
HAL Id: hal-01398027
https://hal.science/hal-01398027v1

Submitted on 16 Nov 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Branch-and-cut-and-price algorithm for the
Stackelberg Minimum Spanning Tree Game
Vinicius Morais, Alexandre Salles da Cunha, Philippe Mahey

To cite this version:
Vinicius Morais, Alexandre Salles da Cunha, Philippe Mahey. A Branch-and-cut-and-price algorithm
for the Stackelberg Minimum Spanning Tree Game. Electronic Notes in Discrete Mathematics, 2016,
52, pp.309 - 316. �10.1016/j.endm.2016.03.041�. �hal-01398027�

https://hal.science/hal-01398027v1
https://hal.archives-ouvertes.fr

A Branch-and-cut-and-price algorithm for the
Stackelberg Minimum Spanning Tree Game

Vinicius Morais 1

Departamento de Ciência da Computação, Universidade Federal de Minas Gerais,
Belo Horizonte, Brazil

vwcmorais@dcc.ufmg.br

Alexandre Salles da Cunha 2

LIMOS, UMR 6158-CNRS Université Blaise-Pascal, BP 10125, F-63173 Aubiére,
Cedex, France and Departamento de Ciência da Computação, Universidade

Federal de Minas Gerais, Belo Horizonte, Brazil
acunha@dcc.ufmg.br

Philippe Mahey

LIMOS, UMR 6158-CNRS Université Blaise-Pascal, BP 10125, F-63173 Aubiére,
Cedex, France

philippe.mahey@isima.fr

Abstract

The Stackelberg Minimum Spanning Tree Game (StackMST) is defined in terms of
a graph G = (V,B∪R), with two disjoint sets of edges, blue B and red R, and costs
{ce ≥ 0 : e ∈ R} defined for the red edges. Once the leader of the game defines prices
{pe : e ∈ B} to the blue edges, the follower chooses a minimum weight spanning tree
(V,ET), at cost

∑
e∈B∩ET

pe +
∑

e∈R∩ET
ce. The goal is to find prices to maximize

the revenue
∑

e∈B∩ET
pe collected by the leader. We introduce a reformulation and

a Branch-and-cut-and-price algorithm for StackMST. The reformulation is obtained

Available online at www.sciencedirect.com

Electronic Notes in Discrete Mathematics 52 (2016) 309–316

1571-0653/© 2016 Elsevier B.V. All rights reserved.

www.elsevier.com/locate/endm

http://dx.doi.org/10.1016/j.endm.2016.03.041

http://www.elsevier.com/locate/endm
http://dx.doi.org/10.1016/j.endm.2016.03.041
http://dx.doi.org/10.1016/j.endm.2016.03.041
http://www.sciencedirect.com
http://crossmark.crossref.org/dialog/?doi=10.1016/j.endm.2016.03.041&domain=pdf

after applying KKT optimality conditions to a StackMST non-compact Bilevel Lin-
ear Programming formulation and is strengthened with a partial rank-1 RLT and
with valid inequalities from the literature. We also implemented a Branch-and-cut
algorithm for an extended formulation derived from another in the literature. A
preliminary computational study comparing both methods is also presented.

Keywords: Stackelberg Games, Spanning Trees, Branch-and-cut-and-price.

1 Introduction

The Stackelberg Minimum Spanning Tree Game (StackMST) is defined in
terms of a undirected graph G = (V,E), with two sets of edges, blue B and
red R (E = B ∪ R, B ∩ R = ∅) and fixed costs {ce ≥ 0 : e ∈ R} assigned
to the red edges. Once the leader of the game defines prices {pe : e ∈ B} to
the blue edges, the follower chooses a minimum weight spanning tree (MST)
(V,ET) of G, at cost

∑
e∈B∩ET

pe +
∑

e∈R∩ET
ce. StackMST aims at finding

prices that maximize the revenue
∑

e∈B∩ET
pe collected by the leader. It is

assumed that (V,R) is connected (otherwise StackMST would be unbounded)
and that given two edges b ∈ B and r ∈ R : pb = cr, the follower prefers
picking the blue one (thus, prices being fixed, the revenue in all MSTs are the
same [1]). StackMST is a spanning tree analog to the Stackelberg Shortest
Path Game [4] introduced in [1] (see also [2]).

Cardinal et al. [1] proved that StackMST is NP-hard and APX-hard,
proposed an approximation algorithm and formulated StackMST as an integer
program whose Linear Programming (LP) relaxations have integrality gaps
bounded by the same approximation factor.

We present a reformulation and a Branch-and-cut-and-price (BCP) algo-
rithm for StackMST. Our reformulation strategy follows three steps: we re-
place the inner optimization problem of a non-compact Bilevel LP Problem
(BLPP) model for StackMST by Karush-Kuhn-Tucker (KKT) optimality con-
ditions, obtaining a non-linear single level formulation [4]. We then replace
non-linear terms by conveniently defined binary quadratic ones and linearize
the model. Finally, the formulation is strengthened with a partial application
of the Reformulation by Linearization Technique (RLT) and with StackMST
valid inequalities in [1]. We also implement a Branch-and-cut (BC) algorithm

1 Vinicius Morais is funded by CAPES BEX 7461/14-3.
2 Alexandre Salles da Cunha is partially funded by CNPq grants 200493/2014-0,
305423/2012-6, 471464/2013-9 and FAPEMIG CEX-PPM-00164-13.

V. Morais et al. / Electronic Notes in Discrete Mathematics 52 (2016) 309–316310

for an extended formulation that derives from that in [1]. We present compu-
tational experiments that suggest that BCP is a promising solution approach.

2 A StackMST Reformulation

For any function f : Q → R defined over a finite domain Q and Q′ ⊆ Q,
f(Q′) =

∑
q∈Q′ fq. Given S ⊂ V, S
= ∅, E(S) = {{i, j} ∈ E : i, j ∈ S} and

δ(S) = {{i, j} ∈ E : i ∈ S, j
∈ S}. Denote by {ck : k = 1, . . . , K} = {ce :
e ∈ R} (c1 < c2 < . . . < cK) the set of K ≥ 2 distinct red costs. Assume that
T denotes the set of all spanning trees of G and that ZST denotes the set of
vectors in B

|E| (B = {0, 1}) that are support vectors of subgraphs in T .

Let {pe ∈ R : e ∈ B} and {ze ∈ B : e ∈ E} respectively denote decision
variables used to indicate the prices set by the leader and the edges included in
the MST (V,ET) picked by the follower. If e ∈ ET , ze = 1; otherwise, ze = 0.

Denote by PST = {z ∈ R
|E|
+ : z(E) = |V |−1, z(E(S)) ≤ |S|−1, S ⊂ V, S
= ∅}

the convex hull of ZST . Note that PST is represented in terms of exponentially
many subtour elimination constraints (SECs).

A BLPP formulation for StackMST is:

max

{∑
e∈B

peze : z ∈ argmin

{∑
e∈B

peze +
∑
e∈R

ceze : z ∈ PST

}}
. (1)

In order to reformulate (1) as a single level program, let α and {μS ≥ 0 :
S ⊂ V, S
= ∅} be dual variables respectively assigned to z(E) = |V | − 1 and
to the SECs in the inner LP of (1). Alongside with constraints defining PST ,
KKT optimality conditions include {μS ≥ 0 : S ⊂ V, S
= ∅} and:

∑
e∈B

peze +
∑
e∈R

ceze≤ α(|V | − 1)−
∑

S⊂V,S �=∅
μs(|S| − 1), (2)

α−
∑

S:e∈E(S)

μs≤ pe, e ∈ B (3)

α−
∑

S:e∈E(S)

μs≤ ce, e ∈ R (4)

For reasons that will become clear later on, LP strong duality condition
(2) is stated in inequality form. Indeed, that can be done since LP weak

V. Morais et al. / Electronic Notes in Discrete Mathematics 52 (2016) 309–316 311

duality rules out the satisfaction of (2) slack. A result in [1] states that in
every optimal price function, the prices assigned to the blue edges that actually
appear in any follower’s MST belong to {ck : k = 1, . . . , K}. Define one binary
variable xk

e to each e ∈ B and cost index k. If pe = ck, xk
e = 1. Otherwise,

xk
e = 0. As long as {ze ∈ B : e ∈ B} and (5) are enforced, pe =

∑K
k=1 c

kxk
e and

the revenue can be written as
∑K

k=1

∑
e∈B ckzex

k
e .

K∑
k=1

xk
e= 1, e ∈ B. (5)

Let {lke = zex
k
e , e ∈ B, k = 1, . . . , K} denote linearization variables. StackMST

can then be formulated as:

max

{
K∑
k=1

∑
e∈B

cklke : (zB, zR, l, x, α, μ) ∈ P ∩ (B|B|,R|R|,BK|B|,BK|B|,R,Ro
+)

}
(6)

where o = 2|V |−|V |−1, z = (zB, zR) is partitioned in its blue (zB ∈ B
|B|) and

red (zB ∈ R
|R|) components and P is the intersection of PST , (4)-(5) and:

K∑
k=1

∑
e∈B

cklke +
∑
e∈R

ceze≤ α(|V | − 1)−
∑

S⊂V,S �=∅
μs(|S| − 1) (7)

α−
∑

S:e∈E(S)

μs≤
K∑
k=1

ckxk
e , e ∈ B (8)

ze + xk
e − lke≤ 1, e ∈ B, k = 1, ..., K (9)
K∑
k=1

lke= ze e ∈ B (10)

0 ≤ lke≤ xk
e , e ∈ B, k = 1, ..., K (11)

Since lke ≥ 0, constraints (10) imply {lke ≤ ze : e ∈ B, k = 1, . . . , K}. They
can be proven valid by applying a partial RLT: multiply (5) by ze, e ∈ B and
replace the products zex

k
e by lke . The model can be further strengthened by:

∑
e∈P∩B

(1− ze) ≥
K∑
t=k

ltf , f = {a, b} ∈ B, k = 2, . . . , K, Pab ∈ Gk−1, (12)

V. Morais et al. / Electronic Notes in Discrete Mathematics 52 (2016) 309–316312

where, for a given k = 2, . . . , K and blue edge f = {a, b}, Pab denotes any
path that starts at a and ends at b in the graph Gk−1 = (V,B \ {f}∪{e ∈ R :
ce ≤ ck−1}). Inequalities (12) come from [1] and rely on a nice characterization
of admissible prices introduced in that reference. They state that if a cycle
of G has all its red edges with cost at most ck−1 and some blue edge f in
the cycle belongs to the MST with pf ≥ ck, then the cycle includes at least
another blue edge that does not belong to the MST. In the remainder, denote
by P+ the intersection of P with (12). Given any linear integer programming
formulation U for StackMST, denote by v(U) its LP relaxation upper bound.

3 A Branch-and-cut-and-price algorithm

To show how v(P+) is evaluated, assume that a Restricted Linear Program-
ming Master Problem (RLPM) is obtained after relaxing all SECS and (12),
and considering only those variables {μS : |S| = 2, S = {i, j} ∈ E} among
{μS : S ⊂ V, S
= ∅}. Assume that such a RLPM is solved to optimality

and that z ∈ [0, 1]|E|, x, l ∈ [0, 1]K|B|, α ∈ R and μ ∈ R
|E|
+ denote its optimal

solution. SECs are separated with the heuristic and exact algorithms in [3].
The most violated SEC is always added to the RLPM. The others are added if
they are orthogonal enough to the most violated one. Sufficiently orthogonal
inequalities are those whose inner product (evaluated after normalizing the
inequalities with the Euclidean norm) does not exceed 0.04. Constraints (12)

are also separated in polynomial time. For each f = {a, b} ∈ B :
∑K

t=1 l
t

f > 0
and k = 2, . . . , K, we compute a shortest path connecting a to b in Gk−1. For
the shortest path computations, Dijkstra’s algorithm is used; red edges have
length equal to 0 and blue edges have length equal to 1− ze. Inequalities (12)
are only separated when no violated SECs are found.

Let us now discuss how the column generation problem is solved. Assume
that z satisfies all SECs and that dual variables associated to constraints (7),
(4) and (8) in the LP dual of the LP relaxation implied by P+ are respectively
defined by θ ≥ 0, {ϕe ≥ 0 : e ∈ R} and {γe ≥ 0 : e ∈ B}. Additionally, let
θ, {ϕe : e ∈ R} and {γe : e ∈ B} be the corresponding optimal solutions
to the LP dual of RLPM. To check whether or not (z, x, l, α, μ) also solves
the LP relaxation of P+, we must check if any constraint

∑
e∈R∩E(S) ϕe +∑

e∈B∩E(S) γe ≤ θ(|S| − 1), ∀S ⊂ V, |S| ≥ 3 of the dual of the LP relaxation

of P+ is violated by (θ, ϕ, γ). If θ = 0, we must have γe = 0, e ∈ B and
ϕe = 0, ∀e ∈ R and they are all satisfied. If θ > 0, they read as

∑
e∈R∩E(S)

ϕe

θ
+∑

e∈B∩E(S)
γe

θ
≤ (|S| − 1), ∀S ⊂ V, |S| ≥ 3. Since all variables {μS : |S| =

V. Morais et al. / Electronic Notes in Discrete Mathematics 52 (2016) 309–316 313

2, S = {i, j} ∈ E} were included in the very first RLMP, ϕe

θ
≤ 1, ∀e ∈ R and

γe

θ
≤ 1, ∀e ∈ B apply. Thus, the column generation subproblem is solved by

the SEC separation algorithms in [3], having {ϕe

θ
: e ∈ R} and {γe

θ
: e ∈ B}

as the point to be separated. When no violated constraints nor columns
with positive reduced costs are found, the objective function value of RLPM
matches v(P+).

If there are fractional xk
e values for the LP relaxation solution at a given

node, BCP branches on generalized upper bound (GUB) constraints (5).
Among edges {e ∈ B : xk

e ∈ (0, 1), for any k}, it applies the strong branching
approach to define the most promising one. Assuming that e ∈ B denotes that

edge, two child nodes are created, enforcing
∑K

k=1 x
k
e = 1 and

∑K
k=K+1 x

k
e = 1

respectively in each of them (K = min{t :
∑t

k=1 x
k
e ≥ 0.5}). Otherwise, if

xk
e ∈ B, ∀e ∈ B, k = 1, . . . , K, BCP then branches on fractional ze : e ∈ B,

once again, using strong branching. BCP implements a best-first search and
only uses CPLEX as its LP solver.

BCP is initialized with the following valid lower bounds. After computing
a minimum weight spanning tree (V,RT) for the subgraph (V,R), each vertex
v ∈ V is labelled lv = min{ce : e ∈ δ({v})∩RT}. Then, a MST for (V,R∪B)
under prices {pe = min{li, lj} : e = {i, j} ∈ B} is computed. The revenue
collected in that MST is an initial valid StackMST lower bound. When the
LP relaxation (z, x, l, α, μ) of a given BCP node is computed, we define Ke =

{k = 1, . . . , K : l
k

e > 0}, B = {e ∈ B : Ke
= ∅}, set {pe = max{ck : k ∈ Ke} :
e ∈ B} and compute the MST for graph (V,R ∪ B). Then, every edge e ∈ B
has its prize set to ck for every k ∈ Kb, one edge with one new price at a time,
and the MST is re-computed. For each of these spanning trees, the revenue is
evaluated, attempting to update the best lower bound.

Since no computational evaluation for StackMST algorithms is available
in the literature, we compare BCP to a BC algorithm based on an extended
formulation that derives from that in [1]. The formulation uses variables {ze ∈
{0, 1} : e ∈ B} and the set of decision variables {uk

e ∈ B : e ∈ B, k = 1, . . . , K}
used in [1]. According to [1], uk

e = 1 if edge e is included in the MST with
price pe ≥ ck. If pe ≤ ck−1 or if e is not included in the MST, uk

e = 0. The

formulation behind BC is max{
∑K

k=1

∑
e∈B(c

k − ck−1)uk
e : (z, u) ∈ C ∩ (R

|E|
+ ×

B
K|E|)}, where polytope C is given by the intersection of PST , {

∑
e∈P∩B(1 −

u1
e) ≥ uk

f , f = {a, b} ∈ B, k = 2, . . . , K, Pab ∈ Gk−1}, {ze = u1
e, e ∈ B}

and {uk−1
e ≥ uk

e , e ∈ B, k = 2, . . . , K} (note C requires cost c0 = 0 to be
defined). Variables z are used so BC separates SECs instead of the polytope-
wise equivalent partition inequalities in [1]. BC uses the same separation

V. Morais et al. / Electronic Notes in Discrete Mathematics 52 (2016) 309–316314

algorithms for SECs and (12) described before, embedded as callback routines
for CPLEX MIP solver, that manages the search tree. BC also uses the
heuristic used to initialize BCP, described above. We conjecture that C and
the formulation in [1] provide the same LP bounds, but a proof remains to be
given.

4 Computational experiments and future work

BCP and BC were implemented in C++ and tested with a 2.4GHz Intel XEON
E5645 machine, with 32 GB of RAM, under Linux Operating System. The
StackMST instances are generated as follows. Given a desired integer K ∈
{3, 5, 7}, K integer red costs {c1, . . . , cK} are randomly chosen in [1, 150],
with uniform probability. Then, given a desired number n ∈ {20, 30, 50, 70}
of vertices, we randomly generate a tree (V, Ê) spanning them. Let Ec denote
the set of edges of a complete graph with vertex set V . We then initialize:
E ← Ê, R ← Ê, B ← ∅. Additional edges are then randomly picked from
Ec \ Ê, until a desired graph density d ∈ {10%, 20%, 30%, 50%} is obtained.
If a given edge in e ∈ Ec \ Ê is added to E, we then choose, with equal
probability, if R ← R ∪ {e} or B ← B ∪ {e}. In the former case, the cost
assigned to e is randomly chosen from {c1, . . . , cK}, with uniform probability.
Each instance name clearly indicates the corresponding values for n, d and K.
To illustrate, for instance n30d50k3, n = |V | = 30, d = 50% and K = 3.

Computational results are presented in Table 1, whose first column identi-
fies the instance being considered. The next three columns provide LP upper
bounds: v(C), v(P) and v(P+). We then provide computational results for BC
and BCP. For each algorithm, we provide: the best upper (BUB) and lower
(BLB) bounds found during the search, the corresponding duality gap, and
the total CPU time, t(s), in seconds. Whenever an instance was not solved to
proven optimality within a time limit of 5 hours, an indication “tl” is provided.

As one could expect, StackMST instances become very difficult with the
increase of K and the graph density. BC solved 4 out of 16 instances to proven
optimality, one of them also being solved by BCP. For the remaining three
cases, BCP manages to find the optimal solution, but fails in providing an
optimality certificate. That happens despite the fact that BCP dual bounds
at the root node are much stronger than BC counterparts. Note that, in many
cases, the best upper bound BCP outputs at the end of the time limit is es-
sentially the root upper bound v(P+). Nevertheless, these figures are always
much stronger than the best upper bounds provided by BC, under the same
time limit, for instances they do not solve. As a result, BCP provides smaller

V. Morais et al. / Electronic Notes in Discrete Mathematics 52 (2016) 309–316 315

duality gaps for almost all instances left unsolved by both methods. These
results suggest that BCP is a promising solution approach. We should investi-
gate other branching strategies, so that BCP benefits more from the stronger
upper bounds it relies on. We also intend to proceed with the characterization
of StackMST valid inequalities to separate them into BCP and BC.

BC BCP based on P+

v(C) v(P) v(P+) BUB BLB gap(%) t(s) BUB BLB gap(%) t(s)
n20d30k7 787 597 597 541 541 - 44 597 541 9.5 t.l.
n20d50k3 190 190 190 190 190 - 0 190 190 - 0
n20d50k5 599 467 467 575 407 29.2 t.l. 467 395 15.4 t.l.
n30d30k3 493 427 425 413 413 - 25 425 413 3.0 t.l.
n30d50k3 2134 1862 1862 2134 1798 15.7 t.l. 1862 1830 1.7 t.l.
n30d50k5 1870 1320 1320 1854 1320 28.8 t.l. 1320 1254 5.0 t.l.
n30d50k7 813 524 524 752 498 33.8 t.l. 524 497 5.2 t.l.
n50d10k5 1701 1592 1588 1470 1470 - 0 1588 1470 7.5 t.l.
n50d10k7 861 853 828 838 713 15.0 t.l. 828 732 11.6 t.l.
n50d20k3 2778 2301 2301 2778 2115 23.9 t.l. 2301 2239 2.7 t.l.
n50d20k7 1156 799 760 1127 570 49.4 t.l. 760 582 23.5 t.l.
n70d10k3 4807 4714 4694 4718 4641 1.6 t.l. 4694 4599 2.0 t.l.
n70d10k7 2342 2023 2002 2301 1825 20.7 t.l. 2002 1604 19.9 t.l.
n70d20k3 780 763 763 780 759 2.7 t.l. 763 759 0.5 t.l.
n70d20k5 1873 1173 1173 1873 835 55.4 t.l. 1173 934 20.4 t.l.
n70d30k5 1995 1227 1227 1995 1167 41.5 t.l. 1227 1167 4.9 t.l.

Table 1: Computational results. Upper bounds are rounded down.

References

[1] Cardinal, J., Demaine, E.D., Fiorini, S., Gwenael, J., Langerman, S., Newman, I.
and Weimann, O. The stackelberg minimum spanning tree game. Algorithmica,
59(2):129–144, 2011.

[2] Cardinal, J., Demaine, E.D., Fiorini, S., Gwenael, J., Newman, I. and Weimann,
O. The stackelberg minimum spanning tree game on planar and bounded-
treewidth graphs. Journal of Combinatorial Optimization, 25(1):19–46, 2013.

[3] Gendron, B., Lucena, A., da Cunha, A.S. and Simonetti, L. Benders
decomposition, branch-and-cut, and hybrid algorithms for the minimum
connected dominating set problem. INFORMS Journal on Computing,
26(4):645–657, 2014.

[4] Labbé, M. and Violin, A. Bilevel programming and price setting problems. 4OR-
Q J Oper Res, 11(1):1–30, 2013.

V. Morais et al. / Electronic Notes in Discrete Mathematics 52 (2016) 309–316316

