = λ̂(θ) = 1. In [6],
V. Jarník showed that in dimension n = 2, we have the following algebraic relation between
ω̂1(θ) and ω̂0(θ):

ω̂0(θ) +
1

ω̂1(θ)
= 1. (∗)

Furthermore, V. Jarník noted that, in higher dimension n ≥ 3, no algebraic relation holds
anymore. He proved [6, Satz 3] that for n ≥ 2, there exist two n-tuples of real numbers
θ = (θ1, . . . θn) and ν = (ν1, . . . , νn) such that

ω̂n−1(θ) = ω̂n−1(ν) = +∞ , ω̂0(θ) = 1 and ω̂0(ν) =
1

n − 1
.

V. Jarník also proved the following transference theorem:

Theorem 1 (Jarník, 1938). Let n ≥ 2. For any n-tuples of real number θ = (θ1, . . . θn) such
that 1, θ1, . . . , θn are Q-linearly independent, we have

ω̂n−1(θ)

(n − 1)ω̂n−1(θ) + n
≤ ω̂0(θ) ≤ ω̂n−1(θ) − n + 1

n
.

If ω̂n−1(θ) = n, the interval reduces to the single point ω̂0(θ) =
1

n
.
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Remark. O. German [5] and A. Khinchin [9] claim that V. Jarník [6] proved the existence of

n-tuples θ = (θ1, . . . , θn) with ω̂n−1(θ) = +∞ and ω̂0(θ) anywhere in the interval

[

1

n − 1
, 1

]

.

It appears to the author that this is not written explicitly in [6].

Recently, O. German [5] improved Theorem 1:

Theorem 2 (German, 2012). With the notation of Theorem 1, we have

ω̂n−1(θ) − 1

(n − 1)ω̂n−1(θ)
≤ ω̂0(θ) ≤

ω̂n−1(θ) − (n − 1)

ω̂n−1(θ)
. (∗∗)

Note that the interval reduces to a single point if n = 2, and that in this case we recover
Jarník’s relation (∗).

The first goal of this paper is to prove that German’s inequalities describe the spectrum
of the two exponents (ω̂0, ω̂n−1) .

Theorem 3. Let n ≥ 2 be an integer, let ω̂ ∈ [n, +∞] and let λ̂ ∈
[

ω̂ − 1

(n − 1)ω̂
,
ω̂ − n + 1

ω̂

]

,

where we understand that the interval for λ̂ is

[

1

n − 1
, 1

]

when ω̂ = +∞. Then there exist

uncountably many n-tuples of real numbers θ = (θ1, . . . , θn), with 1, θ1, . . . , θn Q-linearly
independent, such that ω̂n−1(θ) = ω̂ and ω̂0(θ) = λ̂.

In [19], W. Schmidt and L. Summerer obtained independently a similar result, proving
that the inequalities (∗∗) of German are best possible.

One can wonder if in higher dimension (n ≥ 3), there exists a Jarník’s-type relation be-
tween the n uniform exponents ω̂0, . . . , ω̂n−1. The next theorem states that no such algebraic
relation holds.

Theorem 4. For every integer n ≥ 3, the n uniform exponents ω̂0, . . . , ω̂n−1 are algebraically
independent.

Thus, the spectrum of the n uniform exponents ω̂0, . . . , ω̂n−1 is a subset of Rn with
nonempty interior.

We also know the spectrum of other families of exponents. M. Laurent [10] described the
spectrum of the four exponents ω0, ω̂0, ωn−1, ω̂n−1 in dimension n = 2. In his PhD thesis,
the author gives an alternative proof of this result. However, for n ≥ 3 this spectrum is still
unknown.
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D. Roy showed in [13] that the going-up and going-down transference inequalities of M.
Laurent [11] describe the spectrum of the n exponents ω0, . . . , ωn−1.

In section 2, we introduce Parametric Geometry of Numbers, which is the main tool to
prove Theorem 3 (section 3) and Theorem 4 (section 5), and to give an alternative proof of
Theorem 2 (section 4) .

2 Parametric Geometry of Numbers

The parametric geometry of numbers answers a question of W. M. Schmidt [15]. Given a
convex body and a lattice, we deform either of them with a one parameter diagonal map. We
study the behavior of the successive minima in terms of this parameter. It was developed by
W. M. Schmidt and L. Summerer [17, 18], and further by D.Roy [13, 14]. Independently, I.
Cheung [3, 4] also developed a similar theory.

In this paper, we use the notation introduced by D. Roy in [13, 14] which is essentially
dual to the one of W. M. Schmidt and L. Summerer [17, 18]. We refer the reader to these
papers for further details. Here x ·y = x1y1 + · · ·+xnyn is the usual scalar product of vectors
x and y, and ‖x‖2 =

√
x · x is the usual Euclidean norm.

Let u = (u0, . . . , un) be a vector in Rn+1, with Euclidean norm ‖u‖2 = 1. For a real
parameter Q ≥ 1 we consider the convex body

Cu(Q) =
{

x ∈ Rn+1 | ‖x‖2 ≤ 1, |x · u| ≤ Q−1
}

.

For 1 ≤ d ≤ n + 1 we denote by λd (Cu(Q)) the d-th minimum of Cu(Q) relatively to the
lattice Zn+1. For q ≥ 0 and 1 ≤ d ≤ n + 1 we set

Lu,d(q) = log λd (Cu(eq)) .

Finally, we define the following map associated with u:

Lu : [0, ∞) → Rn+1

q 7→ (Lu,1(q), . . . , Lu,n+1(q)).

The lattice Zn+1 is invariant under permutation of coordinates. Hence, Lu remains the same
if we permute the coordinates in u. Since ‖u‖2 = 1 we can thus assume that u0 6= 0.

The following proposition links the exponents of Diophantine approximation associated

with θ = (
u1

u0
, . . . ,

un

u0
) to the behavior of the map Lu, assuming u0 6= 0. It was first stated

by W.M. Schmidt and L. Summerer in [17] (Theorem 1.4). It also appears as Relations (1.8)
and (1.9) in [18]. In the notation of D.Roy [13] (Proposition 3.1), it reads as follows.
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Proposition 1 (Schmidt, Summerer, 2009). Let u = (u0, . . . , un) ∈ Rn+1, with Euclidean

norm ‖u‖2 = 1 and u0 6= 0. Set θ = (
u1

u0
, . . . ,

un

u0
). For 1 ≤ k ≤ n, we have the following

relations:

lim inf
q→+∞

Lu,1(q) + · · · + Lu,k(q)

q
=

1

1 + ωn−k(θ)
,

lim sup
q→+∞

Lu,1(q) + · · · + Lu,k(q)

q
=

1

1 + ω̂n−k(θ)
.

Thus, if we know an explicit map P = (P1, . . . , Pn+1) : [0, ∞) → Rn+1, such that Lu − P

is bounded, then we can compute the 2n exponents ω̂0(θ), . . . , ω̂n−1(θ), ω0(θ), . . . , ωn−1(θ)
for the above point θ upon replacing Lu,i by Pi in the above formulas for 1 ≤ i ≤ n.
For this purpose, we consider the following family of maps, introduced by D. Roy in [13].

Definition (Roy, 2014). Let I be a subinterval of [0, ∞) with non-empty interior. A general-
ized (n + 1)-system on I is a continuous piecewise linear map P = (P1, . . . , Pn+1) : I → Rn+1

with the following three properties.

(S1) For each q ∈ I, we have 0 ≤ P1(q) ≤ · · · ≤ Pn+1(q) and P1(q) + · · · + Pn+1(q) = q.

(S2) If H is a non empty open subinterval of I on which P is differentiable, then there are
integers r, r̄ with 1 ≤ r ≤ r̄ ≤ n + 1 such that Pr, Pr+1, . . . , Pr̄ coincide on the whole
interval H and have slope 1/(r̄ − r + 1) while any other component Pk of P is constant
on H .

(S3) If q is an interior point of I at which P is not differentiable, if r, r̄, s, s̄ are the integers
for which

P ′
k(q−) =

1

r̄ − r + 1
(r ≤ k ≤ r̄) and P ′

k(q+) =
1

s̄ − s + 1
(s ≤ k ≤ s̄) ,

and if r < s̄, then we have Pr(q) = Pr+1(q) = · · · = Ps̄(q).

Here P ′
k(q−) (resp. P ′

k(q+)) denotes the left (resp. right) derivative of Pk at q. The next
result combines Theorem 4.2 and Corollary 4.7 of [13].

Theorem 5 ( Roy, 2014). For each non-zero point u ∈ Rn+1, there exists q0 ≥ 0 and a gen-
eralized (n + 1)-system P on [q0, ∞) such that Lu − P is bounded on [q0, ∞). Conversely, for
each generalized (n + 1)-system P on an interval [q0, ∞) with q0 ≥ 0, there exists a non-zero
point u ∈ Rn+1 such that Lu − P is bounded on [q0, ∞).
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In view of the remark following Proposition 1, this result reduces the determination of
the joint spectrum of Diophantine approximation exponents to a combinatorial study of gen-
eralized (n + 1)-systems.

Although the definition of a generalized (n + 1)-system P = (P1, . . . , Pn+1) may look
complicated, it is easy to understand in terms of the combined graph of P , that is the union
of the graphs of P1, . . . , Pn+1 over the interval of definition I of P . We explain this below.

A division point of P is an endpoint of I contained in I or an interior point of I at
which P is not differentiable. Such points form a discrete subset of I. Between two consec-
utive division points q∗ < q of I, the graph of each component of P is a line segment. All
these line segments have slope 0 except for one line segment of positive slope 1/t where t
is the number of components of P whose graph over [q∗, q] is that line segment. In view of
the condition P1 ≤ P2 ≤ · · · ≤ Pn+1, there must be consecutive components Pr, . . . , Pr̄ of
P with r̄ − r + 1 = t. If q is also an interior point of I and if Ps, . . . , Ps̄ are the compo-

nents of P whose graph has positive slope
1

s̄ − s + 1
to the right of q, then there are two cases.

1) If r < s̄, we say that q is an ordinary division point. In this case, we have Pr(q) = · · · =
Ps̄(q) according to (S3). This implies that r ≤ s and r̄ ≤ s̄. Among Pr, . . . , Ps̄, the

components Pj with s ≤ j ≤ r̄ (if any) change slope from
1

r̄ − r + 1
to

1

s̄ − s + 1
. Those

with j ≤ min(r̄, s − 1) change slope from
1

r̄ − r + 1
to 0. The remaining components Pj

with r̄ + 1 ≤ j ≤ s− 1 (if any) have constant slope 0 in a neighborhood of q. The reader
is invited to draw a picture for himself or to look at those in [13, §4].

2) Otherwise, we have r > s̄ because it cannot happen that r = s̄ (or P is differentiable at
q). Then, we say that q is a switch point. In this case, we have Pr(q) = · · · = Pr̄(q) >

Ps(q) = · · · = Ps̄(q) which mean that the end point of the line segment of slope
1

r̄ − r + 1

at the left of q lies above the initial point of the line segment of slope
1

s̄ − s + 1
at the

right of q.

It can be shown that the combined graph of a generalized (n + 1)-system P uniquely
determines the map P provided that we know the value of P at one point of its interval of
definition. An example of this is shown in [13, §4]. We will see two other examples in the
sections 3 and 5.

In [17, 18] W. M. Schmidt and L. Summerer introduce the following exponents for an
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integer 1 ≤ d ≤ n + 1:

ϕ
d

= lim inf
q→∞

Lu,d(q)

q
,

ϕ̄d = lim sup
q→∞

Lu,d(q)

q
.

For these exponents, we have the following analogue of Theorem 4:

Theorem 6. For every integer n ≥ 3, the exponents ϕ̄1, . . . , ϕ̄n are algebraically independent.

3 Proof of Theorem 3

In this section, we construct a family of generalized (n+1)-systems. Then, via Theorem 5, we
get a family of n-tuples having the requested properties stated in Theorem 3. We first treat
the case where ω̂n−1 is finite and n ≥ 3. We will explain later how to adapt the construction
if n = 2 or ω̂n−1 is infinite.

First, note that a generalized (n + 1)-system with all components equal to
q

n + 1
provides

via Theorem 5 a point θ with ω̂n−1(θ) = n and ω̂0(θ) =
1

n
. Thus, we can exclude this case

in the next construction.

Let q0 be a positive real number, fix a real number ω̂ > n ≥ 2 and set a parameter a with
1

n − 1
≤ a ≤ 1. We define the sequence (q6m)m≥0 by:

q6m = (1 + a(ω̂ − n))q6(m−1), for m ≥ 1.

Since ω̂ > n, q6m goes to infinity.

We construct a generalized (n + 1)-system P whose graph is invariant under the dilation
of factor (1 + a(ω̂ − n)) > 1 on the interval [q0, +∞). Thus, we only need to define P on a
generic interval [q6m, q6(m+1)]. Figure 1 shows the pattern of the combined graph of P .

For every integer m ≥ 0, we define P at q6m as follows:

P1(q6m) = P2(q6m) =
q6m

ω̂ + 1
,

P3(q6m) = · · · = Pn(q6m) =
1 + (

1 − a

n − 2
)(ω̂ − n)

ω̂ + 1
q6m,

Pn+1(q6m) =
1 + a(ω̂ − n)

ω̂ + 1
q6m.
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P2

P3 = · · · = Pn

Pn+1 P1

Pn+1

slo
pe

1
P2

P1

slo
pe

1

slope
1

n − 2
P3 = · · · = Pn

q6m

q6m+1

q6m+2 q6m+3 q6m+4 q6m+5 q6(m+1)

Figure 1: Combined graph of P on a generic interval [q6m, q6(m+1)]

Here the parameter a says how large Pn+1 is at each point q6m. The condition a ≥
1

n − 1
imposes the condition Pn+1(q6m) ≥ Pn(q6m), and the condition a ≤ 1 imposes that

P3(q6m) ≥ P2(q6m). We have the dilation condition P (q6(m+1)) = P ((1 + a(ω̂ − n))q6m) =
(1 + a(ω̂ − n))P (q6m) by the definition of the sequence (q6m)m≥0.

For k = 0, . . . , 5 the graph has only one line segment of positive slope on the interval
[q6m+k, q6m+k+1]. The graph is clearly the combined graph of a generalized (n + 1)-system
with seven division points q6m, . . . , q6m+6. The points q6m+3 and q6m+5 are switch points
while the others are ordinary division points. Furthermore it is uniquely defined since we
know the value of P at the point q6m, where as requested

P1(q6m) + · · · + Pn+1(q6m) = q6m.

Easy computation gives

q6m = (1 + a(ω̂ − n))q6(m−1), q6m+1 =
(n − 2)(ω̂ + 1) + (1 − a)(ω̂ − n)

(n − 2)(ω̂ + 1)
q6m,

q6m+2 =
(n + 1) + (1 + a)(ω̂ − n)

ω̂ + 1
q6m, q6m+3 =

ω̂ + (1 + a(ω̂ − n))2

ω̂ + 1
q6m,

q6m+4 =
1 + (1 + a(ω̂ − n))(n + a(ω̂ − n)

ω̂ + 1
q6m, q6m+5 =

1 + 2a(ω̂ − n) + ω̂(1 + a(ω̂ − n))

ω̂ + 1
q6m.
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We now compute its associated exponents with Proposition 1. One can notice that the
local extrema of the functions q → q−1Pk(q), 1 ≤ k ≤ n + 1 are located at division points
where Pk changes slope.

Since P is invariant under dilation of factor C = (1 + a(ω̂ − n)) we have for every m ≥ 0,
every 1 ≤ k ≤ n + 1, and every q in [q6m, q6m+6) the relation

q−1Pk(q) = q−1CmPk

(

qC−m
)

,

where C−mq lies in the fundamental interval [q0, q6].

Thus,

lim sup
q→+∞

P1(q)

q
= max

q0≤q≤q6

P1(q)

q
=

P1(q0)

q0
=

1

ω̂ + 1
,

lim inf
q→+∞

Pn+1(q)

q
= min

q0≤q≤q6

Pn+1(q)

q
=

Pn+1(q2)

q2
=

1 + a(ω̂ − n)

n + 1 + (1 + a)(ω̂ − n)
,

because the component Pn+1 changes slope from zero to some positive value only at q6m+2.

Then, according to Proposition 1, Theorem 5 provides an n-tuple θ = (θ1, . . . , θn) such
that

1

ω̂n−1(θ) + 1
= lim sup

q→+∞

P1(q)

q
=

1

ω̂ + 1
,

ω̂0(θ)

ω̂0(θ) + 1
= lim inf

q→+∞

Pn+1(q)

q
=

1 + a(ω̂ − n)

n + 1 + (1 + a)(ω̂ − n)
.

Thus, this θ satisfies

ω̂n−1(θ) = ω̂ and ω̂0(θ) =
1 + a(ω̂ − n)

ω̂
.

When a runs through the interval [
1

n − 1
, 1], then ω̂0(θ) runs through the interval

[

ω̂ − 1

(n − 1)ω̂
,
ω̂ − (n − 1)

ω̂

]

.

If n = 2, we remove the line P3 = · · · = Pn and the interval [q6m+3, q6m+5] from the
generic graph on the interval [q6m, q6(m+1)], the parameter a is then forced to be equal to 1.
Thus, we construct θ with

9



ω̂1(θ) = ω̂ and ω̂0(θ) = 1 − 1

ω̂
,

which agrees with Jarník’s relation (∗).

If ω̂ is infinite, we replace ω̂ by m + n + 1 in our construction. For a given real number q0

we consider the sequence (q6m)m≥1 defined by

q6m = (m + 1)q6(m−1).

Figure 1 still represents the combined graph from P on a generic interval [q6m, q6m+6], with
the following settings at q6m:

P1(q6m) = P2(q6m) =
q6m

m + n + 2
,

P3(q6m) = · · · = Pn(q6m) =
1 + (

1 − a

n − 2
)(m + 1)

m + n + 2
q6m,

Pn+1(q6m) =
1 + a(m + 1)

m + n + 2
q6m.

Note that the combined graph is not invariant under dilation anymore. We have

lim sup
q→+∞

P1(q)

q
= lim sup

m→+∞

max
q6m≤q≤q6(m+1)

P1(q)

q
= lim sup

m→+∞

P1(q6m)

q6m

= lim sup
m→+∞

1

m + n + 2
= 0,

lim inf
q→+∞

Pn+1(q)

q
= lim inf

m→+∞
min

q6m≤q≤q6(m+1)

Pn+1(q)

q
= lim inf

m→+∞

Pn+1(q6m+2)

q6m+2

= lim inf
m→+∞

1 + a(m + 1)

n + 1 + (1 + a)(m + 1)
=

a

a + 1
.

Again, Theorem 5 provides us with an n-tuple θ = (θ1, . . . , θn) such that

ω̂n−1(θ) = +∞ and ω̂0(θ) = a,

where a runs through the interval [
1

n − 1
, 1].

Note that if 1, θ1, . . . , θn are Q-linearly dependent, then there exists an integer point
x ∈ Zn such that |x · u| = 0. This implies that Lu,1(q) is bounded above by log(‖x‖2). In
our construction by dilatation P1 is not bounded, hence the independence by contradiction.
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To complete the proof of Theorem 3, we have to check that we can construct uncountably
many n-tuples with given exponents. Let ω̂ and λ̂ as in Theorem 3, and a the parameter
such that Theorem 5 provides an n-tuple θ whose exponents satisfy

ω̂n−1(θ) = ω̂, and ω̂0(θ) = λ̂ =
1 + a(ω̂ − n)

ω̂
.

Fix q0 a real number to start the construction from P as above with parameter a. For every
ρ1 and ρ2 such that q0 ≤ ρ1 < ρ2 ≤ q5, we denote by P ρ1 and P ρ2 the (n + 1)-generalized
system with parameter a starting in ρ1 and ρ2. We have P ρ1(q6) 6= P ρ2(q6) and

‖P ρ1(q6m) − P ρ2(q6m)‖∞ =
q6m

q6
‖P ρ1(q6) − P ρ2(q6)‖∞ →n→∞ ∞,

where ‖(x1, . . . , xn)‖∞ = max1≤k≤n |xk|.

Thus, their difference is unbounded, and they cannot correspond to the same θ via The-
orem 5. This ends the proof of Theorem 3.

4 An alternative proof of Theorem 2

In this section, we give an alternative proof of Theorem 2 using arguments from Parametric
Geometry of Numbers.

One can notice that the extremal values of the components of P are reached at the divi-
sion points. The condition (S3) translates into the fact that for every division point q, the
right endpoint of the segment with non-zero slope ending at q lies above the left endpoint of
the one starting at q. A first consequence is that when P1 is non constant, it increases until
reaching P2(q). A second consequence is the following proposition.

Proposition 2. For every 1 ≤ k < m ≤ n+1, if p0 is a division point such that Pk has slope
changing from 0 to 1 at p0, then we have for every p > p0

Pm(p) ≤ max(Pm(p0), Pk(p0) + p − p0).

In particular, Pm is constant on the interval [p0, p0 + Pm(p0) − Pk(p0)].

11



Pk+1

Pm

Pk

p0 + Pm(p0) − Pk(p0)p0

Upper bound: Let P be a generalized (n + 1)-system, and ω̂ the real number such that

lim sup
q→+∞

P1(q)

q
=

1

ω̂ + 1
.

If this limit is zero, we set ω̂ = +∞. We treat this case after.

Let ε > 0. There exist arbitrarily large division points p0 where q−1P1(q) has a local
maximum and

1 − ε

ω̂ + 1
≤ P1(p0)

p0
≤ 1 + ε

ω̂ + 1
.

Since q0 is a local maximum, we have P1(q0) = P2(q0). Furthermore, P1(q) ≤ P2(q) ≤
· · · ≤ Pn+1(q) and P1(q) + · · · + Pn+1(q) = q provide

Pn+1(p0) ≤ p0 − nP1(p0) ≤ ω̂ + 1 − n − nε

ω̂ + 1
p0.

At the point p = p0 +
ω̂ − n − nε

ω̂ + 1
p0, according to Proposition 2, we have the upper bound

Pn+1(p) ≤ max(Pn+1(p0), P1(p0) + p − p0) ≤ 1 + ε + ω̂ − n − nε

ω̂ + 1
p0.

Thus, for arbitrarily large real numbers p, we have

Pn+1(p)

p
≤ ω̂ + 1 − n − (n − 1)ε

2ω̂ − n + 1 − nε
,

thus
λ̂

λ̂ + 1
= lim inf

q→+∞

Pn+1(q)

q
≤ ω̂ + 1 − n

2ω̂ − n + 1
,

12



giving that

λ̂ ≤ ω̂ − (n − 1)

ω̂
.

If ω̂ is infinite, then we have

0 ≤ P1(p0)

p0
≤ ε , P1(p0) = P2(p0).

Using Proposition 2 at the point p = 2p0 − nε we get

Pn+1(p) ≤ p0 − (n + 1)ε.

Thus, for arbitrarily large real numbers p, we have

Pn+1(p)

p
≤ p0 − (n + 1)ε

2p0 − nε
.

This implies that
λ̂ ≤ 1.

Thus, we have proved the upper bound in Theorem 2.

Lower bound: Let P be a generalized (n + 1)-system, and ω̂, λ̂ the real numbers such
that

lim sup
q→+∞

P1(q)

q
=

1

ω̂ + 1
, lim inf

q→+∞

Pn+1(q)

q
=

λ̂

λ̂ + 1
,

where we understand that ω̂ = +∞ if the corresponding lim sup is zero. Again, we treat this
case after.

Let ε1 > 0. There exists a real number q0 such that q ≥ q0 implies

P1(q)

q
≤ 1 + ε1

ω̂ + 1
.

Let ε2 > 0. There exist arbitrarily large division points p ≥ q0 where q−1P1(q) has a local
minimum and

∣

∣

∣

∣

∣

Pn+1(p)

p
−

λ̂

λ̂ + 1

∣

∣

∣

∣

∣

≤ ε2.

Let p0 = max {q ≤ p | P1(q) = P2(q)}. At the point p0 we have

P1(p0) = P2(p0) ≤ 1 + ε1

ω̂ + 1
p0,

Pn+1(p0) ≥ p0 − 2P1(p0)

n − 1
,

13



since p0 = P1(p0) + · · · + Pn+1(p0) ≤ 2P1(p0) + (n − 1)Pn+1(p0).

We first show that q → P1(q) is constant on the interval [p0, p]. If not, there exists a real
number p0 < p1 < p where P1 has slope 1. Since p is a local minimum from q−1P1(q), we
have P ′

1(p−) = 0. Thus, there exists a point in (p1, p) where P1 changes slope from 1 to 0.
At this point P1 = P2, which contradicts the definition of p0. Thus,

P1(p0) = P1(p).

We can write

p =
n+1
∑

k=1

Pk(p) ≤ nPn+1(p) + P1(p0).

Thus,
Pn+1(p)

p
≥ Pn+1(p)

nPn+1(p) + P1(p0)
,

where the right hand side is an increasing function of Pn+1(p). Since

Pn+1(p) ≥ Pn+1(p0) ≥ p0 − 2P1(p0)

n − 1
,

we have

Pn+1(p)

p
≥ p0 − 2P1(p0)

np0 − (n + 1)P1(p0)
,

where the right hand side is a decreasing function of P1(p0). Since

P1(p0) ≤ 1 + ε1

ω̂ + 1
p0,

we have

Pn+1(p)

p
≥ ω̂ − 1 − 2ε1

nω̂ − 1 − (n + 1)ε1
.

Thus,
λ̂

λ̂ + 1
≥

ω̂ − 1 − 2ε1

nω̂ − 1 − (n + 1)ε1
− ε2.

This gives the expected bound

λ̂ ≥ ω̂ − 1

(n − 1)ω̂
.
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If ω̂ is infinite, we consider a real number q0 such that q ≥ q0 implies

0 ≤ P1(q)

q
≤ ε1.

This provides the following estimates at p:

Pn+1(p)

p
≥ 1 − 2ε1

n − (n + 1)ε1
.

Thus, we get
λ̂

λ̂ + 1
≥ 1 − 2ε1

n − (n + 1)ε1
− ε2.

This gives the expected bound

λ̂ ≥ 1

n − 1
.

Thus, we have proved the lower bound. This ends the proof of Theorem 2.

5 Proof of Theorems 4 and 6

In this section, we construct a family of generalized (n + 1)-systems depending on n param-
eters which via Theorem 5 provides us with a family of n-tuples whose uniform exponents
are expressed as a function of these n parameters. Then, we show that these functions are
algebraically independent.

Fix the dimension n ≥ 3. Choose n + 2 parameters A1, A2, . . . , An+1, C satisfying

0 < A1 = A2 < A3 < A4 < · · · < An+1,

1 = A1 + A2 + · · · + An+1,

Ak+1

Ak

< C <
Ak+2

Ak

for 2 ≤ k ≤ n − 1,

1 <
An+1

An
< C.

(0)

We consider the generalized (n+1)-system P on the interval [1, C] whose combined graph
is given by Figure 2, where

Pk(1) = Ak and Pk(C) = CAk for 1 ≤ k ≤ n + 1.
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· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

A1 = A2

A3

CA2

A4

Ak

Pk

Ak+1

Pk+1

An+1

Pn+1

Pk−1

Pk+1

Pn

Pn+1
CAn+1

CAn

P1

P2

Pk−1
CAk−1

Pk

1 Cδk−1,1

δk−1,2

δk,1 δk,2δ2,1 δ2,2

δ3,1

δn+1,1

Figure 2: Pattern of the combined graph of P on the fundamental interval [1, C]

On each interval between two consecutive division points, there is only one line segment
with nonzero slope. This line segment has slope 1 on the intervals [1, δ2,1], [δn+1,1, C] and
[δk−1,2, δk,1] for 3 ≤ k ≤ n + 1, and has slope 1/2 on the interval [δk,1, δk,2] , for 3 ≤ k ≤ n ,
where the two components Pk and Pk+1 coincide. We have 2n + 1 division points 1, C, δk,1

and δl,2 for 2 ≤ k ≤ n + 1 and 2 ≤ l ≤ n. They are all ordinary division points except δn+1,1

which is a switch point. Note that the conditions (0) are consistent with the graph. The
points which will be most relevant for the proofs are labeled with black dots.

We extend P to the interval [1, ∞) by self-similarity, that is P (q) = CmP (qC−m) for
every positive integer m. In view of the value of P and its derivative at 1 and C, one sees
that this extension provides a generalized (n + 1)-system on [1, ∞).
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Proposition 1 suggests to define quantities Ŵn−1, . . . , Ŵ0 by

1

1 + Ŵn−k

:= lim sup
q→+∞

P1(q) + · · · + Pk(q)

q
, 1 ≤ k ≤ n. (1)

Since P is invariant under dilation of factor C, we can replace lim supq→∞ by max[1,C] in the
above formulae.

We observe that for 1 ≤ k ≤ n, the function P1 + · · · + Pk has slope 1 on the intervals
[1, δk,1] and [δn+1,1, C], slope 1/2 on the interval [δk,1, δk,2] and is constant on the interval
[δk,2, δn+1,1]. Thus the maximum on [1, C] of the function q → q−1(P1(q) + · · · + Pk(q)) is
reached either at δk,1 or at δk,2, when slope changes from 1 to 1/2 or from 1/2 to 0. Namely,
the maximum is reached at δk,1 if

P1(δk,1) + · · · + Pk(δk,1)

δk,1
≥

1

2
(2)

and at δk,2 if the lefthand side is ≤ 1/2. We deduce that for 1 ≤ k ≤ n,

Ŵn−k =
Pk+1(q) + · · · + Pn+1(q)

P1(q) + · · · + Pk(q)
where q =

{

δk,1 if (2) is satisfied
δk,2 otherwise

.

For 2 ≤ k ≤ n + 1, we have the following values at δk,1 and δk,2:

Pi(δk,1) =



















A1 if i = 1
CAi if 2 ≤ i ≤ k − 1
Ak+1 if i = k

Ai if k + 1 ≤ i ≤ n + 1

, Pi(δk,2) =



















A1 if i = 1
CAi if 2 ≤ i ≤ k
CAk if i = k + 1
Ai if k + 2 ≤ i ≤ n + 1

It is easy to check that the parameters

C = 3, A1 = A2 = 2−n, Ak = 2−n+k−2 for 3 ≤ k ≤ n + 1 (3)

satisfy the conditions (0). For this choice of parameters, the lefthand side of inequality
(2) is > 1/2 for 1 ≤ k ≤ n − 1 and < 1/2 for k = n. This property remains true for
(C, A2, . . . , An) in an open neighborhood of (3, 2−n, . . . , 2−2) provided that we set A1 = A2

and An+1 = 1− (A1 + · · ·+An). In this neighborhood, the quantities Ŵ0, . . . , Ŵn−1 are given
by the following rational fractions in Q(C, A2, A3, . . . , An) :

Ŵn−1 =
1

A2
− 1,

Ŵn−k =
1 − (2A2 + A3 + A4 + · · · + Ak+1) + CAk

A2 + C(A2 + · · · + Ak)
, 2 ≤ k ≤ n − 1

Ŵ0 =
1 − (2A2 + A3 + A4 + · · · + An)

A2 + C(A2 + · · · + An−1)
.

(4)
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Since Ŵ0, . . . , Ŵn−1 come from a generalized (n + 1)-system P , Theorem 5 provides a
point θ in Rn such that ω̂k(θ) = Ŵk for every 0 ≤ k ≤ n − 1. Thus, to prove Theorem 4,
it is sufficient to show that the rational fractions Ŵ0, . . . , Ŵn−1 ∈ Q(C, A2, A3, . . . , An) are
algebraically independent.

Suppose on the contrary that there exists an irreducible polynomial R ∈ Q(X1, . . . , Xn)
such that

R
(

Ŵ0, Ŵ1, . . . , Ŵn−1

)

= 0.

Specializing C in 0, we obtain

R

(

1 − A2 − A2 − · · · − An

A2
,

1 − A2 − A2 − · · · − An

A2
, . . . ,

1 − A2 − A2 − A3

A2
,
1 − A2

A2

)

= 0.

Here, the first two rational fractions are the same, and the last n − 1 rational fractions
generate the field Q(A2, A3, . . . , An). Therefore the latter are algebraically independent, and
R = α(X2 − X1) for a nonzero constant α ∈ Q. This is impossible since Ŵ0 6= Ŵ1.

Proof of Theorem 6

We consider the same generalized (n + 1)-system as above. Notice that for 1 ≤ k ≤ n we
have Pk ≤ Pn+1 and therefore

0 ≤ Pk(q)

q
≤ 1/2.

Since all nonzero slopes of the combined graph are at least 1/2, the maxima of the functions
q 7→ q−1Pk(q) are reached at points where Pk changes slope from 1 or 1/2 to 0. It happens
that for each component there is only one such point on the interval [1, C[.
The definition of the exponents ϕ̄k leads to define quantities Fk by

Fk := lim sup
q→∞

Pk(q)

q
= max

[1,C]

Pk(q)

q
=

Pk(p)

p
where p =

{

1 if k = 1,
δk,2 if 2 ≤ k ≤ n.

We express the quantities F1, . . . Fn as rational fractions in Q(C, A2, . . . , An), using the
relations A1 = A2 and An+1 = 1 − A1 − A2 − · · · − An :

F1 = A1,

Fk =
CAk

A1 + C(A2 + · · · + Ak) + CAk + 1 − (2A2 + A3 + · · · + Ak+1)
,

Since F1, . . . , Fn come from a generalized (n + 1)-system P , by Theorem 5 there exists a
point θ in Rn such that ϕ̄k(θ) = Fk for every 1 ≤ k ≤ n. To prove Theorem 6 it is sufficient
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to show that the rational fractions F1, . . . , Fn ∈ Q(C, A2, A3, . . . , An) are algebraically inde-
pendent.

Suppose that there exists an irreducible polynomial R ∈ Q(X1, . . . , Xn) such that

R(F1, . . . , Fn) = 0.

Specializing C in infinity, we obtain

R

(

A2,
1

2
,

A3

(A2 + A3) + A3
, . . . ,

An

(A2 + . . . + An) + An

)

= 0

where all coordinates except 1/2 are algebraically independent. Thus, R is a constant multiple
of 2X2 − 1, which contradicts F2 6= 1/2.

We are not able to prove Theorem 6 for the n + 1 exponents ϕ̄1, . . . , ϕ̄n+1 with this con-
struction. However with some extra work, we can show that the theorem holds for any n
exponents among them.
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