
HAL Id: hal-01397977
https://hal.science/hal-01397977

Submitted on 16 Nov 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Identification of Elastic Properties Based on Belief
Function Inference

Liqi Sui, Pierre Feissel, Thierry Denoeux

To cite this version:
Liqi Sui, Pierre Feissel, Thierry Denoeux. Identification of Elastic Properties Based on Belief Func-
tion Inference. Fourth International Conference Belief Functions: Theory and Applications (BE-
LIEF 2016), Sep 2016, Prague, Czech Republic. pp.182-189, �10.1007/978-3-319-45559-4_19�. �hal-
01397977�

https://hal.science/hal-01397977
https://hal.archives-ouvertes.fr


Identification of Elastic Properties Based on

Belief Function Inference

Liqi Sui1, Pierre Feissel1, and Thierry Denœux2

1 UMR CNRS 7337, Laboratoire Roberval, Université de Technologie de Compiègne,
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Abstract. In this paper, we consider parameter identification from mea-
surement fields in an uncertain environment. An approach based on the
theory of belief functions is developed to take into account all possi-
ble sources of information. Information from measurements is described
through likelihood-based belief functions, while consonant random sets
are used to handle prior information on the model parameters. Next, we
construct the posterior random set by combining measurement and prior
information using Dempster’s rule. To summarize the posterior random
sets, we propose to find the minimal-area region in the parameter space,
whose belief and plausibility values exceed given thresholds. This ap-
proach was applied to identify the elastic properties of a 2D plate from
a measured kinematic field.
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1 Introduction

In recent years, full field measurements (e.g., kinematic fields) have been in-
creasingly used for the characterization of the mechanical behavior of materials
and structures. They allow one to tackle the challenge of identification from
heterogeneous tests thanks to their very rich information contents. However,
the measurements are always uncertain and the identification problems can be
ill-posed. A way to solve this problem is to take advantage of available prior
information. Nevertheless, similarly to measurement information, prior informa-
tion is also tainted with uncertainty. Furthermore, measurement uncertainty and
prior information uncertainty have different natures. Measurement uncertainty
can be considered as aleatory, whereas prior information uncertainty is epistemic
[1] [2]. The uncertainty on prior information can be represented by various ap-
proaches, such as intervals [3], possibility theory[4], or imprecise probability[5].
We aim at proposing a unified framework to describe all uncertainties, and a
strategy to propagate them.
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This paper focuses on developing a method to identify material parameters
from kinematic fields. There are two challenges: firstly, taking into account both
measurement and prior information; secondly, quantifying the different kinds
of uncertainty and propagating them through models. Belief function theory,
also referred to as Evidence theory [6] [7] [8], offers a suitable framework to en-
code and quantify both epistemic and aleatory uncertainty. Moreover it includes
a comprehensive information merging mechanism for combination and condi-
tioning. Some previous studies using belief function theory have focused on the
conversion of available information and the propagation of uncertainty through
mechanical models [9] [10]. However, very few studies have been devoted to han-
dling uncertainty in identification based on belief functions. In this paper, we
explore the possibility of using belief functions theory to quantify uncertainty in
identification.

2 Identification strategy

We consider the identification of elastic parameters of a 2D body (plain stress)
under loading based on displacement field data. The body shown in Figure 1 is
considered as a 2D domain Ω. The main unknowns are the material parameters
collected in θ; the stress field σ and the displacement field u are secondary
unknowns.

Ω

Ωm

∂f

∂uΩ

Ω

Fig. 1. Mechanical model for identification.

We sum up the equation corresponding to the available information as fol-
lows:

– On Ω:

Equilibrium: divσ = 0, (1)

Constitutive equation: σ = C(θ)ε with ε =
1

2
(∇u +∇Tu), (2)

where u, ε and σ are, respectively, the displacement, strain and stress fields;
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– On ∂uΩ: u = ud, where ud is a known Dirichlet boundary condition;
– On ∂fΩ: σ · n = fs, where fs is a known Neumann boundary condition;
– On Ωm: u = ũ. The displacement is measured in Ωm ⊂ Ω.

We consider the simple case where ∂uΩ ∪ ∂fΩ = ∂Ω and ∂uΩ ∩ ∂fΩ = ∅. The
purpose of the identification is to find the elastic parameters θ that are com-
patible with the above equations, taking into account uncertainty. The available
information can be split into three categories:

– Theoretical information, which is considered as reliable and deterministic.
We substitute Eq. (2) into Eq. (1) and obtain an implicit function about u
and θ: g(u, θ) = 0. Considering the boundary conditions, a well-posed direct
problem, whose solution is denoted u = u(θ) for any given θ, can then be
defined.

– Experimental information, with mainly aleatory uncertainty. Hence the dis-
placement measurement can be written as

ũ = u(θ) + e, (3)

where e is the measurement error.
– Background information corresponding to prior knowledge on θ; it is tainted

with epistemic uncertainty.

In the following, we will use belief functions and random sets to model un-
certainty. Considering a probability space (Ω, σΩ , P ), a non-empty set Θ, its
power set 2Θ and a strongly measurable multi-valued mapping Γ : Ω −→ 2Θ, Γ
is a random set. For all A ⊆ Θ, the uncertainty of the proposition θ ∈ A can
be quantified by belief and plausibility function [6] [11]:

Bel(A) = P ({ω ∈ Ω|Γ (ω) ⊆ A, Γ (ω) 6= ∅}), (4)

Pl(A) = P ({ω ∈ Ω|Γ (ω) ∩A 6= ∅}). (5)

Bel(A) is interpreted as the degree of support in the proposition θ ∈ A, while
Pl(A) measures the lack of support in the proposition θ 6∈ A. The contour
function pl : Θ → [0, 1] is defined as

pl(θ) = Pl({θ}) for all θ ∈ Θ. (6)

2.1 Measurement information

The measurement ũ is assumed to be known with some aleatory uncertainty
(see Eq. (3)). The error is assumed to be a random Gaussian noise, with known
covariance e ∼ N (0,D). Based on [6] [8], the uncertainty about θ is represented
by a consonant likelihood-based belief function, whose contour function equals
the normalized likelihood function:

pl(θ; ũ) =
L(θ; ũ)

sup
θ
L(θ; ũ)

, (7)
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where L(θ; ũ) is the likelihood function,

L(θ; ũ) = (2π detD)−1/2 exp

[
−
1

2
(u(θ)− ũ)TD−1(u(θ)− ũ)

]
. (8)

The contour function pl(θ; ũ) in Eq. (7) is normalized. It is equivalent to a
possibility distribution, and corresponds to a consonant random set.

2.2 Prior information

Prior information with epistemic uncertainty is represented by a possibility dis-
tribution π(θ), which induces the consonant random set

Γ (ω) = {θ ∈ Θ|π(θ) ≥ ω}. (9)

The consonant random set shown in Fig. 2 expresses an expert opinion about
θ: values of θ outside interval [a, d] are considered as impossible, while values
inside interval [b, c] are considered as fully possible. Indeed, Γ (ω) ⊆ [a, d] and
[b, c] ⊆ Γ (ω) for any ω ∈ [0, 1]. In this paper, we assume that ω ∼ U [0, 1].

Moreover, in the framework of belief function theory, the discounting oper-
ation allows us to express the degree of confidence in a source of information.
Assume, for instance, that an expert uses the possibility distribution of Fig. 2 to
represent their opinion about a parameter, and we have a degree of confidence
mΘ ∈ [0, 1] in this opinion. We can then assign the value mΘ to the whole
set Θ, i.e., P ({ω ∈ Ω|Γ (ω) = Θ}) = mΘ. When mΘ = 0, we fully trust the
expert’s opinion; when mΘ = 1, we totally doubt it. The discounted possibility
distribution is shown in Fig. 3. We notice that it has an infinite support.

1

Γ(ω)

U(ω)

ω

V(ω)

θ

π(θ)

a dcb

Fig. 2. Possibility distribution

1

θ

π(θ)

a dcb

1-mΘ

mΘ

Fig. 3. Discounted Possibility distribution

2.3 Dempster’s rule

Measurement and prior information typically induce two random sets repre-
sented by possibility distributions. Aggregation of information from multiple
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sources is an important step in the modeling of uncertainty. Dempster’s rule [6]
is a combination mechanism in belief function theory. This rule is often used
to combine belief functions defined on finite sets. Here, we reformulate it in
the infinite setting. Consider two random sets (Ωk, σΩk

, Pk, Γk), k = 1, 2. Let
Ω = Ω1 × Ω2 be the product space, P = P1 ⊗ P2 the product measure on
σΩ = σΩ1

⊗ σΩ2
, and Γp the multi-valued mapping defined by: ∀(ω1, ω2) ∈ Ωp,

Γp(ω1, ω2) = Γ1(ω1) ∩ Γ2(ω2). The combined random set is (Ω, σΩ , P, Γp). It
induces the following belief and plausibility functions: for any A ⊂ Θ,

Bel(A) =
P ({(ω1, ω2) ∈ Ω|Γp(ω1, ω2) ⊆ A, Γp(ω1, ω2) 6= ∅})

P ({(ω1, ω2) ∈ Ω|Γp(ω1, ω2) 6= ∅})
, (10)

Pl(A) =
P ({(ω1, ω2) ∈ Ω|Γp(ω1, ω2) ∩A 6= ∅})

P ({(ω1, ω2) ∈ Ω|Γp(ω1, ω2) 6= ∅})
. (11)

The degree of conflict is:

k = P ({(ω1, ω2) ∈ Ω|Γp(ω1, ω2) = ∅}). (12)

It is a measure of the compatibility between the two sources of information.

3 Numerical implementation and posterior exploration

In this paper, we use Monte Carlo simulation to implement Dempster’s rule
for combining information. Considering two possibility distributions π1(θ) and
π2(θ), we can draw (ω1, ω2) uniformly from [0, 1]2 and cut the two possibility
distributions, respectively, at levels ω1 and ω2. Then we intersect the two ω-
level cuts. After iterating the above process a large number of times, we obtain
a collection of subsets or domains with irregular shapes. Therefore, we need a
strategy to describe domains of arbitrary shape. Here, we propose to describe
a subset using a cloud of points generated by a Halton sequence [12]. For each
domain, the value at any point is 1 if the point is inside this domain, and 0
otherwise. Such a description is suitable for Boolean operations as required by
Dempster’s rule.

After merging information, we obtain a collection of posterior subsets that
need to be exploited. The contour function pl(θ) is an easy and direct way
to summarize information. The greatest pl(θ) value corresponds to the most
possible θ. Consequently Eq. (13) can serve as a point identification method:

θ̂ = argmax pl(θ). (13)

For further exploitation of posterior random sets, we search for a minimal
subset R ⊆ Θ such that Pl(R) and Bel(R) are larger than threshold values
δPl and δBel. Formally, we need to solve the following constrained minimization
problem:

R̂ = arg min
R⊆Θ

V (R), (14)
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such that {
Pl(R) ≥ δPl

Bel(R) ≥ δBel
,

where V (R) is the area or volume of R.

4 Application

In this section, we present as a numerical example the identification of the Lamé
coefficients θ = {λ, µ} describing the elastic properties of a 2D plate from a
tensile test. The measurement is the displacement field on the whole plate and
the applied traction. It was created based on a reference finite element calculation
with reference value {λ, µ} = {1, 1} and adding a 5% Gaussian noise to represent
the measurement error.

The prior information, which comes from expert opinions, was expressed by
possibility distributions. In order to check the performance of this approach, two
scenarios were considered: in the first scenario, the expert possibility distribu-
tions are close to the reference values; in the second scenario, they are far from
the reference values. We assumed a 80% degree of confidence in the expert opin-
ions in both scenarios. The possibility distributions considered in both scenarios
are shown in Fig. 4.
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Fig. 4. Prior information on λ (a) and µ (b).

Based on the discussion in Section 2.3, we used Dempster’s rule to combine
the information. After computing the ω-level cuts of the two distributions and
intersecting the random sets, we obtained a posterior random set. The degrees
of conflict in scenarios 1 and 2 were, respectively, k̂1 = 0.3867 and k̂2 = 0.7996.
If the degree of conflict k is too large, at least one source is likely to provide
wrong information.

The estimator p̂l(θ) of the contour function is shown in Fig. 5. The value θmax

with maximum plausibility can be used as a point estimator. For scenario 1, we
obtained θmax = {0.943, 0.939}; for scenario 2, θmax = {0.935, 0.937}. Thanks
to the discounting operation, the contour function keeps the same form as the
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Fig. 5. Contour function p̂l(θ): (a) scenarios 1; (b) scenarios 2.
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Fig. 6. Minimal-area domains R̂: (a) scenario 1 (b) scenario 2
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possibility distribution from the measurement, even when the prior information
is inaccurate.

Lastly, we focussed on finding a minimum subset R with Pl(R) and Bel(R)
larger than given threshold values δBel and δPl. We set (1) δBel = 0.30 and
δPl = 0.95; (2) δBel = 0.25 and δPl = 0.95 (3) δBel = 0.25 and δPl = 0.90.

The obtained subsets R̂ for the two scenarios are shown in Fig. 6. It is clear
that the area of minimum subsets grows as thresholds δBel and δPl increase.
As compared to those in scenario 2, the minimal subsets in scenario 1 move
to top right because of the influence of prior information. In scenario 2, the
prior information does not affect the measurement information; consequently,
the minimal subsets reflect the form of the likelihood function.

5 Conclusion

In this paper, we have presented an identification strategy based on belief func-
tion theory. This approach allows for the representation and combination of
prior and measurement information. Point clouds were used to describe multi-
dimension random sets. Dempster’s rule was used to combine random sets from
prior and measurement information. Finally, posterior random sets were ob-
tained and explored. This approach makes it possible to encode and propagate
epistemic and aleatory uncertainty in a unified framework. The discounting op-
eration allows us to take into account the reliability of the sources of information;
as a result, inaccurate information only marginally affects measurement informa-
tion. The two functions Bel and Pl provide a rich description of the uncertainty
on model parameters, taking into account prior information. In the future, our
research will focus on accounting for uncertainty in mechanical models and on
the application of this approach to more complex structures.
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