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Beyond Fuzzy, Possibilistic and Rough:
An Investigation of Belief Functions in
Clustering

Thierry Denœux1 and Orakanya Kanjanatarakul2

Abstract In evidential clustering, uncertainty about the assignment of ob-
jects to clusters is represented by Dempster-Shafer mass functions. The re-
sulting clustering structure, called a credal partition, is shown to be more
general than hard, fuzzy, possibility and rough partitions, which are recov-
ered as special cases. Different algorithms to generate a credal partition are
reviewed. We also describe different ways in which a credal partition, such as
produced by the EVCLUS or ECM algorithms, can be summarized into any
of the simpler clustering structures.

1 Introduction

Clustering is one of the most important tasks in data analysis and machine
learning. It aims at revealing some structure in a dataset, so as to highlight
groups (clusters) of objects that are similar among themselves, and dissimilar
to objects of other groups. Traditionally, we distinguish between partitional
clustering, which aims at finding a partition of the objects, and hierarchical
clustering, which finds a sequence of nested partitions.

Over the years, the notion of partitional clustering has been extended to
several important variants, including fuzzy [3], possibilistic [11], rough [13,17]
and evidential clustering [7, 8, 15]. Contrary to classical (hard) partitional
clustering, in which each object is assigned unambiguously and with full
certainty to a cluster, these variants allow ambiguity, uncertainty or doubt
in the assignment of objects to clusters. For this reason, they are referred to
as soft clustering methods, in contrast with classical, hard clustering [18].
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Among soft clustering paradigms, evidential clustering describes the un-
certainty in the membership of objects to clusters using the formalism of belief
functions [20]. The theory of belief functions is a very general formal frame-
work for representing and reasoning with uncertainty. Roughly speaking, a
belief function can be seen as a collection of sets with corresponding masses,
or as a non additive measure generalizing a probability measure. Recently,
evidential clustering has been successfully applied in various domains such
as machine prognosis [19], medical image processing [12, 14] and analysis of
social networks [22].

Because of its generality, the theory of belief functions occupies a central
position among theories of uncertainty. The purpose of this paper is to show
that, similarly, the evidential paradigm occupies a central position among
soft clustering approaches. More specifically, we will show that hard, fuzzy,
possibilistic and rough clustering can be all seen as special cases of evidential
clustering. We will also study different ways in which a credal partition can
be summarized into any of the other hard of soft clustering structures to
provide the user with more synthetic views of the data.

The rest of this paper is structured as follows. In Section 2, the notion of
credal partition will first be recalled, and algorithms to construct a credal
partition will be reviewed. The relationships with other clustering paradigms
will then be discussed in Section 3. Finally, Section 4 will conclude the paper.

2 Credal partition

We first recall the notion of credal partition in Section 2.1. In Section 2.2, we
briefly review the main algorithms for constructing credal partitions.

2.1 Credal partition

Assume that we have a set O = {o1, . . . , on} of n objects , each one belonging
to one and only one of c groups or clusters. Let Ω = {ω1, . . . , ωc} denote the
set of clusters. If we know for sure which cluster each object belongs to, we can
give a (hard) partition of the n objects. Such a partition may be represented
by binary variables uik such that uik = 1 if object oi belongs to cluster ωk,
and uik = 0 otherwise.

If objects cannot be assigned to clusters with certainty, then we can quan-
tify cluster-membership uncertainty by mass functions m1, . . . ,mn, where
each mass functionmi is a mapping from 2Ω to [0, 1], such that

∑
A⊆Ωmi(A) =

1. Each mass mi(A) is interpreted as a degree of support attached to the
proposition “the true cluster of object oi is in A”, and to no more specific
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proposition. A subset A of Ω such that mi(A) > 0 is called a focal set of mi.
The n-tuple m1, . . . ,mn is called a credal partition [8].

Example 1 Consider, for instance, the “Butterfly” dataset shown in Figure
1(a). This dataset is adapted from the classical example by Windham [21],
with an added outlier (point 12). Figure 1(b) shows the credal partition with
c = 2 clusters produced by the Evidential c-means (ECM) algorithm [15]. In
this figure, the masses mi(∅), mi({ω1}), mi({ω2}) and mi(Ω) are plotted as a
function of i, for i = 1, . . . , 12. We can see that m3({ω1}) ≈ 1, which means
that object o3 almost certainly belongs to cluster ω1. Similarly, m9({ω2}) ≈ 1,
indicating almost certain assignment of object o9 to cluster ω2. In contrast,
objects o6 and o12 correspond to two different situations of maximum uncer-
tainty: for object o6, we have m6(Ω) ≈ 1, which means that this object might
as well belong to clusters ω1 and ω2. The situation is completely different for
object o12, for which the largest mass is assigned to the empty set, indicating
that this object does not seem to belong to any of the two clusters.
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Fig. 1 Butterfly dataset (a) and a credal partition (b).

2.2 Evidential clustering algorithms

Three main algorithms have been proposed to generate credal partitions:

1. The EVCLUS algorithm, introduced in [8], applies ideas from Multidi-
mensional Scaling (MDS) [4] to clustering: given a dissimilarity matrix,
it finds a credal partition such that the degrees of conflict between mass
functions match the dissimilarities, dissimilar objects being represented
by highly conflicting mass functions; this is achieved by iteratively mini-
mizing a stress function. A variant of EVCLUS allowing one to use prior
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knowledge in the form of pairwise constraints was later introduced in [1],
and several improvements to the original algorithm making it capable of
handling large dissimilarity datasets have been reported in [9].

2. The Evidential c-means (ECM) algorithm [15] is a c-means-like algorithm
that minimizes a cost function by searching alternatively the space of pro-
totypes and the space of credal partitions. Unlike the hard and fuzzy c-
means algorithms, ECM associates a prototype not only to clusters, but
also to sets of clusters. The prototype associated to a set of clusters is
defined as the barycenter of the prototypes of each single cluster in the
set. The cost function to be minimized insures that objects close to a
prototype have a high mass assigned to the corresponding set of clusters.
A variant with adaptive metrics and pairwise constraints was introduced
in [2], and a relational version for dissimilarity data (called RECM) has
been proposed in [16].

3. The Ek-NNclus algorithm [7] is a decision-directed clustering procedure
based on the evidential k-nearest neighbor (EK-NN) rule [6]. Starting
from an initial partition, the algorithm iteratively reassigns objects to
clusters using the EK-NN rule, until a stable partition is obtained. Af-
ter convergence, the cluster membership of each object is described by a
Dempster-Shafer mass function assigning a mass to each cluster and to
the whole set of clusters. The mass assigned to the set of clusters can be
used to identify outliers. The procedure can be seen as searching for the
most plausible partition of the data.

Each of these three algorithms have their strengths and limitations, and the
choice of an algorithm depends on the problem at hand. Both ECM and EK-
NN are very efficient for handling attribute data. EK-NN has the additional
advantage that it can determine the number of clusters automatically, while
EVCLUS and ECM produce more informative outputs (with masses assigned
to any subsets of clusters). EVCLUS was shown to be very effective for dealing
with non metric dissimilarity data, and the recent improvements reported
in [9] make it suitable to handle very large datasets.

3 Relationships with other clustering paradigms

In this section, we discuss the relationships between the notion of credal parti-
tion and other clustering structures. In Section 3.1, we show that hard, fuzzy,
possibilistic and rough partitions are all special kinds of credal partitions. In
Section 3.2, we describe how a general credal partition can be summarized
in the form of any of the simpler structures mentioned previously.
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3.1 Generality of the notion of credal partition

The notion of credal partition is very general, in the sense that it boils down to
several alternative clustering structures when the mass functions composing
the credal partition have some special forms (see Figure 2).
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Fig. 2 Relationship between credal partitions and other clustering structures.

Hard partition: If all mass functions mi are certain (i.e., have a single focal
set, which is a singleton), then we have a hard partition, with uik = 1 if
mi({ωk}) = 1, and uik = 0 otherwise.

Fuzzy partition: If the mi are Bayesian (i.e., they assign masses only to
singletons, in which case the corresponding belief function becomes addi-
tive), then the credal partition is equivalent to a fuzzy partition; the degree
of membership of object i to cluster k is uik = mi({ωk}).

Fuzzy partition with a noise cluster: A mass function m such that each fo-
cal set is either a singleton, or the empty set may be called an unnormal-
ized Bayesian mass function. If each mass function mi is unnormalized
Bayesian, then we can define, as before, the membership degree of object
i to cluster k a uik = mi({ωk}), but we now have

∑c
k=1 uik ≤ 1, for

i = 1, . . . , n. We then have mi(∅) = ui∗ = 1 −
∑c
k=1 uik, which can be

interpreted as the degree of membership to a “noise cluster” [5].
Possibilistic partition: If the mass functions mi are consonant (i.e., if their

focal sets are nested), then they are uniquely described by their contour
functions

pli(ωk) =
∑

A⊆Ω,ωk∈A

mi(A), (1)
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which are possibility distributions. We then have a possibilistic partition,
with uik = pli(ωk) for all i and k. We note that maxk pli(ωk) = 1−mi(∅).

Rough partition: Assume that each mi is logical, i.e., we have mi(Ai) = 1
for some Ai ⊆ Ω, Ai 6= ∅. We can then define the lower approximation of
cluster ωk as the set of objects that surely belong to ωk,

ωLk = {oi ∈ O|Ai = {ωk}}, (2)

and the upper approximation of cluster ωk as the set of objects that pos-
sibility belong to ωk,

ωUk = {oi ∈ O|ωk ∈ Ai}. (3)

The membership values to the lower and upper approximations of cluster
ωk are then, respectively, uik = Beli({ωk}) and uik = Pli({ωk}). If we
allow Ai = ∅ for some i, then we have uik = 0 for all k, which means that
object oi does not belong to the upper approximation of any cluster.

3.2 Summarization of a credal partition

A credal partition is a quite complex clustering structure, which often needs
to be summarized in some way to become interpretable by the user. This can
be achieved by transforming each of the mass functions in the credal partition
into a simpler representation. Depending on the representation used, each of
clustering structures mentioned in Section 3.1 can be recovered as different
partial views of a credal partition. Some of the relevant transformations are
discussed below.

Fuzzy and hard partitions: A fuzzy partition can be obtained by transform-
ing each mass function mi into a probability distribution pi using the
plausibility-probability transformation defined as

pi(ωk) =
pli(ωk)∑c
`=1 pli(ω`)

, k = 1, . . . , c, (4)

where pli is the contour function associated to mi, given by (1). By select-
ing, for each object, the cluster with maximum probability, we then get a
hard partition.

Fuzzy partition with noise cluster: In the plausibility-probability transfor-
mation (4), the information contained in the masses mi(∅) assigned to
the empty set is lost. However, this information may be important if the
dataset contains outliers. To keep track of it, we can define an unnor-
malized plausibility transformation as πi(ωk) = (1 − mi(∅))pi(ωk), for
k = 1, . . . , c. The degree of membership of each object i to cluster k can
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then be defined as uik = πi(ωk) and the degree of membership to the noise
cluster as ui∗ = mi(∅).

Possibilistic partition: A possibilistic partition can be obtained from a
credal partition by computing a consonant approximation of each of the
mass functions mi [10]. The simplest approach is to approximate mi by the
consonant mass function with the same contour function, in which case the
degree of possibility of object oi belonging to cluster ωk is uik = pli(ωk).

Rough partition: As explained in Section 3.1, a credal partition becomes
equivalent to a rough partition when all mass functions mi are logical. A
general credal partition can thus be transformed into a rough partition by
deriving a set Ai of clusters from each mass function mi. This can be done
either by selecting the focal set Amax = arg maxA⊆Ωm(A) with maximum
mass as suggested in [15], or by the interval dominance decision rule

A∗(mi) = {ω ∈ Ω|∀ω′ ∈ Ω, pl∗i (ω) ≥ m∗i ({ω′})}, (5)

where pl∗i and m∗i are defined, respectively, by pl∗i = pli/(1 −mi(∅)) and
m∗i = mi/(1 − mi(∅)). If the interval dominance rule is used, we may
account for the mass assigned to the empty set by defining Ai as follows,

Ai =

{
∅ if mi(∅) = maxA⊆Ωmi(A)

A∗(mi) otherwise.
(6)

4 Conclusions

The notion of credal partition, as well as its relationships with alternative
clustering paradigms have been reviewed. Basically, each of the alternative
partitional clustering structures (i.e., hard, fuzzy, possibilistic and rough par-
titions) correspond to a special form of the mass functions within a credal
partition. We have also examined different ways in which a credal partition
can be transformed into a simpler clustering structure for easier interpre-
tation. As they build more complex clustering structures, credal clustering
algorithms such as EVCLUS and ECM tend to be more computationally de-
manding than alternative algorithms. This issue can be dealt with by using
efficient optimization algorithms and by restricting the form of the credal par-
tition, making it possible to apply evidential clustering to large datasets with
large numbers of clusters. First results along these lines have been reported
in [9].
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