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Abstract. In evidential clustering, the membership of objects to clus-
ters is considered to be uncertain and is represented by mass functions,
forming a credal partition. The EVCLUS algorithm constructs a credal
partition in such a way that larger dissimilarities between objects corre-
spond to higher degrees of conflict between the associated mass functions.
In this paper, we propose to replace the gradient-based optimization pro-
cedure in the original EVCLUS algorithm by a much faster iterative row-
wise quadratic programming method. We also show that EVCLUS can
be provided with only a random sample of the dissimilarities, reducing
the time and space complexity from quadratic to linear. These improve-
ments make EVCLUS suitable to cluster large dissimilarity datasets.

Keywords: Evidential clustering, Dempster-Shafer theory, evidence the-
ory, unsupervised learning.

1 Introduction

Evidential clustering extends both hard and fuzzy clustering by modeling cluster-
membership uncertainty using Dempster-Shafer mass functions. The collection
of mass functions for n objects is called a credal partition. The first evidential
clustering algorithm, called EVCLUS, was introduced in [4]. This algorithm con-
structs a credal partition from a dissimilarity matrix, in such a way that more
dissimilar objects are assigned mass functions with greater degrees of conflict.
This method was shown to perform as well as or better than other relational
clustering algorithms on a variety of datasets, even when the dissimilarities are
not Euclidean distances [4]. However, as other relational clustering algorithms,
EVCLUS requires to store the whole dissimilarity matrix; the space complexity
is thus O(n2), where n is the number of objects, which precludes application to
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datasets containing more than a few thousand objects. Also, each iteration of the
gradient-based optimization algorithm used in [4] requires O(f3n2) operations,
where f is the number of focal sets of the mass functions, i.e., the number of
subsets of clusters being considered. This computational complexity of EVCLUS
further restricts its use to relatively small datasets.

After EVCLUS, other evidential clustering algorithms were introduced. The
Evidential c-means algorithm (ECM) [7] is an evidential version of the hard and
fuzzy c-means; it is only applicable to attribute data. A version of ECM for
dissimilarity data (Relational Evidential c-means, RECM) was later proposed
in [8]. This algorithm is faster than EVCLUS, but it can fail to converge when
the dissimilarities are not Euclidean distances. In [11], Zhou et al. introduced
another variant of ECM, called the Median Evidential c-means (MECM), which
is an evidential counterpart to the median c-means and median fuzzy c-means
algorithms. MECM can be used with non-metric dissimilarity data. Yet, it still
requires to store the whole dissimilarity matrix. Recently, we introduced another
evidential clustering procedure, called EK-NNclus [3]. This method uses only
the k nearest neighbors of each object: it thus has lower storage requirements
than EVCLUS, RECM or MECM, and it is considerably faster. However, it can
generate only very simple credal partitions, in which masses are assigned only
to singletons {ωk} and to the set Ω of clusters.

In this paper, we propose two improvements of EVCLUS, which make it appli-
cable to very large dissimilarity datasets. First, the gradient-based optimization
procedure in the original EVCLUS algorithm is replaced by an adaptation of the
much faster iterative row-wise quadratic programming method proposed in [10].
Secondly, and even more importantly, we show that EVCLUS does not need to
be provided with the whole dissimilarity matrix, reducing the time and space
complexity from quadratic to roughly linear. The rest of this paper is organized
as follows. The basic notions of evidential clustering and the EVCLUS algorithm
will first be recalled in Section 2. The improvements to EVCLUS will then be
introduced in Section 3, and simulation results will be presented in Section 4.
Finally, Section 5 will conclude the paper.

2 Evidential Clustering

The notion of credal partition will first be recalled in Section 2.1. The EVCLUS
algorithm will then be summarized in Section 2.2.

2.1 Credal Partition

Assume that we have a set O = {o1, . . . , on} of n objects, each one belonging
to one and only one of c groups or clusters. Let Ω = {ω1, . . . , ωc} denote the
set of clusters. If we know for sure which cluster each object belongs to, we
can provide a partition of the n objects. Such a partition may be represented
by binary variables uik such that uik = 1 if object oi belongs to cluster ωk,
and uik = 0 otherwise. If objects cannot be assigned to clusters with certainty,
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then it is natural to quantify cluster-membership uncertainty by mass functions
m1, . . . ,mn, where each mass function mi is defined on Ω and describes the
uncertainty about the cluster of object i. The n-tuple M = (m1, . . . ,mn) is
called a credal partition [4]. The notion of credal partition is very general, in
the sense that it boils down to several alternative clustering structures when
the mass functions composing the credal partition have some special forms [2].
Hard, fuzzy, possibilistic and rough partitions may also be computed from a
credal partition as by-products [7, 2]. Recently, evidential clustering has been
successfully applied in various domains such as machine prognosis [9], medical
image processing [6] and analysis of social networks [11].

2.2 EVCLUS

The EVCLUS algorithm, introduced in [4], constructs a credal partition for dis-
similarity data. LetD = (dij) be an n×n dissimilarity matrix, where dij denotes
the dissimilarity between objects oi and oj . Dissimilarities may be distances com-
puted from attribute data, or they may be provided directly, in which case they
need not satisfy the axioms of a distance function. To derive a credal partition
M = (m1, . . . ,mn) fromD, we assume that the plausibility plij that two objects
oi and oj belong to the same class is a decreasing function of the dissimilarity
dij : the more similar are two objects, the more plausible it is that they belong
to the same cluster. Now, it can be shown [4] that the plausibility plij is equal
to 1 − κij , where κij is the degree of conflict between mi and mj . The credal
partition M should thus be determined in such a way that similar objects have
mass functions mi and mj with low degree of conflict, whereas highly dissimilar
objects are assigned highly conflicting mass functions. This can be achieved by
minimizing a stress function measuring the discrepancy between the pairwise
degrees of conflict and the dissimilarities, up to some increasing transformation.
Here, we consider the following stress function,

J(M) = η
∑
i<j

(κij − δij)2, (1)

where η =
(∑

i<j δ
2
ij

)−1

is a normalizing constant, and the δij = ϕ(dij) are

transformed dissimilarities, for some fixed increasing function ϕ from [0,+∞)
to [0, 1]. For instance, ϕ can be chosen as ϕ(d) = 1 − exp(−γd2), where γ is
a user-defined parameter. Parameter γ can be fixed as follows. For α ∈ (0, 1),
let d0 = ϕ−1(1 − α) be the dissimilarity value such that two objects whose
dissimilarity exceeds d0 have a plausibility at least equal to 1−α. For ϕ defined
as above, we have γ = − logα/d20. In the simulations presented in this paper, we
used α = 0.05, leaving d0 as the only parameter to be adjusted.

3 Improvements to EVCLUS

In this section, we introduce two improvements to the original EVCLUS algo-
rithm. First, in Section 3.1, we show that the special form of stress function (1)
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makes it possible to use an Iterative Row-wise Quadratic Programming (IRQP)
algorithm, such as introduced in [10] for latent-class clustering. In Section 3.2,
we then propose to use only a subset of the dissimilarities, allowing for a drastic
reduction in computing time.

3.1 Optimization algorithm

To simplify the presentation of the IRQP algorithm, let us rewrite (1) us-
ing matrix notations. Let us assume that the f focal sets F1, . . . , Ff of mass
functions m1, . . . ,mn have been ordered in some way. We can then represent
each mass function mi by a vector mi = (m1(F1), . . . ,mi(Ff ))T of length f .
The credal partition M = (m1, . . . ,mn) can then be represented by a matrix
M = (mT

1 , . . . ,m
T
n )T of size n × f . The degree of conflict between two mass

functions mi and mj can be written as κij = mT
i Cmj , where C is the square

matrix of size f , with general term Ck` = 1 if Fk∩F` = ∅ and Ck` = 1 otherwise.
With these notations, the stress function (1) can be written as

J(M) = η
∑
i<j

(mT
i Cmj − δij)2. (2)

In [4], we proposed to minimize J using a gradient-based algorithm. Another
approach, which better exploits the particular form of (1), is to minimize J(M)
with respect to each row of M at a time, keeping the other rows constant [10].
Minimizing J(M) with respect to mi is equivalent to minimizing

g(mi) = ‖M−iCmi − δi‖2, (3)

where M−i is the matrix obtained from M by deleting row i, and δi is the
vector of transformed dissimilarities δij between object oi and all other objects
oj , j 6= i. Minimizing g(mi) under the contraints mT

i 1 = 1 and mi ≥ 0 is a
linearly constrained positive least-squares problem, which can be solved using
efficient algorithms. By iteratively updating each row of M as described above,
as long as the overall function value decreases, the algorithm converges to a
stable function value, which is at least a local minimum.

3.2 kEVCLUS

As mentioned in Section 1, the O(n2) complexity of EVCLUS, where n is the
number of objects, makes it inapplicable to large dissimilarity data. The funda-
mental reason for this high complexity is the fact that the calculation of stress
criterion (1) requires the full dissimilarity matrix. However, there is usually some
redundancy in a dissimilarity matrix, even if the dissimilarity measure is not a
distance. In particular, if two objects o1 and o2 are very similar, then any object
o3 that is dissimilar from o1 is usually also dissimilar from o2. Because of such
redundancies, it might be possible to compute the differences between degrees of
conflict and dissimilarities, for only a subset of randomly sampled dissimilarities.
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More precisely, let j1(i), . . . , jk(i) be k integers sampled at random from the
set {1, . . . , i−1, i+1, . . . , n}, for i = 1, . . . , n. Let Jk the following stress criterion,

Jk(M) = η

n∑
i=1

k∑
r=1

(κi,jr(i) − δi,jr(i))
2, (4)

where, as before, η is a normalizing constant, η =
(∑

i,r δ
2
i,jr(i)

)−1

. Obviously,

J(M) is recovered as a special case when k = n − 1. However, in the general
case, the calculation of Jk(M) requires only O(nk) operations. If k can be kept
constant as n increases, or, at least, if k increases slower than linearly with n, then
significant gains in computing time and storage requirement could be achieved. In
the experiments below, we show that this version of EVCLUS (hereafter referred
to as k-EVCLUS) is more scalable than the original version, and applicable to
large dissimilarity datasets.

4 Experiments

In this section, we first report some results showing the superiority of IRQP over
the gradient-based optimization procedure in Section 4.1. Experiments with k-
EVCLUS are then reported in Section 4.2. For all the experiments reported in
this section, we used the version of EVCLUS with the empty set ∅, the singletons
{ωk}, and Ω as focal sets. The k-EVCLUS algorithm, as well as other evidential
clustering procedures, has been implemented in the R package4 evclust [1].

4.1 Comparison between IRQP and gradient-based optimization

The Protein dataset [4] consists of a dissimilarity matrix derived from the struc-
tural comparison of 213 protein sequences. Each of these proteins is known to
belong to one of four classes of globins. We ran the Gradient and IRQP algo-
rithms on the Protein dataset with c = 4, and parameter d0 set to the largest
dissimilarity value. Both algorithms were run 20 times from 20 random initial
values. In each run, both algorithms were started from the same initial condi-
tions. Figure 1, which shows boxplots of the stress values at convergence and
computing times, for both algorithms. We can see that, on this data, the IRQP
algorithm converges more than 10 times faster than the Gradient algorithm.
The stress values at convergence for IRQP also have lower variability and are
consistently smaller than those obtained by the Gradient algorithm.

4.2 Evaluation of k-EVCLUS

In this section, we report experiments with artificial datasets composed of four
clusters of n/4 two-dimensional vectors, generated from a multivariate t distribu-
tion with five degrees of freedom and centered, respectively, on [0, 0], [0, 5], [5, 0]

4 Available from the CRAN web site at https://cran.r-project.org/web/packages.
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Fig. 1. Boxplots of computing time (a) and stress value at convergence (b) for 20 runs
of the Gradient and IRQP algorithms on the Protein data.

and [5, 5]. The dissimilarities were computed as the Euclidean distances between
the data points. Algorithm k-EVCLUS was run with d0 equal to the 0.9-quantile
of distances and c = 4. Figure 2 shows the Adjusted Rand Index (ARI) and com-
puting time5 as functions of k for a simulated dataset with n = 2000. The ARI
was computed after transforming the credal partition into a hard partition by
selecting, for each object, the cluster with the largest plausibility. The values of
k were chosen as 10, 20, 50, 100, 200, 500 and 1999. When k = 1999 = n−1, the
whole distance matrix is used, and k-EVCLUS boils down to EVCLUS. As we
can see, k-EVCLUS performs as well as EVCLUS (k = 1999) according to the
ARI (Figures 2(a)), as long as k ≥ 100, with a significant gain in training time
(Figure 2(b)). We observe that the computing time is higher for k = 10 than
it is for k = 20, which is due to the fact that the algorithm took more time to
converge for k = 10.

To compare k-EVCLUS with RECM and EK-NN on this clustering problem,
we let n vary in from 1000 to 5000 (by 1000 increments), and we generated 10
datasets of each size, from the same distribution. We then recorded the comput-
ing times and ARI values for for k-EVCLUS (with k = 100 and d0 equal to the
0.9-quantile of the distances), RECM (with the same parameters as above), and
EK-NNclus with K = 3

√
n and q = 0.95. The results are reported in Figure 3.

From Figure 3(a), we can see that k-EVCLUS and EK-NNclus are comparable
in terms of computing time for different values of n, whereas the time complexity
of RECM seems to be considerably higher. On the other hand, k-EVCLUS and
RECM yield comparable results in terms of ARI (see Figure 3(b)), whereas the

5 All simulations reported in this paper were performed on an Apple MacBook Pro
computer with a 2.5 GHz Intel Core i7 processor.
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Fig. 2. Adjusted Rand Index (a) and computing time (b) of k-EVCLUS as a function
of k, as a function of k, for the simulated data with n = 2000. The error bars show the
median as well as the lower and upper quartiles over 10 runs of the algorithm.

partitions obtained by EK-NNclus have higher variability. It must be noticed
that the number c of clusters is specified for k-EVCLUS and RECM, but it is
not for EK-NNclus. Overall, k-EVCLUS seems to provide the best results (for
correctly specified c) in the least amount of time. More extensive results with
several synthetic and real datasets are reported in [5].

5 Conclusions

In its original version, EVCLUS was significantly slower than more recently
introduced relational evidential clustering algorithms such as RECM and EK-
NNclus. Also, it was limited to datasets of a few thousand objects, due to the
necessity to store the whole dissimilarity matrix. In this paper, we have been
able to overcome these limitations, thanks to two major improvements. First,
the original gradient algorithm has been replaced by a much more efficient iter-
ative row-wise quadratic programming procedure, which exploits the particular
structure of the optimization problem. Secondly, we have shown that we only
need to supply EVCLUS with the dissimilarities between each object and k ran-
domly selected objects, reducing the space complexity from O(n2) to O(kn). The
improvements described in this paper make EVCLUS potentially applicable to
large dissimilarity data, with of the order of 104 or even 105 objects. Analyzing
even larger datasets (with millions of objects, as arising in social network stud-
ies, for instance), would probably require to sample the rows of the dissimilarity
matrix. This issue requires further investigation.
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Fig. 3. Computing time (a) and ARI (b) for k-EVCLUS, RECM and EKNNclus for
simulated datasets with different values of n.

References

1. T. Denœux. evclust: Evidential Clustering, 2016. R package version 1.0.2.
2. T. Denoeux and O. Kanjanatarakul. Beyond fuzzy, possibilistic and rough: An

investigation of belief functions in clustering. In 8th International Conference on
Soft Methods in Probability and Statistics (SMPS 2016), Rome, Italy, Sept. 2016.

3. T. Denœux, O. Kanjanatarakul, and S. Sriboonchitta. EK-NNclus: a clustering
procedure based on the evidential k-nearest neighbor rule. Knowledge-based Sys-
tems, 88:57–69, 2015.

4. T. Denœux and M.-H. Masson. EVCLUS: Evidential clustering of proximity data.
IEEE Trans. on Systems, Man and Cybernetics B, 34(1):95–109, 2004.

5. T. Denœux, S. Sriboonchitta, and O. Kanjanatarakul. Evidential clustering of
large dissimilarity data. Knowledge-based Systems, 106:179–195, 2016.

6. B. Lelandais, S. Ruan, T. Denœux, P. Vera, and I. Gardin. Fusion of multi-tracer
PET images for dose painting. Medical Image Analysis, 18(7):1247–1259, 2014.

7. M.-H. Masson and T. Denoeux. ECM: an evidential version of the fuzzy c-means
algorithm. Pattern Recognition, 41(4):1384–1397, 2008.

8. M.-H. Masson and T. Denœux. RECM: relational evidential c-means algorithm.
Pattern Recognition Letters, 30:1015–1026, 2009.

9. L. Serir, E. Ramasso, and N. Zerhouni. Evidential evolving Gustafson-Kessel al-
gorithm for online data streams partitioning using belief function theory. Interna-
tional Journal of Approximate Reasoning, 53(5):747–768, 2012.

10. C. J. ter Braak, Y. Kourmpetis, H. A. Kiers, and M. C. Bink. Approximating a
similarity matrix by a latent class model: A reappraisal of additive fuzzy clustering.
Computational Statistics & Data Analysis, 53(8):3183–3193, 2009.

11. K. Zhou, A. Martin, Q. Pan, and Z.-G. Liu. Median evidential c-means algorithm
and its application to community detection. Knowledge-Based Systems, 74(0):69–
88, 2015.


