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Stability Analysis of a Set of Uncertain Large-Scale Dynamical Models With
Saturations: Application to an Aircraft System

P. Vuillemin, F. Demourant, J.-M. Biannic, and C. Poussot-Vassal

Abstract— From a sparse set of large-scale linear time-
invariant dynamical models, a methodology to generate a
low-order parameter-dependent and uncertain model, with guar-
anteed bounds on the approximation error, is first obtained using
advanced approximation and interpolation techniques. Second,
the stability of the aforementioned model, represented as a linear
fractional representation and subject to actuator saturation and
dynamical uncertainties, is addressed through the use of an irra-
tional multiplier-based integral quadratic constraint approach.
The effectiveness of the approach is assessed on a complex set of
aeroservoelastic aircraft models used in an industrial framework
for control design and validation purposes.

Index Terms— Aeroelastic aircraft stability, integral quadratic
constraint (IQC), model approximation, model interpolation.

I. INTRODUCTION

M
ANY techniques have been developed to model,

control, and assess the stability and performance of

dynamical systems. When complex systems are considered,

dedicated numerical software is usually used to accurately

reproduce their dynamical behavior. The obtained models

then result in large-scale ones equipped with a prohibitively

high number of variables. Although complex models have

a high degree of likeness with reality,1 in practice, due to

finite machine precision and computational burden, they are

problematic to manipulate. This is the case in many engi-

neering fields such as aerospace (e.g., aircraft [1], satellites,

launchers, and fluid flow mechanics), civilian structures, and

electronics (e.g., [2]), where control engineers have to cope

with many practical problems including lightly damped modes

and nonlinear actuator(s). Moreover, parametric uncertainties

usually affect such models, accounting for variabilities and

uncertainties. In most cases, the parametric dependency is

not a priori known and local linear models, representing the

system at frozen configurations, are often considered.

Let us consider a model G(θ) of a physical dynamical

system, which smoothly depends on a parameter θ ∈ R
p . This

model is assumed to be known only through its linearized

models Gi at some parametric points θi (i = 1, . . . , ns ).
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Fig. 1. Global process of the proposed approach (Algorithm 1).

Let Gi be asymptotically stable large-scale linear time-

invariant (LTI) dynamical models given by the state-space

realizations

G(θi)
lin.= Gi :

⎧

⎪
⎪
⎨

⎪
⎪
⎩

ẋi (t) = A(i)xi (t) + B
(i)
1 w(t) + B

(i)
2 u(t)

z(t) = C
(i)
1 xi(t) + D

(i)
11 w(t) + D

(i)
12 u(t)

y(t) = C
(i)
2 xi (t) + D

(i)
21 w(t) + D

(i)
22 u(t)

(1)

where xi (t) ∈ Rni , w(t) ∈ Rnw , u(t) ∈ R, z(t) ∈ Rnz ,

and y(t) ∈ Rny are the states, exogenous input, single

control input, performance output, and measurement signals,

respectively. Moreover, let be given a robust nk th-order LTI

controller K = (AK , BK , CK , DK ) with transfer K (s) =
CK (s Ink − AK )−1 BK + DK , looped between y(t) and u(t),

that ensures some robustness and performance specification(s)

for all the ns models.

The problem of assessing the stability of such a

high-dimensional controlled system over the continuum of

parametric variations, when the single control input u(t)

is subject to saturations, is addressed here. To this aim,

as clarified in the rest of this paper and following Fig. 1

and Algorithm 1, a three-step methodology is proposed:

1) approximate the ns dynamical models and bound the mis-

match error; 2) perform (inexact) interpolation of the reduced-

order models with interpolation error bounds; and 3) assess

the stability of the closed-loop model over both parametric

variations and control input saturation limitations.2

In comparison with the contributions of [1] and [3],

the proposed approach is accompanied with both

approximation (step 1) and interpolation (step 2) errors.

Hence, the µ (structured singular value) and integral

2Note that in practice, people usually reduce and perform the analysis in a
trial-and-error way, which is of course tedious and time consuming.
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quadratic constraint (IQC) analysis (step 3), respectively,

provide sufficient stability conditions for the whole set

of closed-loop models without and with saturation. This

represents the main contribution of this paper. It is also worth

mentioning that the irrational multipliers-based approach

developed in step 3 is an extension of [4]. It is shown that

no solution is obtained by rational multiplier, and only a

frequency-domain approach can be used here to assess the

closed-loop stability.

This paper is organized following the schematic of Fig. 1.

In Section II, the main result, i.e., the procedure to assess

the stability of a set of large-scale models looped with a

control law subject to saturations, is described. Section III

illustrates the proposed procedure on a complex large-

scale aeroservoelastic business jet aircraft model for various

flight configurations, looped with an antivibration controller.

Conclusions are given in Section IV.

Notations: Given three operators P(·), M(·), and �(·) of

compatible dimensions, the lower and upper linear fractional

transformations (LFTs) are, respectively, defined (for appro-

priate partitions of P and M) by F l(P,�) = P11 + P12�

(I − P22)
−1 P21 and Fu(M,�) = M22 + M21�

(I − M11)
−1 M12. The star product ⋆ of P and M is defined by

P ⋆ M =
[

Fl (P, M11) P12(I − M11 P22)−1 M12

M21(I − P22 M11)−1 P21 Fu(M, P22)

]

.

(2)

Given a matrix M ∈ Cp×m , M j,k = M( j, k) (with

1 ≤ j ≤ p and 1 ≤ k ≤ m) denotes the scalar coefficient in

the j th row and kth column of M , M∗ denotes the conjugate

transpose of M , and σ̄ (M) is its largest singular value.

The frequency-limited H2-norm, denoted by H2,�-norm, is

defined as the restriction of the H2-norm over the interval

� = [0, ω] with ω ∈ R+, where R+ denotes the set of

positive real numbers. Given an asymptotically stable LTI

model realization H with transfer function H (s), ‖H‖H2,�
:=

(1/π
∫

�
‖H ( jν)‖2

F dν)1/2 [5], [6].

II. MAIN RESULT: STABILITY GUARANTEE OF A SET

OF LARGE-SCALE MODELS SUBJECT

TO INPUT SATURATIONS

With reference to Fig. 1, the proposed contribution, in

three steps, is summarized in Algorithm 1. More specifi-

cally, an optimal frequency-limited approximation algorithm

is first applied followed by the creation of a frequency-

dependent mismatch bound (step 1, Section II-A), then the

interpolation and transformation into a linear fractional rep-

resentation (LFR) structure is achieved (step 2, Section II-B),

and finally, the stability of the overall uncertain parameter-

dependent model is first assessed thanks to a µ analysis, and

then, when subject to control input saturation, through a novel

IQC technique (step 3, Section II-C).

A. Multi-LTI Model Approximation and Error Bound

Generally speaking, the main objective of the approximation

step is to capture, with a stable low-order model, the initial

large-scale model most relevant dynamics. Various approaches

exist for the approximation of large-scale LTI models (see [7]

Algorithm 1 Global Procedure

for an overview), and one of them consists in formalizing the

model approximation problem as an optimization one. The

problem then consists in finding a reduced-order model that

minimizes a given norm of the approximation error.

In the literature, the H2-norm has often been consid-

ered and several methods are now available to address the

corresponding optimal H2 model approximation prob-

lem [8], [9]. Yet, in many cases, considering a limited
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frequency interval only is more relevant since the following

conditions hold.

1) The system dynamics might not be perfectly known over

the whole frequency domain, meaning that the model is

inaccurate in some frequency intervals. Discarding these

areas enables us to increase the approximation accuracy

where the initial model is accurate.

2) Controllers are usually designed to act over a limited

frequency interval (due to actuator’s bandwidth or to

prevent them from disturbing nonmodeled dynamics),

which means that a precise knowledge of the dynamics

over the whole frequency domain is not necessarily

useful.

From the authors’ point of view, the optimal approximation

over a bounded frequency interval enables us to elegantly

translate these practical considerations and is therefore pre-

ferred here. It is addressed through the use of the frequency-

limited H2-norm in Section II-A1. Yet it is worth noting that

the overall methodology summarized in Algorithm 1 does not

depend on the approximation strategy as the approximation

error is bounded in Section II-A2.

1) Optimal Frequency-Limited H2 Model Approximation:

Using the H2,�-norm, one can formulate the approximation

over a bounded frequency interval as an optimization problem.

More specifically, given an asymptotically stable nth-order

large-scale model G and a frequency interval �, the optimal

H2,� model approximation problem consists in finding a

reduced-order model Ĝ of order r ≪ n, which minimizes

the H2,�-norm of the approximation error G − Ĝ

Ĝ = arg min
H∈H∞, rank(H)=r

‖G − H‖H2,�
. (9)

Here, Problem (9) is addressed using the method

called descent algorithm for residues and poles optimiza-

tion (DARPO), proposed in [6]. It relies on the poles–residues

formulation of the H2,�-norm [10] and finds the poles and

associated residues of the reduced-order model that satisfy the

first-order optimality conditions associated with (9).

With reference to Algorithm 1 (step 1), the approxima-

tion algorithm is applied to each large-scale model Gi ,

i = 1, . . . , ns resulting in ns small-scale models Ĝi mini-

mizing the H2,�-norm of the approximation error with Gi ,

as stated in (3).

Note that both the approximation order r and the frequency

interval � are tuning parameters that depend on the considered

application. Yet, as mentioned before, the frequency interval �

may be chosen as the interval that contains the most relevant

dynamics of the physical systems. Observing the decay of the

eigenvalues of the product of the frequency-limited gramians

P�Q� (see [11, Ch. 4]), which may be viewed as the Hankel

singular values in the frequency-limited case, can give an idea

of the adequate approximation order r .

The stability analysis must take into account the error

induced by the approximation step. For that purpose,

a low-complexity model upper bounding the worst approxi-

mation error is built in the next section.

2) Bound on the Approximation Error: Let us denote by

Fi (s) = K (s)Gi (s) and F̂i (s) = K (s)Ĝi (s) the open loops

from the inputs of the large- and small-scale models to the

output of the controller3 K. Let us denote the order of F̂i (s)

as n = r + nK . The objective of this section is to model the

approximation error 
i (s) = Fi (s) − F̂i (s) (i = 1, . . . , ns ) as

a low-order additive output uncertainty. More specifically, one

seeks a low-order filter W (s) such that ∀i = 1, . . . , ns , ∃�Ri ∈
H∞ with ‖�Ri ‖H∞ ≤ 1 and Fi (s) = F̂i (s) + W (s)�Ri (s).

Then the stability of the set of uncertain models {F̂i (s) +
W (s)�R(s), ‖�R‖H∞ ≤ 1} implies the stability of the finite

set of models {Fi (s)}i=1,...,ns . Note that any invertible filter

W (s) such that

max
i=1,...,ns

‖W−1
i‖H∞ ≤ 1 (10)

can be used as one can always exhibit �Ri (s) = W−1(s)
i (s)

such that Fi (s) = F̂i (s) + W (s)�Ri (s).

The design of W (s) then consists in a tradeoff between

complexity and conservatism. Indeed, one must find a W (s)

which is both an accurate modeling of the worst approximation

error and which complexity (order) is reasonable. For instance,

W = maxi=1,...,ns ‖
i‖H∞ obviously satisfies (10). Yet, it

does not offer an accurate modeling of the approximation error

and might therefore be too conservative for stability analysis.

A direct approach to design W (s) satisfying (10) would

consists in using nonsmooth H∞ optimization tools to solve

min ‖W‖H∞ such that ‖W−1
i‖H∞ ≤ 1 (for i = 1, . . . , ns ).

Yet depending on the application, the errors 
i might be too

large for such an approach to be tractable. In those cases,

a heuristic approach may then be preferable.

B. Bounded-Error Reduced-Order LFR Model Generation

Consider the parametrically dependent set {F̂i (s)}i=1...ns of

reduced-order models obtained above, the objective is now to

derive a limited-size LFR such that µ and IQC-based analysis

tools can then be applied. In the general case, involving several

parameters (θ ∈ Rp), the ns equations (5) must be solved for

a parametric structure, e.g., �i = diag(θ1i Inθ1
, . . . , θpi Inθp

),

whose size n� =
∑p

k=1 nθk should be kept as small as

possible. Efficient solutions, based on multivariate sparse

polynomial or rational interpolation techniques, are detailed

in [1], [12], and [13].

In the case of a scalar parameter (θ ∈ R), a specific

technique can be developed to compute low-order LFR models

whose �-block will both include the parametric variations (�)

and a normalized real-valued uncertain operator (�P). The

latter is introduced to cover the interpolation errors as illus-

trated by (5). The proposed technique based on a polynomial

state-space data interpolation approach can be decomposed

into three steps, which are briefly presented next.

1) Step 1: Models Rewriting in a Rescaled Companion

Form: Reduced-size LFR models are easier to obtain when all

varying data appear in a limited number of rows (or columns)

of each state-space representation. A companion form is then a

good choice but unfortunately leads to ill-conditioned matrices

as the system order increases. As also proposed in [14],

a rescaled companion form will then be used. Using the

3The controller is included here to be coherent with the interpolation step
of Section II-B.
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notation F̂i (s) = Ci (s In − Ai )
−1 Bi + Di , the system is

rewritten as

(

Ai Bi

Ci Di

)

=

⎛

⎜
⎜
⎜
⎜
⎜
⎝

0 λ1 0 0
...

. . .
...

...

0 0 . . . λn−1 0

a1
(i) a2

(i) . . . an
(i) b(i)

c1
(i) c2

(i) . . . cn
(i) d(i)

⎞

⎟
⎟
⎟
⎟
⎟
⎠

(11)

where the scaling variables {λk}k=1...n−1, with the help of

standard numerical balancing techniques, are tuned to optimize

the average condition number of each matrix Ai . Note that the

standard companion form is recovered for λk = 1.

Remark 1: In the context of LFR modeling, the above

description is of high interest since the varying state-space

data all appear in the last two rows. Assuming that every

coefficient is approximated by a pth-order polynomial, the

size of � = θ Inθ will then be limited to n� = 2 p.

2) Polynomial Interpolation With Guaranteed Error

Bounds: Let us denote by Yi the last two lines in (11)

Yi =
(

a1
(i) a2

(i) . . . an
(i) b(i)

c1
(i) c2

(i) . . . cn
(i) d(i)

)

∈ R
2×(n+1) (12)

and focus on the polynomial approximation of the finite

set {Yi }i=1...ns with guaranteed and minimized error bounds.

Given p, the order of the polynomial, the problem reduces to

the determination of an error matrix E ∈ R+2×(n+1) and a set

of matrices {Xq}q=0...p such that the nonnegative entries of E

are minimized under the following linear constraints (with

j = 1, 2 and k = 1 . . . n + 1):
∣
∣
∣
∣
∣
∣

⎡

⎣X0 +
p
∑

q=1

θ
q
i Xq − Yi

⎤

⎦

j,k

∣
∣
∣
∣
∣
∣

≤ E j,k, i = 1 . . . ns . (13)

The above optimization problem is easily solved by any

standard linear programming solver. However, the order p of

the polynomial should be carefully chosen. Low orders will

indeed result in rough approximations yielding conservative

models with large entries in E . Conversely, high-order poly-

nomials will improve the accuracy at the interpolation points.

Moreover, critical oscillations are likely to appear between

the interpolation points when the difference ns − p gets too

small. This issue and possible remedies are further discussed

in Section III.

3) LFR Modeling:

Proposition 1: From inequalities (13), E-dependent shap-

ing matrices U(E) and V (E) of appropriate dimensions and

a bounded real-valued block-diagonal uncertain operator �P

�P = diag(δp1 Inδp1
, . . . , δpr Inδpr

) (14)

can be easily defined such that the function

Y(θ,�P) = X0 +
p
∑

q=1

θq Xq + U(E) · �P · V (E) (15)

satisfies the following statement:

∀i = 1, . . . , ns , ∃�P / |δpk | ≤ 1 and Y(θi ,�P) = Yi .

(16)

Proof: The above proposition is trivially satisfied with the

following (nonminimal) choice:
�P = diag(δp1, . . . , δp2n+2) ∈ R

(2n+2)×(2n+2)

U =
(

1 . . . 1 0 . . . 0

0 . . . 0 1 . . . 1

)

∈ R
2×(2n+2)

and V (E) = diag(E1,1, . . . , E1,n+1, E2,1, . . . , E2,n+1). �

Remarking that Y(θ,�P ) polynomially depends on θ and

affinely depends on �P , standard algorithms (see [15] for

further details) can be applied to compute the interconnection

matrix X such that

Y(θ,�P ) = Fu (X ,�,�P) = Fu

(

X , diag(θ I2p,�P )
)

.

(17)

Next, standard LFR object manipulations implemented in the

LFR toolbox [15] yield the required open-loop LFR models

depicted in (5) and (6). Once again, standard manipulations are

used to construct the closed-loop M(s)−� standard forms that

will include or not the saturation-type nonlinearity and will be

used to check the stability.

C. Stability Assessment

At this point, a low-order uncertain LFR model

Fu(P(s),�) covering the initial set {Fi (s)}i=1...ns is

available. The objective of this section is to prove the

stability of the closed-loop LFR model P(s) both with and

without input saturation. As summarized in Algorithm 1,

the proposed analysis method consists of two steps. No

saturation is considered in the first one, which can be viewed

as an LFR model validation test. In a second step, an

input saturation is introduced and the IQC-based analysis is

considered.

1) Stability Analysis Without Saturation Using µ Tools:

Without saturation, the uncertain closed-loop model under

consideration assumes that an LTI standard form M(s) − �,

where � = diag(�,�P ,�R(s)) is a normalized LTI struc-

tured uncertainty block. As a result, the stability of the

continuum (covering the initial set of full-order plants) of

closed-loop models obtained for any admissible uncertainty

inside the unit ball is guaranteed if and only if

∀ω ≥ 0, µ�(M( jω)) ≤ 1 (18)

where µ�(M), for any complex-valued matrix M , denotes the

structured singular value with respect to � and provides the

inverse of the size of the critical uncertainty beyond which

stability is no longer guaranteed (see [16] for further details).

Testing (18) raises two difficulties. The computation of µ is

an NP-hard optimization problem that, in addition, must be

solved for an infinite set of frequencies. Yet, as emphasized

in [17], recent implementations (used in this paper) of this

µ test in [18] and [19] provide quite efficient tools even for

high-order plants with numerous and repeated uncertainties

(see also [20]).

Remark 2: The proposed µ test is clearly a necessary

stability condition. If there exists ω⋆ ≥ 0 such that

µ�(M( jω⋆)) > 1, then the accuracy of the model should be

improved in order to minimize the effects of �P and �R(s).
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2) Stability Analysis With Saturation Using IQC: IQC-

based analysis techniques enable us to study a wide range

of problems, namely, the robust stability and performance

properties of the interconnection M(s)−� of an LTI operator

M(s) with a structured model uncertainty � containing nonlin-

earities, LTI and/or linear time-varying parameters, neglected

dynamics, delays, and specific nonlinearities such as friction

and hysteresis [21].

Here, standard IQC descriptions are used for both LTI

uncertainties, �, and sector nonlinearities, denoted by ϕ.

The originality of our approach resides in the specific algo-

rithm that has been developed to reduce the computational

burden. Indeed, standard IQC-oriented analysis methods con-

sist in solving Kalman–Yakubovitch–Popov-based LMI condi-

tions [22]. These standard approaches are, however, intractable

for high-order models since the number of scalar optimiza-

tion variables quadratically increases with the closed-loop

order [4]. Moreover, this approach is not compatible with the

use of irrational multipliers.4

a) IQC generalities: An IQC describes a relation between

input and output signals of an operator. Since these two for-

mulations are completely equivalent, these constraints can

be defined either in the time or the frequency domain.

Nevertheless, frequency-domain constraints are often preferred

since they lead to simpler stability conditions. The definition

of an IQC is given in the frequency domain.

Definition 1: Two signals, respectively, of dimension m

and p, square integrable on [0,∞), i.e., v ∈ Lm
2 [0,∞),

w ∈ L
p
2 [0,∞), satisfy the IQC defined by � : jR →

C(m+p)×(m+p), and Hermitian-valued function, iff
∫ ∞

−∞

[

ṽ( jω)

w̃( jω)

]∗
�( jω)

[

ṽ( jω)

w̃( jω)

]

dω ≥ 0 (19)

where ṽ( jω) and w̃( jω), respectively, correspond to Fourier

transforms of v and w, such as w = �v.

The problem consists in analyzing the closed loop that

corresponds to the interconnection by a positive feedback of

M(s) with �, where � can be nonlinear and non stationary.

Let us suppose that the input and output signals of � satisfy

the IQC defined by �. The following result gives the stability

criterion [22].

Theorem 1: Let us suppose that M(s) is stable and � is a

causal and bounded operator, if the following conditions hold.
1) Interconnection M-τ� is well posed for any τ ∈ [0, 1].
2) τ� satisfies the IQCs defined by �, ∀τ ∈ [0, 1].
3) It exists ǫ > 0 such as

∀ω ∈ R

[

M( jω)

I

]∗
�( jω)

[

M( jω)

I

]

︸ ︷︷ ︸

Z( jω)

≤ −ǫ I (20)

then the closed-loop system is stable.
Let us consider a stable M(s), forming the constant block of

the LFR and an augmented block � ← diag(ϕ,�),5 where ϕ

4This constraint imposes to fix a priori (via a time-consuming trial-and-error
process) the poles of the multipliers without any guarantee on the optimality
of the selected poles.

5Note that � is the same uncertain block as in Section II-B (containing the
neglected model reduction dynamics �R(s)s, parametric variations �, and
interpolation errors �P ), augmented with ϕ, the saturation nonlinearity.

represents one sector slope-restricted nonlinearity (0, 1). The

global multiplier � corresponding to � is built as follows

(see [22]–[24] for additional details):

�( jω)

=

⎡

⎢
⎢
⎣

0 0 x + jωλ + ω2γ 0

0 X ( jω) 0 Y ( jω)

x − jωλ + ω2γ 0 −2x − 2ω2γ 0

0 Y ∗( jω) 0 −X ( jω)

⎤

⎥
⎥
⎦

X ( jω) = diag(X�( jω), X P( jω), x�R )

Y ( jω) = diag(Y�( jω), YP( jω), 0) (21)

where X�( jω) = X∗
�( jω) ≥ 0 ∈ Cn�×n� , X P( jω) =

X∗
P( jω) ≥ 0 ∈ C(2n+2)×(2n+2), Y�( jω) = −Y ∗

�( jω) ∈
Cn�×n� , YP( jω) = −Y ∗

P ( jω) ∈ C(2n+2)×(2n+2), x ≥ 0,

x�R ≥ 0, γ ≥ 0, and λ ∈ R. Closed-loop stability is ensured

if a solution of the following LMI can be found, ∀ω ∈ R+:
[

M( jω)

I

]∗
�
(

x, λ, γ, X ( jω), Y ( jω)
)
[

M( jω)

I

]

< 0. (22)

b) Proposed Innovative Method: In this paper, the opti-

mization problem is directly solved from frequency-domain

inequalities through a grid-based approach. A similar approach

is used in [25] but without guarantee of the solution validity

on the whole frequency domain. Here to guarantee that the

solution is valid on the whole frequency domain, a specific

technique based on [18] and [26] is adapted to our prob-

lem [4]. Besides another advantage is to limit the number of

LMI constraints since only active constraints are added in the

LMI optimization problem. Here the main result is presented.

Let � = (A�, B�, C�, D�) be the realization of �(s)

(of order m), with �( jω) = (I − Z( jω))(I + Z( jω))−1

[(I + Z) is invertible], where Z( jω) = Z∗( jω) is the stability

criterion (20), and �( j (ω0 + δω)) = Fl(S(ω0), δωIm), with

∀ δω ≥ −ω0, i.e., S(ω0) is interconnected to δω as a lower

LFT, where δω is a real parameter. S(ω0) reads

S(ω0) =

⎛

⎜
⎝

D�
C�√

j
B�√

j
− j A�

⎞

⎟
⎠ ⋆

(
1

ω0

(

I I

−I −I

))

. (23)

Proposition 2: If σ(�
(

ω0)
)

< 1, then σ(Fl(S(ω0),

δωIm)) < 1 holds true for ω0 + δω ∈ [ω,ω], where ω and ω

are computed as ω = ω0 + (1/ηn) and ω = ω0 + (1/ηp),

where ηn and ηp are the maximal magnitude real negative

and positive eigenvalues of T , respectively, defined as

T =
[

S22 0

0 S∗
22

]

−
[

0 S21

S∗
12 0

]

X−1

[

S12 0

0 S∗
21

]

(24)

where

S(ω0) =
[

S11 S12

S21 S22

]

and X =
[

I S11

S∗
11 I

]

. (25)

Remark 3: When σ(�(+∞)) = 1 and ω = +∞ ⇔
ηp = 0, a null eigenvalue is obtained, which means that

σ(�(ω) crosses the 0 dB axe for ω = +∞. But the inter-

section of the stability criterion with the 0 dB axis has no

physical meaning.

Remark 4: The bilinear transformation �( jω) =
(I − Z( jω))(I + Z( jω))−1 with (I + Z) invertible
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Algorithm 2 Iterative IQC Resolution

allows us to transform a positivity condition into a weak gain

condition

σ (�) ≤ 1 ⇔ Z + Z∗ ≥ 0. (27)

In the iterative approach, proposed in Algorithm 2, the

validation step is a priori performed during the LMI optimiza-

tion problem resolution. The choice of the initial grid has no

influence on the feasibility problem. It is possible to choose a

singleton at the first iteration. However, to limit the number of

iterations, and consequently the calculation time, without any a

priori knowledge, it is recommended to take some frequencies

roughly spread on the frequency domain. It is possible, when

first solutions are obtained, to tune this initial frequency grid

to decrease the number of iterations.

This approach allows the frequency-domain irrational mul-

tipliers X ( jω) to be piecewise continuous. More specifically,

between each �i , these multipliers are discontinuous, and con-

sequently, no state-space representation for these multipliers

can exist. Involving a state-space representation in order to

parameterize multipliers would necessarily lead to constrain

the solution and increase the conservatism. Of course it is

also possible to use rational multipliers with a frequency-

domain resolution using the factorized form of X (s) presented

previously [4]. The auxiliary matrix P is still avoided, but

without the advantage to use irrational multipliers.

III. APPLICATION TO AN AEROELASTIC

AIRCRAFT SYSTEM

The methodology described in Section II and summarized

in Algorithm 1 is now applied to check the stability of a set of

Fig. 2. Largest singular value of G1 and of the 16th-order reduced-order

model Ĝ1 obtained with DARPO with � = [0, ωr ]. The gray area denotes
the discarded frequencies (i.e., above ωr ).

ns = 3 large-scale models (ni ≈ 600) representing the local

behavior of an industrial aircraft for different Mach numbers,

looped with K, an antivibration controller (nK = 6) [1].

A. Step 1: LTI Approximation and Error Bound (Section II-B)

1) Approximation: The ns = 3 large-scale models Gi of

order ni ≈ 600 are approximated by Ĝi of order r = 16

over � = [0, ωr ]. The frequency interval � is chosen to

keep the low-frequency behavior of the large-scale models

as it is known to be accurate, whereas the dynamics above

ωr are less accurately known and are therefore discarded. The

approximation order r is then chosen experimentally to achieve

a low approximation error over �. The relative approximation

errors, i.e., ei = ||Gi − Ĝi ||H2,�
/||Gi ||H2,�

, i = 1, 2, 3,

are, respectively, equal to 2.86%, 2.39%, and 2.49%. Fig. 2

illustrates these low errors through the largest singular value

of G1 and Ĝ1.

Fig. 2 illustrates that the dynamics occurring at higher

frequencies than ωr (gray zone) are indeed discarded during

the approximation step. By doing so, one can obtain very

accurate reduced-order models over � = [0, ωr ] as shown

by the relative errors that all are below 3%.

The high-frequency dynamics require a complex model to

be accurately captured, while the low-frequency ones, which

contain the rigid behavior and the first flexible modes of the

aircraft, can be caught more easily. This point is particularly

obvious when comparing the relative errors obtained here to

the one obtained by optimal H2 approximation of the same

aircraft model in [1]. In the latter case, with an approximation

order r = 16, the H2 approximation error is above 30%.

2) Approximation Error Modeling: The order of the approx-

imation errors 
i (s) = Fi (s) − F̂i (s) = K (Gi (s) − Ĝi (s))

prevents from using optimization tools to design the filter

W (s) efficiently. That is why it is built here in a heuristic

manner. More specifically, W (s) is designed as a product of

simple first-order filters W (s) = k�
nW

i=1(s − zi/s − pi), where

the poles pi , zeros zi , and gain k are adjusted for W (s) to be

as close as possible of the approximation errors while still

ensuring that maxi=1,...,ns ‖W−1
i‖H∞ ≤ 1. The filter W (s)

obtained here has an order nW = 25 and is plotted in Fig. 3.

One can observe that its singular value upper bounds the worst
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Fig. 3. Singular values of W (s) and Fi (s) − F̂i (s) (i = 1, . . . , ns ).

Fig. 4. Illustration of a second-order polynomial interpolation result with
minimized guaranteed error bound for the coefficient c19 = Y2,19.

approximation error. In particular, with this filter, one obtains

maxi=1,...,ns ‖W−1
i‖H∞ = 0.99 < 1.

B. Step 2: Interpolation and LFR modeling (Section II-C)

At this stage, a Mach-dependent family {F̂i (s)}i=1...3 of

22nd-order LTI models is available together with a common

weighting function W (s) shaping the worst case approxima-

tion errors induced by the reduction process.

1) Polynomial Approximation With Guaranteed Bounds:

The interpolation technique summarized by the linear con-

straints (13) is initially applied with p = 2 and ns = 3. The

scalar parameter θ is normalized in such a way that θ = −1

corresponds to the lowest Mach number of interest, while

θ = 1 corresponds to the highest value. Since ns − p = 1,

this first trial yields an exact approximation at each of the

three interpolation points, but a poor behavior is observed

elsewhere. Reducing the order p to 1 would yield a rough

and unacceptable approximation. The only remaining option

then consists in adding fictitious models for intermediate Mach

numbers. This is achieved here by generating additional coef-

ficients in (11) with a standard linear interpolation technique.

Two models are then generated for Mach 0.825 and 0.875,

and a new interpolation is thus realized with ns = 5 for each

of the 46 coefficients contained in the matrices Yi of (12).

A result of this interpolation is plotted in Fig. 4 for one

of the most varying coefficients, namely, Y2,19(θ). The blue

solid line corresponds to the nominal plot, while the red

dashed lines visualize lower and upper bounds including the

Fig. 5. Visualization of µ upper and lower bounds for the evaluation of

robust stability margins: stability proved for ‖�‖∞ ≤ 0.43−1 = 2.32.

five interpolation points. Note that the three coefficients from

the initial set of models are all located on the same bound

(the upper bound for this coefficient). Quite interestingly, this

property holds true for the 46 [=2 × (r + nK + 1) =
2 × (n + 1)] coefficients, which permits to drastically reduce

the size of �P in (14). One here obtains �P = δP I2, and

(15) boils down to

Y(θ,�P) = X0 + θ X1 + θ2 X2 + diag(δP , δP ).V (E). (28)

2) LFR Modeling: As already clarified in Section II,

Y(θ,�P) is readily rewritten in an LFR format with the

help of existing software [15]. Next, exposed in (6), a global

47th-order (=r +nW +nK ) dynamic LFR model encompassing

the whole initial set of full-order open-loop plants is obtained.

The structure of its 7 × 7 �-block reads

� = diag(θ I4, δP I2,�R(s)) (29)

and has a minimal size that remains largely compatible with

the specific µ and IQC-based analysis tools to be applied next.

C. Step 3: Stability Analysis (Section II-D)

1) Preliminary Tests via µ Analysis: As mentioned

in Section II-C, the validity of the global LFR model is

preliminarily checked without saturation. An uncertain LTI

closed-loop model is then built, and the µ analysis test (18) is

performed. Since the complexity of our algorithm is not

directly impacted by the number of states, but mainly depends

on the size and structure of �, the results are obtained in a

few seconds on any standard computer. A guaranteed upper

bound of µ as a function of frequency is displayed in Fig. 5.

The yellow stars corresponding to lower bounds reveal a rather

low conservatism of our test, which can be summarized by

sup
ω≥0

µ�(M( jω)) = 0.43 ≪ 1. (30)

The continuum of closed-loop models for any admissible

uncertainty then clearly remains stable, which concludes the

preliminary validation phase.

2) Stability Assessment via IQC-Based Analysis: An input

saturation converted to a deadzone operator ϕ is now

inserted in the uncertain closed-loop whose �-block is then

augmented: � ← diag(ϕ,�). The initial frequency grid is

ωi = {1, 5, 10, 20, 100} rad/s with i = 1, . . . , 5. To limit

the number of decision variables and then the computation

time, X�( jω) and Y�( jω) are chosen diagonal, which leads
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to 17 scalar decision variables for each frequency, even if it is

possible to use the general form if no solution was obtained.

In addition, three decision variables x, λ, and γ come from

the multiplier, which corresponds to the static nonlinearity ϕ.

A solution has been obtained in 8 iterations and

104 frequencies. The total number of decision variables

is 17 × 104 + 3 = 1771. The following remarks can be made.

1) The solution X ( jω) is a positive, complex, constant,

and piecewise continuous 6 × 6 matrix. For example, at

iteration 8, for ω3 = 10 rad/s, the solution �3( jω) is

valid on the frequency domain �3 = [9.72, 32.82] rad/s.

Finally, after eight iterations, �VALID =
⋃

i=1,...,104 �i =
[0 + ∞), and consequently, the solution is validated on

the whole frequency domain.

2) An a priori trial-and-error approach to determine the

parameterization for multipliers is not required here.

Furthermore, with rational multipliers, if no solution

is obtained with a specific parameterization, it is still

impossible to conclude on the feasibility problem as a

different or more complex parameterization may have

enabled to find a solution. Both points highlight the

methodological superiority of irrational multipliers that

can be considered only from a frequency domain point

of view.

3) Finally, the stability of the uncertain and nonlinear

closed loop is proved on the large-scale dynamical

model.

IV. CONCLUSION AND PERSPECTIVES

In this paper, a methodology that enables us to assess the

stability of a set of controlled SIMO large-scale LTI dynamical

models subject to input saturation has been presented. First,

the large-scale models are reduced and interpolated, and the

associated errors are bounded. This leads to a small-scale LFR

that represents both the parametric variation of the initial set

of models and the errors induced during the reduction and

interpolation steps. The stability analysis is then achieved with

an innovative algorithmic approach based on IQC techniques.

Unlike standard methods that require a possibly conservative

parameterization of the multiplier, here, no parameterization

is required. This decrease in the conservatism enables us

to drastically improve the approach. The methodology is

successfully validated on an industrial set of controlled large-

scale aircraft models subject to saturation limitations.6

The extension of the methodology to MIMO models is

conditioned by the use of an interpolation technique with

guaranteed error bounds. The development of such a technique

is still under investigation.
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