Antoine Marnat 
email: marnat@math.unistra.fr
  
About Jarník's-type relation in higher dimension

come    

Introduction

Throughout this paper, the integer n ≥ 1 denotes the dimension of the ambient space, θ = (θ 1 , . . . , θ n ) denotes an n-tuple of real numbers such that 1, θ 1 , . . . , θ n are Q-linearly independent.

Let d be an integer with 0 ≤ d ≤ n -1. We define the exponent ω d (θ) (resp. the uniform exponent ωd (θ)) as the supremum of the real numbers ω for which there exist rational affine subspaces L ⊂ R n such that dim(L) = d , H(L) ≤ H and H(L)d(θ, L) ≤ H -ω for arbitrarily large real numbers H (resp. for every sufficiently large real number H). Here H(L) denotes the height of L (see [START_REF] Schmidt | On heights of algebraic subspaces and diophantine approximations[END_REF] for more details), and d(θ, L) = min P ∈L d(θ, P ) is the minimal distance between θ and a point of L.

These exponents were introduced originally by M. Laurent [START_REF] Laurent | On transfer inequalities in Diophantine approximation[END_REF]. They interpolate between the classical exponents ω(θ) = ω n-1 (θ) and λ(θ) = ω 0 (θ) (resp. ω(θ) = ωn-1 (θ) and λ(θ) = ω0 (θ)) that were introduced by A. Khinchin [START_REF] Ya | Über eine klasse linearer diophantischer approximationen[END_REF][START_REF] Ya | Zur metrischen theorie der diophantischen approximationen[END_REF], V. Jarník [START_REF] Jarník | Zum khintchineschen "Übertragungssatz[END_REF] and Y. Bugeaud and M. Laurent [START_REF] Bugeaud | On exponents of homogeneous and inhomogeneous diophantine approximation[END_REF][START_REF] Bugeaud | Exponents of diophantine approximation[END_REF].

We have the relations

ω 0 (θ) ≤ ω 1 (θ) ≤ • • • ≤ ω n-1 (θ), 1 ω0 (θ) ≤ ω1 (θ) ≤ • • • ≤ ωn-1 (θ),
and Minkowski's First Convex Body Theorem [START_REF] Minkowski | Geometrie der Zahlen[END_REF] and Mahler's compound convex bodies theory provide the lower bounds

ω d (θ) ≥ ωd (θ) ≥ d + 1 n -d , for 0 ≤ d ≤ n -1.
These exponents happen to be related, as was first noticed by Khinchin with his transference theorem [START_REF] Ya | Zur metrischen theorie der diophantischen approximationen[END_REF]. The study of these transferences has two aspects. First, establishing transference inequalities valid for every suitable point θ. Then, there is the reverse problem, that consists in constructing points θ to show that these inequalities are sharp. For this, one can prove that there exists points θ whose exponents satisfy the equality in the transference inequalities. In this case, we say that the inequalities are best possible. A stronger result is to prove that given k exponents e 1 , . . . , e k , the transference inequalities between these k exponents define a subset of R k that is exactly the set of all k-uples (e 1 (θ), . . . , e k (θ)) as θ runs through all points θ = (θ 1 , . . . , θ n ) ∈ R n such that 1, θ 1 , . . . , θ n are Q-linearly independent. The latter set is called the spectrum of the exponents (e 1 , . . . , e k ).

When the dimension is n = 1, we have the equality ω0 (θ) = ω(θ) = λ(θ) = 1. In [START_REF] Jarník | Zum khintchineschen "Übertragungssatz[END_REF], V. Jarník showed that in dimension n = 2, we have the following algebraic relation between ω1 (θ) and ω0 (θ):

ω0 (θ) + 1 ω1 (θ) = 1. ( * )
Furthermore, V. Jarník noted that, in higher dimension n ≥ 3, no algebraic relation holds anymore. He proved [6, Satz 3] that for n ≥ 2, there exist two n-tuples of real numbers θ = (θ 1 , . . . θ n ) and ν = (ν 1 , . . . , ν n ) such that ωn-1 (θ) = ωn-1 (ν) = +∞ , ω0 (θ) = 1 and ω0 (ν) = 1 n -1 .

V. Jarník also proved the following transference theorem:

Theorem 1 [START_REF] Jarník | Zum khintchineschen "Übertragungssatz[END_REF]. Let n ≥ 2. For any n-tuples of real number θ = (θ 1 , . . . θ n ) such that 1, θ 1 , . . . , θ n are Q-linearly independent, we have

ωn-1 (θ) (n -1)ω n-1 (θ) + n ≤ ω0 (θ) ≤ ωn-1 (θ) -n + 1 n .
If ωn-1 (θ) = n, the interval reduces to the single point ω0 (θ) = 1 n .
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Remark. O. German [START_REF] German | On Diophantine exponents and Khintchine's transference principle[END_REF] and A. Khinchin [START_REF] Ya | On some applications of the method of the additional variable[END_REF] claim that V. Jarník [START_REF] Jarník | Zum khintchineschen "Übertragungssatz[END_REF] proved the existence of n-tuples θ = (θ 1 , . . . , θ n ) with ωn-1 (θ) = +∞ and ω0 (θ) anywhere in the interval 1

n -1 , 1 .
It appears to the author that this is not written explicitly in [START_REF] Jarník | Zum khintchineschen "Übertragungssatz[END_REF].

Recently, O. German [START_REF] German | On Diophantine exponents and Khintchine's transference principle[END_REF] improved Theorem 1:

Theorem 2 [START_REF] German | On Diophantine exponents and Khintchine's transference principle[END_REF]. With the notation of Theorem 1, we have

ωn-1 (θ) -1 (n -1)ω n-1 (θ) ≤ ω0 (θ) ≤ ωn-1 (θ) -(n -1) ωn-1 (θ) . ( * * )
Note that the interval reduces to a single point if n = 2, and that in this case we recover Jarník's relation ( * ).

The first goal of this paper is to prove that German's inequalities describe the spectrum of the two exponents (ω 0 , ωn-1 ) .

Theorem 3. Let n ≥ 2 be an integer, let ω ∈ [n, +∞] and let λ ∈ ω -1 (n -1)ω , ω -n + 1 ω ,
where we understand that the interval for λ is 1 n -1 , 1 when ω = +∞. Then there exist uncountably many n-tuples of real numbers θ = (θ 1 , . . . , θ n ), with 1, θ 1 , . . . , θ n Q-linearly independent, such that ωn-1 (θ) = ω and ω0 (θ) = λ.

In [START_REF] Schmidt | The generalization of jarnik's identity[END_REF], W. Schmidt and L. Summerer obtained independently a similar result, proving that the inequalities ( * * ) of German are best possible.

One can wonder if in higher dimension (n ≥ 3), there exists a Jarník's-type relation between the n uniform exponents ω0 , . . . , ωn-1 . The next theorem states that no such algebraic relation holds.

Theorem 4. For every integer n ≥ 3, the n uniform exponents ω0 , . . . , ωn-1 are algebraically independent.

Thus, the spectrum of the n uniform exponents ω0 , . . . , ωn-1 is a subset of R n with nonempty interior.

We also know the spectrum of other families of exponents. M. Laurent [START_REF] Laurent | Exponents of diophantine approximmation in dimension two[END_REF] described the spectrum of the four exponents ω 0 , ω0 , ω n-1 , ωn-1 in dimension n = 2. In his PhD thesis, the author gives an alternative proof of this result. However, for n ≥ 3 this spectrum is still unknown.

In this paper, we use the notation introduced by D. Roy in [START_REF] Roy | Spectrum of the exponents of best rational approximation[END_REF][START_REF] Roy | On Schmidt and Summerer parametric geometry of numbers[END_REF] which is essentially dual to the one of W. M. Schmidt and L. Summerer [START_REF] Schmidt | Parametric geometry of numbers and applications[END_REF][START_REF] Schmidt | Diophantine approximation and parametric geometry of numbers[END_REF]. We refer the reader to these papers for further details. Here x • y = x 1 y 1 + • • • + x n y n is the usual scalar product of vectors x and y, and

x 2 = √ x • x is the usual Euclidean norm.
Let u = (u 0 , . . . , u n ) be a vector in R n+1 , with Euclidean norm u 2 = 1. For a real parameter Q ≥ 1 we consider the convex body

C u (Q) = x ∈ R n+1 | x 2 ≤ 1, |x • u| ≤ Q -1 . For 1 ≤ d ≤ n + 1 we denote by λ d (C u (Q)) the d-th minimum of C u (Q) relatively to the lattice Z n+1 . For q ≥ 0 and 1 ≤ d ≤ n + 1 we set L u,d (q) = log λ d (C u (e q )) .
Finally, we define the following map associated with u:

L u : [0, ∞) → R n+1 q → (L u,1 (q), . . . , L u,n+1 (q)).
The lattice Z n+1 is invariant under permutation of coordinates. Hence, L u remains the same if we permute the coordinates in u. Since u 2 = 1 we can thus assume that u 0 = 0.

The following proposition links the exponents of Diophantine approximation associated with θ = ( u 1 u 0 , . . . , u n u 0 ) to the behavior of the map L u , assuming u 0 = 0. It was first stated by W.M. Schmidt and L. Summerer in [START_REF] Schmidt | Parametric geometry of numbers and applications[END_REF] (Theorem 1.4). It also appears as Relations (1.8) and (1.9) in [START_REF] Schmidt | Diophantine approximation and parametric geometry of numbers[END_REF]. In the notation of D.Roy [START_REF] Roy | Spectrum of the exponents of best rational approximation[END_REF] (Proposition 3.1), it reads as follows.

Proposition 1 [START_REF] Schmidt | Parametric geometry of numbers and applications[END_REF]. Let u = (u 0 , . . . , u n ) ∈ R n+1 , with Euclidean norm u 2 = 1 and u 0 = 0. Set θ = ( u 1 u 0 , . . . , u n u 0 ). For 1 ≤ k ≤ n, we have the following relations:

lim inf q→+∞ L u,1 (q) + • • • + L u,k (q) q = 1 1 + ω n-k (θ) , lim sup q→+∞ L u,1 (q) + • • • + L u,k (q) q = 1 1 + ωn-k (θ)
.

Thus, if we know an explicit map P = (P 1 , . . . , P n+1 ) : [0, ∞) → R n+1 , such that L u -P is bounded, then we can compute the 2n exponents ω0 (θ), . . . , ωn-1 (θ), ω 0 (θ), . . . , ω n-1 (θ) for the above point θ upon replacing L u,i by P i in the above formulas for 1 ≤ i ≤ n. For this purpose, we consider the following family of maps, introduced by D. Roy in [START_REF] Roy | Spectrum of the exponents of best rational approximation[END_REF].

Definition (Roy, 2014). Let I be a subinterval of [0, ∞) with non-empty interior. A generalized (n + 1)-system on I is a continuous piecewise linear map P = (P 1 , . . . , P n+1 ) : I → R n+1 with the following three properties.

(S1) For each q ∈ I, we have 0

≤ P 1 (q) ≤ • • • ≤ P n+1 (q) and P 1 (q) + • • • + P n+1 (q) = q. (S2) If H is a
non empty open subinterval of I on which P is differentiable, then there are integers r, r with 1 ≤ r ≤ r ≤ n + 1 such that P r , P r+1 , . . . , P r coincide on the whole interval H and have slope 1/(r -r + 1) while any other component P k of P is constant on H .

(S3) If q is an interior point of I at which P is not differentiable, if r, r, s, s are the integers for which

P ′ k (q -) = 1 r -r + 1 (r ≤ k ≤ r) and P ′ k (q + ) = 1 s -s + 1 (s ≤ k ≤ s) ,
and if r < s, then we have P r (q

) = P r+1 (q) = • • • = P s(q).
Here P ′ k (q -) (resp. P ′ k (q + )) denotes the left (resp. right) derivative of P k at q. The next result combines Theorem 4.2 and Corollary 4.7 of [START_REF] Roy | Spectrum of the exponents of best rational approximation[END_REF].

Theorem 5 ( Roy, 2014). For each non-zero point u ∈ R n+1 , there exists q 0 ≥ 0 and a generalized (n + 1)-system P on [q 0 , ∞) such that L u -P is bounded on [q 0 , ∞). Conversely, for each generalized (n + 1)-system P on an interval [q 0 , ∞) with q 0 ≥ 0, there exists a non-zero point u ∈ R n+1 such that L u -P is bounded on [q 0 , ∞).

In view of the remark following Proposition 1, this result reduces the determination of the joint spectrum of Diophantine approximation exponents to a combinatorial study of generalized (n + 1)-systems.

Although the definition of a generalized (n + 1)-system P = (P 1 , . . . , P n+1 ) may look complicated, it is easy to understand in terms of the combined graph of P , that is the union of the graphs of P 1 , . . . , P n+1 over the interval of definition I of P . We explain this below.

A division point of P is an endpoint of I contained in I or an interior point of I at which P is not differentiable. Such points form a discrete subset of I. Between two consecutive division points q * < q of I, the graph of each component of P is a line segment. All these line segments have slope 0 except for one line segment of positive slope 1/t where t is the number of components of P whose graph over [q * , q] is that line segment. In view of the condition P 1 ≤ P 2 ≤ • • • ≤ P n+1 , there must be consecutive components P r , . . . , P r of P with r -r + 1 = t. If q is also an interior point of I and if P s , . . . , P s are the components of P whose graph has positive slope 1 s -s + 1 to the right of q, then there are two cases.

1) If r < s, we say that q is an ordinary division point. In this case, we have P r (q) = • • • = P s(q) according to (S3). This implies that r ≤ s and r ≤ s. Among P r , . . . , P s, the components P j with s ≤ j ≤ r (if any) change slope from 1 r -r + 1 to 1 s -s + 1

. Those with j ≤ min(r, s -1) change slope from 1 r -r + 1 to 0. The remaining components P j with r + 1 ≤ j ≤ s -1 (if any) have constant slope 0 in a neighborhood of q. The reader is invited to draw a picture for himself or to look at those in [13, §4].

2) Otherwise, we have r > s because it cannot happen that r = s (or P is differentiable at q). Then, we say that q is a switch point. In this case, we have P r (q) = • • • = P r (q) > P s (q) = • • • = P s(q) which mean that the end point of the line segment of slope 1 r -r + 1 at the left of q lies above the initial point of the line segment of slope 1 s -s + 1 at the right of q.

It can be shown that the combined graph of a generalized (n + 1)-system P uniquely determines the map P provided that we know the value of P at one point of its interval of definition. An example of this is shown in [13, §4]. We will see two other examples in the sections 3 and 5.

In [START_REF] Schmidt | Parametric geometry of numbers and applications[END_REF][START_REF] Schmidt | Diophantine approximation and parametric geometry of numbers[END_REF] W. M. Schmidt and L. Summerer introduce the following exponents for an integer 1 ≤ d ≤ n + 1:

ϕ d = lim inf q→∞ L u,d (q) q , φd = lim sup q→∞ L u,d (q) q .
For these exponents, we have the following analogue of Theorem 4: Theorem 6. For every integer n ≥ 3, the exponents φ1 , . . . , φn are algebraically independent.

Proof of Theorem 3

In this section, we construct a family of generalized (n+1)-systems. Then, via Theorem 5, we get a family of n-tuples having the requested properties stated in Theorem 3. We first treat the case where ωn-1 is finite and n ≥ 3. We will explain later how to adapt the construction if n = 2 or ωn-1 is infinite.

First, note that a generalized (n + 1)-system with all components equal to q n + 1 provides via Theorem 5 a point θ with ωn-1 (θ) = n and ω0 (θ) = 1 n . Thus, we can exclude this case in the next construction.

Let q 0 be a positive real number, fix a real number ω > n ≥ 2 and set a parameter a with 1 n -1 ≤ a ≤ 1. We define the sequence (q 6m ) m≥0 by:

q 6m = (1 + a(ω -n))q 6(m-1) , for m ≥ 1.
Since ω > n, q 6m goes to infinity.

We construct a generalized (n + 1)-system P whose graph is invariant under the dilation of factor (1 + a(ω -n)) > 1 on the interval [q 0 , +∞). Thus, we only need to define P on a generic interval [q 6m , q 6(m+1) ]. Figure 1 shows the pattern of the combined graph of P .

For every integer m ≥ 0, we define P at q 6m as follows:

P 1 (q 6m ) = P 2 (q 6m ) = q 6m ω + 1 , P 3 (q 6m ) = • • • = P n (q 6m ) = 1 + ( 1 -a n -2 )(ω -n) ω + 1 q 6m , P n+1 (q 6m ) = 1 + a(ω -n) ω + 1 q 6m . P 2 P 3 = • • • = P n P n+1 P 1 P n+1 s l o p e 1 P 2 P 1 s l o p e 1 s l o p e 1 n -2 P 3 = • • • = P n q 6m q 6m+1
q 6m+2 q 6m+3 q 6m+4 q 6m+5 q 6(m+1)

Figure 1: Combined graph of P on a generic interval [q 6m , q 6(m+1) ]

Here the parameter a says how large P n+1 is at each point q 6m . The condition a ≥ 1 n -1 imposes the condition P n+1 (q 6m ) ≥ P n (q 6m ), and the condition a ≤ 1 imposes that P 3 (q 6m ) ≥ P 2 (q 6m ). We have the dilation condition P (q 6(m+1)

) = P ((1 + a(ω -n))q 6m ) = (1 + a(ω -n))P (q 6m
) by the definition of the sequence (q 6m ) m≥0 .

For k = 0, . . . , 5 the graph has only one line segment of positive slope on the interval [q 6m+k , q 6m+k+1 ]. The graph is clearly the combined graph of a generalized (n + 1)-system with seven division points q 6m , . . . , q 6m+6 . The points q 6m+3 and q 6m+5 are switch points while the others are ordinary division points. Furthermore it is uniquely defined since we know the value of P at the point q 6m , where as requested

P 1 (q 6m ) + • • • + P n+1 (q 6m ) = q 6m .

Easy computation gives

q 6m = (1 + a(ω -n))q 6(m-1) , q 6m+1 = (n -2)(ω + 1) + (1 -a)(ω -n) (n -2)(ω + 1) q 6m , q 6m+2 = (n + 1) + (1 + a)(ω -n) ω + 1 q 6m , q 6m+3 = ω + (1 + a(ω -n)) 2 ω + 1 q 6m , q 6m+4 = 1 + (1 + a(ω -n))(n + a(ω -n) ω + 1 q 6m , q 6m+5 = 1 + 2a(ω -n) + ω(1 + a(ω -n)) ω + 1 q 6m .
We now compute its associated exponents with Proposition 1. One can notice that the local extrema of the functions q → q -1 P k (q), 1 ≤ k ≤ n + 1 are located at division points where P k changes slope.

Since P is invariant under dilation of factor C = (1 + a(ω -n)) we have for every m ≥ 0, every 1 ≤ k ≤ n + 1, and every q in [q 6m , q 6m+6 ) the relation

q -1 P k (q) = q -1 C m P k qC -m ,
where C -m q lies in the fundamental interval [q 0 , q 6 ]. Thus, lim sup q→+∞ P 1 (q) q = max q 0 ≤q≤q 6

P 1 (q) q = P 1 (q 0 ) q 0 = 1 ω + 1 , lim inf q→+∞ P n+1 (q) q = min q 0 ≤q≤q 6 P n+1 (q) q = P n+1 (q 2 ) q 2 = 1 + a(ω -n) n + 1 + (1 + a)(ω -n) ,
because the component P n+1 changes slope from zero to some positive value only at q 6m+2 .

Then, according to Proposition 1, Theorem 5 provides an n-tuple θ = (θ 1 , . . . , θ n ) such that 1 ωn-1 (θ) + 1 = lim sup

q→+∞ P 1 (q) q = 1 ω + 1 , ω0 (θ) ω0 (θ) + 1 = lim inf q→+∞ P n+1 (q) q = 1 + a(ω -n) n + 1 + (1 + a)(ω -n) .
Thus, this θ satisfies ωn-1 (θ) = ω and ω0 (θ

) = 1 + a(ω -n) ω .
When a runs through the interval [ 1

n -1 , 1], then ω0 (θ) runs through the interval ω -1 (n -1)ω , ω -(n -1) ω .
If n = 2, we remove the line P 3 = • • • = P n and the interval [q 6m+3 , q 6m+5 ] from the generic graph on the interval [q 6m , q 6(m+1) ], the parameter a is then forced to be equal to 1. Thus, we construct θ with ω1 (θ) = ω and ω0 (θ) = 1 -1 ω, which agrees with Jarník's relation ( * ).

If ω is infinite, we replace ω by m + n + 1 in our construction. For a given real number q 0 we consider the sequence (q 6m ) m≥1 defined by q 6m = (m + 1)q 6(m-1) .

Figure 1 still represents the combined graph from P on a generic interval [q 6m , q 6m+6 ], with the following settings at q 6m :

P 1 (q 6m ) = P 2 (q 6m ) = q 6m m + n + 2 , P 3 (q 6m ) = • • • = P n (q 6m ) = 1 + ( 1 -a n -2 )(m + 1) m + n + 2 q 6m , P n+1 (q 6m ) = 1 + a(m + 1) m + n + 2 q 6m .
Note that the combined graph is not invariant under dilation anymore. We have lim sup q→+∞ P 1 (q) q = lim sup m→+∞ max q 6m ≤q≤q 6(m+1)

P 1 (q) q = lim sup m→+∞ P 1 (q 6m ) q 6m = lim sup m→+∞ 1 m + n + 2 = 0, lim inf q→+∞ P n+1 (q) q = lim inf m→+∞ min q 6m ≤q≤q 6(m+1) P n+1 (q) q = lim inf m→+∞ P n+1 (q 6m+2 ) q 6m+2 = lim inf m→+∞ 1 + a(m + 1) n + 1 + (1 + a)(m + 1) = a a + 1 .
Again, Theorem 5 provides us with an n-tuple θ = (θ 1 , . . . , θ n ) such that ωn-1 (θ) = +∞ and ω0 (θ) = a, where a runs through the interval [ 1

n -1 , 1].
Note that if 1, θ 1 , . . . , θ n are Q-linearly dependent, then there exists an integer point x ∈ Z n such that |x • u| = 0. This implies that L u,1 (q) is bounded above by log( x 2 ). In our construction by dilatation P 1 is not bounded, hence the independence by contradiction.

To complete the proof of Theorem 3, we have to check that we can construct uncountably many n-tuples with given exponents. Let ω and λ as in Theorem 3, and a the parameter such that Theorem 5 provides an n-tuple θ whose exponents satisfy ωn-1 (θ) = ω, and ω0 (θ

) = λ = 1 + a(ω -n) ω .
Fix q 0 a real number to start the construction from P as above with parameter a. For every ρ 1 and ρ 2 such that q 0 ≤ ρ 1 < ρ 2 ≤ q 5 , we denote by P ρ 1 and P ρ 2 the (n + 1)-generalized system with parameter a starting in ρ 1 and ρ 2 . We have P ρ 1 (q 6 ) = P ρ 2 (q 6 ) and

P ρ 1 (q 6m ) -P ρ 2 (q 6m ) ∞ = q 6m q 6 P ρ 1 (q 6 ) -P ρ 2 (q 6 ) ∞ → n→∞ ∞, where (x 1 , . . . , x n ) ∞ = max 1≤k≤n |x k |.
Thus, their difference is unbounded, and they cannot correspond to the same θ via Theorem 5. This ends the proof of Theorem 3.

An alternative proof of Theorem 2

In this section, we give an alternative proof of Theorem 2 using arguments from Parametric Geometry of Numbers.

One can notice that the extremal values of the components of P are reached at the division points. The condition (S3) translates into the fact that for every division point q, the right endpoint of the segment with non-zero slope ending at q lies above the left endpoint of the one starting at q. A first consequence is that when P 1 is non constant, it increases until reaching P 2 (q). A second consequence is the following proposition. Proposition 2. For every 1 ≤ k < m ≤ n + 1, if p 0 is a division point such that P k has slope changing from 0 to 1 at p 0 , then we have for every p > p 0

P m (p) ≤ max(P m (p 0 ), P k (p 0 ) + p -p 0 ).
In particular, P m is constant on the interval [p 0 , p 0 + P m (p 0 ) -P k (p 0 )].

P k+1 P m P k p 0 + P m (p 0 ) -P k (p 0 ) p 0
Upper bound: Let P be a generalized (n + 1)-system, and ω the real number such that lim sup q→+∞ P 1 (q) q = 1 ω + 1 .

If this limit is zero, we set ω = +∞. We treat this case after.

Let ε > 0. There exist arbitrarily large division points p 0 where q -1 P 1 (q) has a local maximum and

1 -ε ω + 1 ≤ P 1 (p 0 ) p 0 ≤ 1 + ε ω + 1 .
Since q 0 is a local maximum, we have P 1 (q 0 ) = P 2 (q 0 ). Furthermore, P 1 (q) ≤ P 2 (q) ≤ • • • ≤ P n+1 (q) and P 1 (q) + • • • + P n+1 (q) = q provide

P n+1 (p 0 ) ≤ p 0 -nP 1 (p 0 ) ≤ ω + 1 -n -nε ω + 1 p 0 .
At the point p = p 0 + ω -n -nε ω + 1 p 0 , according to Proposition 2, we have the upper bound

P n+1 (p) ≤ max(P n+1 (p 0 ), P 1 (p 0 ) + p -p 0 ) ≤ 1 + ε + ω -n -nε ω + 1 p 0 .
Thus, for arbitrarily large real numbers p, we have

P n+1 (p) p ≤ ω + 1 -n -(n -1)ε 2ω -n + 1 -nε , thus λ λ + 1 = lim inf q→+∞ P n+1 (q) q ≤ ω + 1 -n 2ω -n + 1 , giving that λ ≤ ω -(n -1) ω .
If ω is infinite, then we have

0 ≤ P 1 (p 0 ) p 0 ≤ ε , P 1 (p 0 ) = P 2 (p 0 ).
Using Proposition 2 at the point p = 2p 0 -nε we get

P n+1 (p) ≤ p 0 -(n + 1)ε.
Thus, for arbitrarily large real numbers p, we have

P n+1 (p) p ≤ p 0 -(n + 1)ε 2p 0 -nε .
This implies that λ ≤ 1.

Thus, we have proved the upper bound in Theorem 2.

Lower bound:

Let P be a generalized (n + 1)-system, and ω, λ the real numbers such that lim sup

q→+∞ P 1 (q) q = 1 ω + 1 , lim inf q→+∞ P n+1 (q) q = λ λ + 1 ,
where we understand that ω = +∞ if the corresponding lim sup is zero. Again, we treat this case after.

Let ε 1 > 0. There exists a real number q 0 such that q ≥ q 0 implies

P 1 (q) q ≤ 1 + ε 1 ω + 1 .
Let ε 2 > 0. There exist arbitrarily large division points p ≥ q 0 where q -1 P 1 (q) has a local minimum and

P n+1 (p) p - λ λ + 1 ≤ ε 2 .
Let p 0 = max {q ≤ p | P 1 (q) = P 2 (q)}. At the point p 0 we have

P 1 (p 0 ) = P 2 (p 0 ) ≤ 1 + ε 1 ω + 1 p 0 , P n+1 (p 0 ) ≥ p 0 -2P 1 (p 0 ) n -1 , since p 0 = P 1 (p 0 ) + • • • + P n+1 (p 0 ) ≤ 2P 1 (p 0 ) + (n -1)P n+1 (p 0 ).
We first show that q → P 1 (q) is constant on the interval [p 0 , p]. If not, there exists a real number p 0 < p 1 < p where P 1 has slope 1. Since p is a local minimum from q -1 P 1 (q), we have P ′ 1 (p -) = 0. Thus, there exists a point in (p 1 , p) where P 1 changes slope from 1 to 0. At this point P 1 = P 2 , which contradicts the definition of p 0 . Thus,

P 1 (p 0 ) = P 1 (p).
We can write

p = n+1 k=1 P k (p) ≤ nP n+1 (p) + P 1 (p 0 ). Thus, P n+1 (p) p ≥ P n+1 (p) nP n+1 (p) + P 1 (p 0 ) ,
where the right hand side is an increasing function of P n+1 (p). Since

P n+1 (p) ≥ P n+1 (p 0 ) ≥ p 0 -2P 1 (p 0 ) n -1 ,
we have

P n+1 (p) p ≥ p 0 -2P 1 (p 0 ) np 0 -(n + 1)P 1 (p 0 ) ,
where the right hand side is a decreasing function of P 1 (p 0 ). Since

P 1 (p 0 ) ≤ 1 + ε 1 ω + 1 p 0 ,
we have

P n+1 (p) p ≥ ω -1 -2ε 1 nω -1 -(n + 1)ε 1 . Thus, λ λ + 1 ≥ ω -1 -2ε 1 nω -1 -(n + 1)ε 1 -ε 2 .
This gives the expected bound λ ≥ ω -1 (n -1)ω .

If ω is infinite, we consider a real number q 0 such that q ≥ q 0 implies 0

≤ P 1 (q) q ≤ ε 1 .
This provides the following estimates at p:

P n+1 (p) p ≥ 1 -2ε 1 n -(n + 1)ε 1 .
Thus, we get λ

λ + 1 ≥ 1 -2ε 1 n -(n + 1)ε 1 -ε 2 .
This gives the expected bound λ ≥ 1 n -1 .

Thus, we have proved the lower bound. This ends the proof of Theorem 2.

Proof of Theorems 4 and 6

In this section, we construct a family of generalized (n + 1)-systems depending on n parameters which via Theorem 5 provides us with a family of n-tuples whose uniform exponents are expressed as a function of these n parameters. Then, we show that these functions are algebraically independent.

Fix the dimension n ≥ 3. Choose n + 2 parameters A 1 , A 2 , . . . , A n+1 , C satisfying

0 < A 1 = A 2 < A 3 < A 4 < • • • < A n+1 , 1 = A 1 + A 2 + • • • + A n+1 , A k+1 A k < C < A k+2 A k for 2 ≤ k ≤ n -1, 1 < A n+1 A n < C. ( 0 
)
We consider the generalized (n + 1)-system P on the interval [1, C] whose combined graph is given by Figure 2, where On each interval between two consecutive division points, there is only one line segment with nonzero slope. This line segment has slope 1 on the intervals [1, δ 2,1 ], [δ n+1,1 , C] and [δ k-1,2 , δ k,1 ] for 3 ≤ k ≤ n + 1, and has slope 1/2 on the interval [δ k,1 , δ k,2 ] , for 3 ≤ k ≤ n , where the two components P k and P k+1 coincide. We have 2n + 1 division points 1, C, δ k,1 and δ l,2 for 2 ≤ k ≤ n + 1 and 2 ≤ l ≤ n. They are all ordinary division points except δ n+1,1 which is a switch point. Note that the conditions (0) are consistent with the graph. The points which will be most relevant for the proofs are labeled with black dots.

P k (1) = A k and P k (C) = CA k for 1 ≤ k ≤ n + 1. • • • • • • • • • • • • • • • • • • A 1 = A 2 A 3 CA 2 A 4 A k P k A k+1 P k+1 A n+1 P n+1 P k-1 P k+1 P n P n+1 CA n+1 CA n P 1 P 2 P k-1 CA k-1 P k 1 C δ k-1,1 δ k-1,2 δ k,1 δ k,2 δ 2,1 δ 2,2 δ 3,1 δ n+1,1
We extend P to the interval [1, ∞) by self-similarity, that is P (q) = C m P (qC -m ) for every positive integer m. In view of the value of P and its derivative at 1 and C, one sees that this extension provides a generalized (n + 1)-system on [1, ∞). Since Ŵ0 , . . . , Ŵn-1 come from a generalized (n + 1)-system P , Theorem 5 provides a point θ in R n such that ωk (θ) = Ŵk for every 0 ≤ k ≤ n -1. Thus, to prove Theorem 4, it is sufficient to show that the rational fractions Ŵ0 , . . . , Ŵn-1 ∈ Q(C, A 2 , A 3 , . . . , A n ) are algebraically independent.

Suppose on the contrary that there exists an irreducible polynomial R ∈ Q(X 1 , . . . , X n ) such that R Ŵ0 , Ŵ1 , . . . , Ŵn-1 = 0.

Specializing C in 0, we obtain

R 1 -A 2 -A 2 -• • • -A n A 2 , 1 -A 2 -A 2 -• • • -A n A 2 , . . . , 1 -A 2 -A 2 -A 3 A 2 , 1 -A 2 A 2 = 0.
Here, the first two rational fractions are the same, and the last n -1 rational fractions generate the field Q(A 2 , A 3 , . . . , A n ). Therefore the latter are algebraically independent, and R = α(X 2 -X 1 ) for a nonzero constant α ∈ Q. This is impossible since Ŵ0 = Ŵ1 .

Proof of Theorem 6

We consider the same generalized (n + 1)-system as above. Notice that for 1 ≤ k ≤ n we have P k ≤ P n+1 and therefore 0 ≤ P k (q) q ≤ 1/2.

Since all nonzero slopes of the combined graph are at least 1/2, the maxima of the functions q → q -1 P k (q) are reached at points where P k changes slope from 1 or 1/2 to 0. It happens that for each component there is only one such point on the interval [1, C[. The definition of the exponents φk leads to define quantities F k by

F k := lim sup q→∞ P k (q) q = max [1,C] P k (q) q = P k (p) p where p = 1 if k = 1, δ k,2 if 2 ≤ k ≤ n.
We express the quantities F 1 , . . . F n as rational fractions in Q(C, A 2 , . . . , A n ), using the relations

A 1 = A 2 and A n+1 = 1 -A 1 -A 2 -• • • -A n : F 1 = A 1 , F k = CA k A 1 + C(A 2 + • • • + A k ) + CA k + 1 -(2A 2 + A 3 + • • • + A k+1 ) ,
Since F 1 , . . . , F n come from a generalized (n + 1)-system P , by Theorem 5 there exists a point θ in R n such that φk (θ) = F k for every 1 ≤ k ≤ n. To prove Theorem 6 it is sufficient

Figure 2 :

 2 Figure 2: Pattern of the combined graph of P on the fundamental interval [1, C]
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Proposition 1 suggests to define quantities Ŵn-1 , . . . , Ŵ0 by 1 1 + Ŵn-k := lim sup

Since P is invariant under dilation of factor C, we can replace lim sup q→∞ by max [1,C] in the above formulae.

We observe that for 1 ≤ k ≤ n, the function

]. Thus the maximum on [1, C] of the function q → q -1 (P 1 (q) + • • • + P k (q)) is reached either at δ k,1 or at δ k,2 , when slope changes from 1 to 1/2 or from 1/2 to 0. Namely, the maximum is reached at δ k,1 if

and at δ k,2 if the lefthand side is ≤ 1/2. We deduce that for 1 ≤ k ≤ n,

For 2 ≤ k ≤ n + 1, we have the following values at δ k,1 and δ k,2 :

It is easy to check that the parameters

satisfy the conditions (0). For this choice of parameters, the lefthand side of inequality (2) is > 1/2 for 1 ≤ k ≤ n -1 and < 1/2 for k = n. This property remains true for (C, A 2 , . . . , A n ) in an open neighborhood of (3, 2 -n , . . . , 2 -2 ) provided that we set

In this neighborhood, the quantities Ŵ0 , . . . , Ŵn-1 are given by the following rational fractions in Q(C, A 2 , A 3 , . . . , A n ) :

to show that the rational fractions F 1 , . . . , F n ∈ Q(C, A 2 , A 3 , . . . , A n ) are algebraically independent.

Suppose that there exists an irreducible polynomial R ∈ Q(X 1 , . . . , X n ) such that

Specializing C in infinity, we obtain

where all coordinates except 1/2 are algebraically independent. Thus, R is a constant multiple of 2X 2 -1, which contradicts F 2 = 1/2.

We are not able to prove Theorem 6 for the n + 1 exponents φ1 , . . . , φn+1 with this construction. However with some extra work, we can show that the theorem holds for any n exponents among them.