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CHERN CLASSES IN DELIGNE COHOMOLOGY FOR COHERENT ANALYTIC

SHEAVES

JULIEN GRIVAUX

Abstract. In this article, we construct Chern classes in rational Deligne cohomology for coherent
sheaves on a smooth complex compact manifold. We prove that these classes satisfy the functorial-
ity property under pullbacks, the Whitney formula and the Grothendieck-Riemann-Roch theorem for
projective morphisms between smooth complex compact manifolds.

1. Introduction

Let X be a smooth differentiable manifold and E be a complex vector bundle of rank r on X . By the
Leray-Hirsch theorem, if ξ = c1(OE(1)) ∈ H2(P(E), Z), then H ∗(P(E), Z) is a free module over H ∗(X, Z)
with basis 1, ξ, . . . , ξr−1. The topological Chern classes ci(E) ∈ H2i(X, Z) are defined by the relation

ξr + π ∗c1(E)ξr−1 + · · · + π ∗cr(E) = 0,

where π :P(E) //X is the canonical projection.

This method produces Chern classes in many contexts, provided that the first Chern class is already
defined and that there is a structure theorem for the cohomology of a projective bundle (see [Gro]).
Under mild assumptions on the cohomology ring (Axioms A in Section 2.1), the total Chern class c(E) =
1 + c1(E) + · · · + cr(E) is functorial by pullback and multiplicative under exact sequences.

If X is a smooth projective variety over C and E is an algebraic vector bundle on X , the classes ci(E)
in CHi(X) are obtained by this construction. If F is an algebraic coherent sheaf on X , there exists a
resolution

0 // E1
// · · · // EN

// F // 0

by locally free sheaves. The total Chern class c(F) is defined by c(F) = c(EN ) c(EN−1)
−1c(EN−2) . . . and

is independent from the chosen resolution ([Bo-Se]). Therefore the theory of Chern classes for coherent
sheaves on smooth projective manifolds is a purely formal consequence of the theory for locally free
sheaves.

Although locally free resolutions exist for coherent sheaves on curves and complex surfaces ([Sch]), this
is no longer true for higher-dimensional complex manifolds, as shown by Voisin:

Theorem [Vo2] On any generic complex torus of dimension greater than 3, the ideal sheaf of a point
does not admit a global locally free resolution.

The classical approach fails due to the lack of global resolutions. Nevertheless, some constructions have
been carried out in specific cohomology rings:

– The integer cohomology ring H ∗(X, Z). This is done by the Grauert vanishing theorem [Gra]
using real analytic locally free resolutions instead of holomorphic ones.

– The Dolbeault cohomology ring ⊕i Hi(X, Ωi
X). This has been done in [At] using extension classes.

– Atiyah’s method has been generalized in [Gre] using results of [Bott]. It produces Chern classes

in the analytic de Rham cohomology ring ⊕i Hi(X, Ω•>i
X ) (see [To-To]).
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In this article, our aim is to construct Chern classes for coherent analytic sheaves on a smooth complex
compact manifold with values in cohomology theories satisfying specific axioms. These cohomology
theories are Q-vector spaces, so that we do not take account of torsion phenomena.

Our main result is the following:

Theorem 1.1. Let X �
// A(X) be a cohomology theory for smooth complex manifolds which satisfies

Axioms B of Section 2.1. If X is compact and G(X) is the Grotendieck ring of coherent sheaves on X,

we can define a Chern character ch:G(X) //A(X) such that

(i) ch is functorial by pullback under holomorphic maps.

(ii) ch is an extension of the usual Chern character for locally free sheaves.

(iii) The Grothendieck-Riemann-Roch theorem holds for projective morphisms between smooth complex

compact manifolds.

Our method produces a complete caracterization of a theory of Chern classes:

Theorem 1.2. Let X �
// A(X) be a cohomology theory on smooth complex compact manifolds which

satisfies Axioms C in Section 2.1. Let ch, ch′ :G(X) //A(X) be two group morphisms such that

(i) ch and ch′ are functorial by pullback under holomorphic maps.

(ii) For every line bundle L, ch(L) = ch′(L).
(iii) ch and ch′ verify the Grothendieck-Riemann-Roch theorem for smooth immersions.

Then ch = ch′.

As an application of these results, we obtain a Chern character for coherent sheaves with values in the
rational Deligne cohomology ring A(X) = ⊕i H2i

D (X, Q(i)) satisfying the Grothendieck-Riemann-Roch
theorem for projective morphisms. These classes are compatible with the topological and Atiyah Chern
classes. The compatibility with the Green Chern classes remains unknown in the non Kähler case (see
Section 5.2).

Our construction of the Chern character (Theorem 1.1) is achieved by induction on dimX in Section 3.
The case of torsion sheaves is settled by the Grothendieck-Riemann-Roch theorem if F is supported in a
smooth hypersurface. Then we reduce the general case to the former one by dévissage and blowups. For
sheaves of positive generic rank, we can suppose after taking a bimeromorphic model of X that F/Ftor

is locally free. This is the key property to define ch(F) for arbitrary coherent sheaves. In Section 4, we
prove that the Chern character constructed in Section 3 is additive under short exact sequences. This is
done by deformation of the extension class after several simplifications obtained by blowups. In Section
5, we prove the Grothendieck-Riemann-Roch theorem for arbitrary projective morphisms. Then we prove
Theorem 1.2 and discuss compatibility results. The axiomatic setup for cohomology rings is explained in
Section 2 and will be used throughout the article.

Acknowledgement. I wish to thank Claire Voisin for introducing me to this beautiful subject and for
many helpful discussions. I also thank Pierre Schapira for enlightening conversations.

2. Cohomology theories and Chern classes for locally free sheaves

2.1. Axiomatic cohomology theory. In this section we introduce three sets of axioms for an arbitrary
cohomology ring on smooth complex manifolds. We assume to be given for each smooth complex manifold

X a graded commutative cohomology ring A(X) = ⊕
∑dim X

i=0 Ai(X) which is an algebra over Q ⊂ A0(X).

Axioms A

(i) For each holomorphic map f :X //Y , there is a pull-back morphism f ∗ :A ∗(Y ) //A ∗(X) which

is functorial and compatible with the products and the gradings.

(ii) A functorial group morphism c1 :Pic(X) //A1(X) is given.
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(iii) If E is a holomorphic vector bundle of rank r on X , then A(P(E)) is a free module over A(X)
with basis 1, c1(OE(1)), . . . , c1(OE(1))r−1.

(iv) If X is covered by two open sets U and V , then the product map

ker
(
A(X) // A(U)

)
⊗Q ker

(
A(X) // A(V )

)
// A(X) identically vanishes.

Property (iii) implies the P1-homotopy principle: ∀t ∈ P1(C), j ∗
t :A ∗(X × P1) //A ∗(X × {t}) ≃ A ∗(X)

is independent from t.

If X �
// A(X) satisfies Axioms A, for every holomorphic vector bundle E on X it is possible to define

classes ci(E) ∈ Ai(X) by the relation ξr + π ∗c1(E) ξr−1 + · · · + π ∗cr(E) = 0, where π :P(E) //X is the

projection and ξ = c1(OX(1)) ∈ A1(P(E)). The classes ci(E) are clearly functorial by pullbacks under
holomorphic maps. The total Chern class of E is c(E) = 1 + c1(E) + · · · + cr(E). The property (iv)
assures that c(E ⊕ F ) = c(E)c(F ), which is the Whitney formula in the split case (see [Vo1, Ch.11 § 2]).
The general case can be reduced to the split case by deforming the extension class of the exact sequence.

Let us briefly recall the construction of the exponential Chern classes. The symmetric sums and the
Newton sums in the formal variables x1, . . . , xr are defined by:

r∏

i=1

(X + xi) =

r∑

i=0

σi(x1, . . . , xr)X
r−i, σk(x1, . . . , xr) = 0 if k > r ; Sk(x1, . . . , xr) =

1

k!
(xk

1 + · · · + xk
r ).

For all n > 0, there exist Pn, Qn ∈ Q[T1, . . . , Tn] characterized by the following identities: ∀ r, n ≥ 1,
if x = (x1, . . . , xr), Sn(x) = Pn(σ1(x), . . . , σn(x)) and σn(x) = Qn(S1(x), . . . , Sn(x)). The exponential

Chern classes chi(E) are defined by ch0(E) = rank(E) and chi(E) = Pi(c1(E), . . . , cn(E)) for 1 ≤ i ≤
dimX . The total exponential Chern class, also called Chern character, is ch(E) = ch0(E)+ · · ·+chn(E).
The morphism ch is additive under exact sequences. Furthermore, it satisfies the property ch(E ⊗ F ) =
ch(E) ch(F ). On the other hand, the usual Chern classes can be recovered from the exponential ones by
the relations c0(E) = 1 and ci(E) = Qi(ch1(E), . . . , chn(E)). The situation will remain exactly the same
for coherent sheaves, except that ch0(F) will be the generic rank of F .

In order to avoid confusions we will use from now on the notation ch instead of ch for locally free sheaves.

Axioms B

— Axioms A are satisfied.
— If f :X //Y is a proper holomorphic map of relative dimension d, there is a functorial Gysin morphism

f∗ :A ∗(X) //A∗−d(Y ) satisfying the following properties:

(i) The projection formula holds: ∀x ∈ A(X), ∀y ∈ A(Y ), f∗
(
x . f ∗ y

)
= f∗x . y.

(ii) Consider the following cartesian diagram, where p and q are the projections on the first factors:

Y × Z � �
iY ×Z

//

p

��

X × Z

q

��

Y
� �

iY

// X

Then q ∗iY ∗ = iY ×Z∗ p ∗.
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(iii) Consider the cartesian diagram, where Y and Z are compact and intersect transversally:

W
� �

iW/Y
//

_�

iW/Z

��

Y
_�

iY

��

Z � �

iZ

// X

Then i ∗Y iZ∗ = iW/Y ∗i
∗
W/Z .

(iv) Let f : X //Y be a surjective map between smooth complex compact manifolds, and let D be

a smooth hypersurface of Y such that f−1(D) is a simple normal crossing divisor. Let us write

f ∗D = m1D̃1 + · · · + mN D̃N . Let f i : D̃i
//D be the restriction of f to D̃i. Then

f ∗ iD∗ =
N∑

i=1

mi i
eDi∗

f i
∗.

(v) Let X be compact, smooth, and let Y be a smooth proper submanifold of codimension d of X .

Let X̃ be the blowup of X along Y , as shown in the following diagram,

E
j

//

q

��

X̃

p

��

Y
i

// X

and let N ∗
Y/X = i ∗

[
IY /

I2
Y

]
and N ∗

E/X = j ∗
[
IE/

I2
E

]
be the conormal bundles of Y and E in X

and X̃ respectively. Then
— the map p ∗ is injective,

— a class α ∈ A ∗(X̃) is in the image of p ∗ if and only if the class j ∗α is in the image of q ∗,
— if F is the excess conormal bundle of q defined by the exact sequence

0 // F // q ∗N ∗
Y/X

// N ∗
E/ eX

// 0,

we have the excess formula: ∀α ∈ A(Y ), p ∗ i∗ α = j∗
(
q ∗α cd−1(F

∗)
)
.

(vi) If Y is a smooth hypersurface of X , then ∀α ∈ A(Y ), i ∗Y iY ∗α = α . c1(NY/X).

(vii) The Hirzebruch-Riemann-Roch theorem holds for X = PN , F = O(i), i ∈ Z.

Remark 2.1. We do not impose purity properties as in other axiomatic cohomology theories (e.g. [Gi]).

Axioms C

(i) For each holomorphic map f :X //Y , there is a pull-back morphism f ∗ :A(Y ) //A(X) which is

functorial and compatible with the products and the gradings.
(ii) If σ is the blowup of a smooth complex compact manifold along a smooth proper submanifold,

then σ ∗ is injective.

(iii) If E is a holomorphic vector bundle on X and π : P(E) //X is the projection of the associated

projective bundle, then π ∗ is injective.
(iv) If X is a smooth complex compact manifold and Y is a smooth submanifold of codimension d,

then there is a Gysin morphism i∗ :A ∗(Y ) //A∗+d(X) .
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2.2. Deligne cohomology. If X is a smooth complex manifold, we can consider its Deligne cohomology
groups H2i

D (X, Z(i)) (see [Es-Vi]). This is one of the most refined cohomology theory known in the non-
algebraic context (in the non-Kähler case, a more refined one has been constructed in [Schw]). Our aim
in this section is to prove that Ai(X) = H2i

D (X, Q(i)) satisfies Axioms B. For the classical properties of
Deligne cohomology, we refer to [Es-Vi]. The construction of a Gysin morphism is sketched in [EZZ].

Proposition 2.2. If Ai(X) = H2i
D (X, Q(i)), then X

�
// A(X) satisfies Axioms B.

Proof. Axioms A are clearly satisfied (for (ii), remark that H2
D(X, Z(1)) = Pic(X)).

The formulae (iii) and (iv) are of the same type. Let us prove (iv). We will define first some notations: Let

Γ be the graph of iD :D //Y and Γi be the graph of i
eDi

: D̃i
//X. We define Γ′

i =
(
f i, id

)
∗

(
Γi

)
⊆ D×X .

We call p1 : D × Y //D and p2 : D × Y //Y the first and second projections. In the same manner,

we define the projections p′1 : D × X //D, p′2 : D × X //X, p′1,i : D̃i × X // D̃i, and p′2,i : D̃i × X //X.

We have (id, f) ∗{Γ} =
∑N

i=1 mi {Γ
′
i} (this can be seen using explicit description of the Bloch class,

see [Bl]). Then f ∗ iD∗ α = f ∗ p2∗

(
p ∗
1 α . {Γ}

)
= p′2∗(id, f) ∗

(
p ∗
1 α . {Γ}

)
=
∑N

i=1 mi p′2∗
(
p′1

∗α . {Γ′
i}
)

=∑N
i=1 mi p′2∗

(
p′1

∗α . (f i, id)∗{Γi}
)

=
∑N

i=1 mi p′2,i∗

(
p′1,i

∗f i
∗α . {Γi}

)
=
∑N

i=1 mi i
eDi∗

f i
∗ α, by (i), (ii)

and the projection formula.

In the case of étale cohomology, it is possible to assume in (vi) that α = 1 (see [SGA 5, Exposé VII, § 4]
and [SGA 4

1
2 , Cycle § 1.2]). Remark that this is no longer possible here, for there is no purity theorem

in Deligne cohomology.

We use the deformation to the normal cone (see [Fu, Ch.5 § 5.1], [LMS] and [SGA 5, Exposé VII § 9]).

Let MY/X be the blowup of X×P1 along Y ×{0}, X̃ be the blowup of X along Y , and M◦
Y/X = MY/X\X̃.

Then we have an injection F : Y × P1 //M0
Y/X over P1. We denote the inclusions NY/X

// M◦
Y/X and

Y // NY/X by j0 and i, the projections of
(
Y × P1

)
× M◦

Y/X (resp. Y × P1, resp.
(
Y × P1

)
× NY/X ,

resp. Y × NY/X) on its first and second factor by pr1 and pr2 (resp p̃r1 and p̃r2, resp. pr′1 and pr′2,

resp. pr′′1 and pr′′2). Besides, Γ ⊆ Y × P1 × M◦
Y/X is the graph of F and Γ′ ⊆ Y × NY/X is the graph of

i. Finally, Γ′′ =
(
i0, idN

Y/X

)
∗
Γ′ ⊆ Y × P1 × NY/X , where i0 : Y × {0} //Y × P1 is the injection of the

central fiber. Remark that pr′2 and pr′′2 are proper maps since Y is compact.

We have
(
i0, idN

Y/X

)
∗
{Γ′} = {Γ′′} and

(
idY ×P1 , j0

) ∗
{Γ} = {Γ′′}. Let γ = F∗

(
p̃r ∗

1 α
)
. Then, by

(ii) and the projection formula, j ∗
0 γ = j ∗

0 pr2∗
(
pr ∗

1 p̃r ∗
1 α . {Γ}

)
= pr′2∗

[(
idY ×P1, j0

) ∗(
pr ∗

1 p̃r ∗
1 α . {Γ}

)]
=

pr′2∗

[(
idY ×P1 , j0

) ∗
pr ∗

1 p̃r ∗
1 α . {Γ′′}

]
= pr′2∗

(
i0, idN

Y/X

)
∗

((
i0, idN

Y/X

) ∗ (
idY ×P1 , j0

) ∗
pr ∗1 p̃r ∗

1 α . {Γ′}
)

= pr′′2∗
(
pr′′1

∗α . {Γ′}
)

= i∗α. By the homotopy principle, the class F ∗γ|Y ×{t} is independent from t. If

t 6= 0, we have clearly F ∗γ|Y ×{t} = i ∗Y iY ∗α. For t = 0, F ∗γ|Y ×{0} = i ∗j ∗
0 γ = i ∗i∗α. Let π :NY/X

//Y be

the projection of NY/X on Y . Then α = i ∗π ∗α. Thus i ∗i∗α = i ∗i∗(i
∗π ∗α) = i ∗

(
π ∗α . {Y }

)
= α . i ∗{Y },

where {Y } is the cycle class of Y in NY/X . Thus i ∗{Y } = c1

(
NY/N

Y/X

)
= c1

(
NY/X

)
.

We can now prove (v). By dévissage, we have an isomorphism

H ∗
D(X) ⊕

d−1⊕
i=1

H ∗
D(Y ) // H ∗

D(X̃)

(
x, (yi)1≤i≤d−1

) �
// p ∗x +

d−1∑

i=1

j∗

[
yi c1

(
ON

Y/X
(−1)

)i−1
]
.
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The injectivity of p ∗ is clear, since p∗p
∗ = id. If α is a Deligne class on X̃ , we can write α =

p ∗x +
∑d−1

i=1 j∗

[
yi c1

(
ON

Y/X
(−1)

)i−1
]
. Since E is a hypersurface of X̃, by the formula proved above

j ∗j∗ λ = λ c1(NE/ eX
) = λ c1(ON

Y/X
(−1)) for any Deligne class λ on E. We obtain j ∗α = q ∗i ∗x +

∑d−1
i=1 (−1)iyi c1

(
ON

Y/X
(1)
)i

. If j ∗α = q ∗δ, all the classes yi vanish. Thus α = p ∗x. For the ex-

cess formula, let α be a Deligne class on Y . We define β = j∗
(
q ∗α cd−1(F

∗)
)
. Then, by (vi), j ∗β =[

q ∗α cd−1(F
∗)
]
c1

(
N

E/ eX

)
= q ∗

[
α cd

(
NY/X

)]
. Therefore, β comes from the base so that β = p ∗p∗β =

p ∗i∗q∗
(
q ∗α cd−1(F

∗)
)

= p ∗i∗
[
α q∗

(
cd−1(F

∗)
)]

= p ∗i∗α for q∗
(
cd−1(F

∗)
)

= 1 (see [Bo-Se, Lemme
19.b]).

�

3. Construction of Chern classes

From now on, we will consider a cohomology theory X �
// A(X) which satisfies Axioms B. We define

G(X) as the Grothendieck ring of coherent sheaves on X . The class of a coherent sheaf F in G(X) will
be denoted by [F ]. The construction of the total exponential Chern class ch(F) in A(X) for an arbitrary
coherent sheaf F on X will be done by induction on dimX .
Let us precisely state the induction hypotheses (Hn):

(Wn) If dimX ≤ n and 0 // F // G // H // 0 is an exact sequence of analytic sheaves on X , then
ch(G) = ch(F) + ch(H).

(Fn) If dimX, dim Y ≤ n and f :X //Y is a holomorphic map, then ∀y ∈ G(Y ), ch(f !y) = f ∗ ch(y).

(Cn) If dimX ≤ n and F is locally free, ch(F) = ch(F).
(Pn) If dimX ≤ n, ch(1) = 1 and ∀x, y ∈ G(X), ch(x . y) = ch(x) ch(y).

(RRn) If Z is a smooth hypersurface of X , where dimX ≤ n, then for every coherent sheaf F on Z,
ch(iZ∗F) = iZ∗

(
ch(F) td(NZ/X)−1

)
.

From now on, we will suppose that all the properties of the induction hypotheses (Hn−1) above are true.

Theorem 3.1. Assuming hypotheses (Hn−1), we can define a Chern character for analytic coherent

sheaves on compact complex manifolds of dimension n which satisfies properties (Hn).

Let us briefly explain the organization of the proof of this theorem. In § 3.1, we construct the Chern char-
acter for torsion sheaves. In § 3.3, we construct the Chern character for arbitrary coherent sheaves, using
the result of § 3.2. Properties (RRn) for a smooth hypersurface and (Cn) will be obvious consequences of
the construction. In § 4.3, we prove (Wn) and then (Fn) and (Pn) using the preliminary results of § 4.1
and § 4.2. Finally, we prove (RRn) in § 5.

3.1. Construction for torsion sheaves. In this section, we define a Chern character for torsion
sheaves by forcing the Grothendieck-Riemann-Roch theorem for immersions of smooth hypersurfaces.
Let Gtors(X) denote the Grothendieck group of the abelian category of torsion sheaves on X . We will
prove the following version of Theorem 3.1 for torsion sheaves:

Proposition 3.2. We can define a Chern character for torsion sheaves on any n-dimensional complex

manifold such that:

(i) (Wn) If 0 // F // G // H // 0 is an exact sequence of torsion sheaves on X with dimX ≤ n, then

ch(G) = ch(F) + ch(H).

(ii) (Pn) Let E be a locally free sheaf and x ∈ Gtors(X). Then ch([E ]. x) = ch(E) . ch(x).

(iii) (Fn) Let f :X //Y be a holomorphic map where dim X ≤ n and dim Y ≤ n, and F be a coherent sheaf

on Y such that F and f ∗F are torsion sheaves. Then ch(f ![F ]) = f ∗ ch(F).
(iv) (RRn) If Z is a smooth hypersurface of X and F is coherent on Z, ch

(
iZ∗F

)
= iZ∗

(
ch(F) td(NZ/X)−1

)
.
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We will proceed in three steps. In § 3.1.1, we perform the construction for coherent sheaves supported in
a smooth hypersurface. In § 3.1.2, we deal with sheaves supported in a simple normal crossing divisor.
In § 3.1.3, we study the general case.

3.1.1. Let Z be a smooth hypersurface of X where dimX ≤ n. We define GZ(X) as the Grothendieck
group of the category of coherent sheaves on X supported by Z. By dévissage, there is an isomorphism

iZ∗ : G(Z)
∼

// GZ(X) (see [Qui]). For G coherent on Z, we define ch
(
iZ∗G

)
= iZ∗

(
ch(G) td(NZ/X)−1

)
,

where ch(G) is defined by induction.

If 0 // G′ // G // G′′ // 0 is an exact sequence of coherent sheaves on Z, by (Wn−1), we have ch(G) =

ch(G′) + ch(G′′). Thus ch
(
iZ∗G

)
= ch

(
iZ∗G

′
)

+ ch
(
iZ∗G

′′
)
. The map G �

// ch(iZ∗G) factors over

iZ∗(G(Z)) ≃ GZ(X). The resulting morphism GZ(X) // A(X) will be denoted by chZ .

The assertions of the following proposition are particular cases of (Cn), (Fn), and (Pn).

Proposition 3.3. Let Z be a smooth hypersurface of X.

(i) ∀x ∈ GZ(X), ch
(
i !
Zx
)

= i ∗Z chZ(x).

(ii) If E is a locally free sheaf on X and x ∈ GZ(X), then chZ([E ]. x) = ch(E) . chZ(x).

Proof. (i) We can write x = iZ∗x. Then,

i ∗Z chZ(x) = i ∗ZiZ∗

(
ch(x) td

(
NZ/X

)−1)
= ch(x) td

(
NZ/X

)−1
c1

(
NZ/X

)
= ch(x)

[
1 − e

−c1

(
NZ/X

)]

= ch(x) ch
(
i !
ZiZ∗OZ

)
= ch

(
x . i !

ZiZ∗OZ

)
= ch

(
i !
Zx
)
, by Axiom B (vi), (Cn−1) and (Pn−1).

(ii) We have chZ

(
[E ] . x

)
= chZ

(
iZ∗

(
i !
Z [E ] . x

))
= iZ∗

(
ch
(
i !
Z [E ] . x

)
td
(
NZ/X

)−1
)

= iZ∗

(
i ∗Z ch

(
E
)
ch(x) td

(
NZ/X

)−1
)

= ch
(
E
)
iZ∗

(
ch(x) td

(
NZ/X

)−1
)

= ch
(
E
)
chZ(x), by (Pn−1), (Cn−1)

and the projection formula. �

3.1.2. Let D be a divisor in X with simple normal crossing. We have an exact sequence:
⊕
i<j

GDij
(X) //

⊕
i

GDi
(X) // GD(X) // 0.

If F ∈ G(Dij), using (RRn−1) and the multiplicativity of the Todd class, we get chDi

(
iDij∗

F
)

=

iDi∗

(
ch
(
iDij/Di∗

F
)
td
(
NDi/X

)−1
)

= iDij∗

(
ch(F) td

(
NDij/X

)−1
)
. Thus chDi

(
iDij∗

F
)

= chDj

(
iDij∗

F
)
,

and the map
⊕
i

chDi
induces a map chD :GD(X) //A(X) .

Proposition 3.4. The classes chD have the following properties:

(i) If E is a locally free sheaf on X and x ∈ GD(X), then chD([E ] . x) = ch(E). chD(x).

(ii) Let D̃ be an effective divisor in X such that D̃red = D. Then

chD

(
O

eD

)
= 1 − ch

(
OX(−D̃)

)
.

(iii) (First lemma of functoriality) Let f : X //Y be a surjective map. Let D be a simple normal

crossing divisor in Y such that f−1(D) is also a simple normal crossing divisor in X. Then

∀y ∈ GD(Y ), chf−1(D)

(
f !y
)

= f ∗ chD(y).

(iv) (Second lemma of functoriality) Let Y be a smooth submanifold of X and D be a simple normal

crossing divisor in X. Then, ∀x ∈ GD(X), ch
(
i !
Y x
)

= i ∗Y chD(x).

We start with two technical lemmas which will be crucial for the proof of (ii) and (iii).
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Lemma 3.5. Let D = m1D1 + · · ·+mNDN be an effective divisor in Xsuh that Dred is a simple normal

crossing divisor, and µ ∈ A(X) be defined by µ =
∑

k≥1
(−1)k−1

k!

(
m1{D1} + · · · + mN{DN}

)k−1

. Then

there exist ui in GDi
(X), 1 ≤ i ≤ N , and ζij in A(Dij), 1 ≤ i, j ≤ N , i 6= j, such that

(a) u1 + · · · + uN = OD in GDred(X).
(b) ζij = −ζji, 1 ≤ i, j ≤ N , i 6= j.

(c) ch(ui) td
(
NDi/X

)−1
− mi i ∗Di

µ =
N∑

j=1
j 6=i

iDij/Di∗
ζij , 1 ≤ i ≤ N , where iDi∗

ui = ui.

Proof. We proceed by induction on the number N of irreducible components of Dred.

If N = 1, we must prove that ch(u1) td
(
ND1/X

)−1
= m1 i ∗D1

µ, where u1 = Om1D1
. In GD1

(X) we have

Om1D1
=

m1−1∑

q=0

iD1∗

(
N∗⊗q

D1/X

)
, thus u1 =

m1−1∑

q=0

N∗⊗q
D1/X . Therefore

ch(u1) td
(
ND1/X

)−1
=

(
m1−1∑

q=0

e
−q c1

(
ND1/X

))
1 − e

−c1

(
ND1/X

)

c1

(
ND1/X

) =
1 − e

−m1c1

(
ND1/X

)

c1

(
ND1/X

) = m1 i ∗D1
µ.

Suppose that the lemma holds for divisors D′ such that D′
red has N − 1 irreducible components. Let

D = m1D1 + · · ·+ mNDN and D′ = m1D1 + · · ·+ mN−1DN−1. By induction, there exist u′
i in GDi

(X),
1 ≤ i ≤ N −1, and ζ′ij in A(Dij), 1 ≤ i, j ≤ N −1, i 6= j, satisfying properties (a), (b), and (c) of Lemma
3.5. For 0 ≤ k ≤ mN , we introduce the divisors Zk = m1D1 + · · · + mN−1DN−1 + kDN . We have exact

sequences 0 // i ∗DN
OX(−Zk) // OZk+1

// OZk

// 0. Thus, in GDred(X), we have

OD = OD′ + iDN∗




mN−1∑

q=0

i ∗DN
OX(−Zq)


 = OD′ + iDN∗i

∗
DN


OX(−D′)

mN−1∑

q=0

OX

(
−qDN

)

 .

We choose ui = u′
i for 1 ≤ i ≤ N − 1 and uN = iDN∗i

∗
DN

[
OX(−D′)

mN−1∑

q=0

OX

(
−qDN

)]
.

Let i be such that 1 ≤ i ≤ N − 1. Then, by induction

ch(ui) td
(
NDi/X

)
− mi i ∗Di

µ = ch(u′
i) td

(
NDi/X

)
− mi i ∗Di

µ′ + mi i ∗Di
(µ′ − µ)

=

N−1∑

j=1
j 6=i

iDij / Di∗
ζ′ij + mi i ∗Di

[
∞∑

k=1

(−1)k

k!

k−1∑

j=1

(
k − 1

j

)(N−1∑

r=1

mr{Dr}

)k−1−j
(
mN{DN}

)j
]

=

N−1∑

j=1
j 6=i

iDij / Di∗
ζ′ij + mi iDiN / Di∗

i ∗DiN

[
∞∑

k=1

(−1)k

k!

k−1∑

j=1

(
k − 1

j

)(N−1∑

r=1

mr{Dr}

)k−1−j

mj
N{DN}j−1

]
.

For the last equality, we have used that i ∗Di

(
α {DN}

)
= i ∗Di

α {DiN} = iDiN /Di∗

(
i ∗DiN

α
)

where {DiN} is

the cycle class of DiN in Di.

Let us define



ζij = ζ′ij if 1 ≤ i, j ≤ N − 1, i 6= j

ζiN = mi i ∗DiN

[
∞∑

k=1

(−1)k

k!

k−1∑

j=1

(
k − 1

j

)(N−1∑

r=1

mr{Dr}

)k−1−j

mj
N{DN}j−1

]
if 1 ≤ i ≤ N − 1

ζNj = −ζjN if 1 ≤ j ≤ N − 1.
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Properties (a) and (b) of Lemma 3.5 hold, and property (c) of the same lemma holds for 1 ≤ i ≤ N − 1.
For i = N , let us now compute both members of (c). We have

N−1∑

l=1

iDNl / DN∗ζNl =

N−1∑

l=1

ml i ∗DN

[
∞∑

k=1

(−1)k−1

k!

k−1∑

j=1

(
k − 1

j

)(N−1∑

r=1

mr{Dr}

)k−1−j

mj
N{DN}j−1{Dl}

]

= i ∗DN

[
∞∑

k=1

(−1)k−1

k!

k−1∑

j=1

(
k − 1

j

)(N−1∑

r=1

mr{Dr}

)k−j

mj
N{DN}j−1

]
.(∗)

In the first equality, we have used iDNl / DN∗ i ∗DlN
α = i ∗DN

α {DlN} = i ∗DN

(
α {Dl}

)
, where {DlN} is the

cycle class of DlN in DN .

By (Cn−1),

ch(uN ) td
(
NDN /X

)−1
−mN i ∗DN

µ = i ∗DN


e−

PN−1

r=1
mr{Dr}




mN−1∑

q=0

e−q{DN}


 1 − e−{DN}

{DN}


−mN i ∗DN

µ

= i ∗DN

[
e−

PN−1

s=1
ms{Ds}

1 − e−mN{DN}

{DN}
− mN µ

]
= i ∗DN

[
mN

∞∑

r=0

∞∑

q=1

(−1)r+q−1

r! q!

(
N−1∑

s=1

ms{Ds}

)r

×
(
mN{DN}

)q−1
− mN

∞∑

k=1

(−1)k−1

k!

k−1∑

j=0

(
k − 1

j

)(N−1∑

s=1

ms{Ds}

)k−1−j
(
mN{DN}

)j

.

In the first term, we put k = q + r, p = q − 1 and we obtain

(∗∗) mN i ∗DN

[
∞∑

k=1

k−1∑

p=0

(−1)k−1

k!

((
k

p + 1

)
−

(
k − 1

p

))(N−1∑

s=1

ms{Ds}

)k−1−p
(
mN{DN}

)p
]
.

Now
(

k
p+1

)
−
(
k−1

p

)
is equal to

(
k−1
p+1

)
for p ≤ k − 2 and to zero for p = k − 1. It suffices to put j = p + 1

in the sum to obtain the equality of (∗) and (∗∗). �

Lemma 3.6. Using the same notations as in Lemma 3.5, let αi in A(Di), 1 ≤ i ≤ N , be such that

i ∗Dij/Di
αi = i ∗Dij/Dj

αj. Then there exist ui in GDi
(X), satisfying u1 + · · ·+ uN = OD in GDred(X), such

that
N∑

i=1

iDi∗

(
αi ch(ui) td

(
NDi/X

)−1
)

=

(
N∑

i=1

mi iDi∗(αi)

)
µ.

Proof. We pick u1, . . . , uN given by Lemma 3.5. Then
N∑

i=1

iDi∗

(
αi ch(ui) td

(
NDi/X

)−1
)
−

(
N∑

i=1

mi iDi∗(αi)

)
µ =

N∑

i=1

iDi∗

[
αi

(
ch(ui) td

(
NDi/X

)−1
−mi i ∗Di

µ
)]

=

N∑

i=1

N∑

j=1
j 6=i

iDi∗

[
αi iDij/Di∗

ζij

]
=

N∑

i=1

N∑

j=1
j 6=i

iDij∗

(
i ∗Dij/Di

αi ζij

)
by the projection formula. Putting to-

gether the terms (i, j) and (j, i), we get 0, since ζij = −ζji. �

Proof of Proposition 3.4. (i) We write x =
∑N

i=1 xi in GDred (X), xi ∈ GDi
(X). Then chD([E ] . x) =∑N

i=1 chDi
([E ] . xi) =

∑N
i=1 ch(E) . chDi

(xi) = ch(E) . chD(x) by Proposition 3.3 (ii) and the very definition
of chD(x).

(ii) We choose u1, . . . , uN such that Lemma 3.5 holds. Then we have ch
(
O

eD

)
=
∑N

i=1 ch(ui) =
∑N

i=1 iDi∗

(
ch(ui) td

(
N

eDi/X

)−1
)

=
(∑N

i=1 mi{D̃i}
)

µ = 1 − e−(
PN

r=1
mr{ eDr}) = 1 − ch

(
OX(−D̃)

)
.
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(iii) By dévissage we can suppose that D is a smooth hypersurface of Y . Let f i be defined by the diagram

D̃i
//

fi
��

X

f
��

D // Y

and let y ∈ G(D). We put αi = f
∗

i ch(y). By the functoriality property (Fn−1) we have i ∗
eDij/ eDi

αi =

i ∗
eDij/ eDj

αj . We choose again u1, . . . , uN such that Lemma 3.5 holds. Using functoriality properties for

analytic K-theory with support (see [Gri]), Lemma 3.5 (a) implies f !iD∗y =
∑N

i=1 i
eDi∗

[
(f

!

iy) . ui

]
. Thus

ch
eD

(
f !iD∗y

)
=
∑N

i=1 i
eDi∗

(
ch
(
f

!

iy
)
ch(ui) td

(
N

eDi/X

)−1
)

=
∑N

i=1 i
eDi∗

(
αi ch(ui) td

(
N

eDi/X

)−1
)

=
(∑N

i=1 mi i
eDi∗

(αi)
)

µ =
[∑N

i=1 mi i
eDi∗

(
f

∗

i ch(y)
)]

f ∗
(

1−e−{D}

{D}

)
= f ∗

[
iD∗

(
ch(y)

)
· 1−e−{D}

{D}

]

= f ∗iD∗

(
ch(y) td

(
ND/Y

)−1
)

= f ∗ chD

(
iD∗y

)
, by (Pn−1), (Fn−1), Lemma 3.6, Axiom B (iv) and the

projection formula.

(iv) We will first prove it under the assumption that, for all i, either Y and Di intersect transversally, or
Y = Di. By dévissage, we can suppose that D has only one irreducible component and that Y and D
intersect transversally, or Y = D. We deal with both cases separately.

– If Y and D intersect transversally, i !
Y

[
iD∗OD

]
=
[
iY ∩D/Y ∗OY ∩D

]
. Thus, if x = iD∗x, then i !

Y x =

iY ∩D/Y ∗

(
i !
Y ∩D/Dx

)
. We obtain ch

(
i !
Y x
)

= iY ∩D/Y ∗

(
ch
(
i !
Y ∩D/Dx

)
td
(
NY ∩D/Y

)−1
)

= iY ∩D/Y ∗

(
i ∗Y ∩D/D ch(x) i ∗Y ∩D/D td

(
ND/X

)−1
)

= i ∗Y iD∗

(
ch(x) td

(
ND/X

)−1
)

= i ∗Y chD(x), by (RRn−1),

(Fn−1) and Axiom B (iii).

– If Y = D, i !
Y

[
iD∗OD

]
=
[
OY

]
−
[
N ∗

Y/X

]
. Thus i !

Y x = x − x .
[
N ∗

Y/X

]
and ch

(
i !
Y x
)

= ch(x) −

ch(x)ch
(
N ∗

Y/X

)
= ch(x)

[
1 − e

−c1

(
NY/X

)]
= ch(x) td

(
NY/X

)−1
c1

(
NY/X

)
= i ∗Y iY ∗

(
ch(x) td

(
NY/X

)−1
)

= i ∗Y chY (x), by (Pn−1), (Cn−1) and Axiom B (vi).

We examine now the general case. By Hironaka’s desingularization theorem, we can desingularize Y ∪D
by a succession τ of k blowups with smooth centers such that τ−1(Y ∪ D) is a divisor with simple

normal crossing. By first blowing up X along Y , we can suppose that τ−1(Y ) = D̆ is a subdivisor of

D̃ = τ−1(Y ∪ D). We have the following diagram:

D̆j

iD̆j
//

qj

��

X̃

τ

��

Y
iY

// X

Then q ∗
j ch

(
i !
Y x
)

= ch
(
q !
j i

!
Y x
)

= ch
(
i !
D̆j

τ !x
)

= i ∗
D̆j

ch
eD

(
τ !x
)

= i ∗
D̆j

τ ∗ chD(x) = q ∗
j i ∗Y chD(x), by (Fn−1)

and the first lemma of functoriality 3.4 (iii).

We can now write qj as δ ◦ µj , where E is the exceptional divisor of the blowup of X along Y , δ :E //Y

is the canonical projection and µj : D̆j
//E is the restriction of the last k − 1 blowups to D̆j . Write

τ = τk ◦ τk−1 ◦ · · · ◦ τ1 where τi are the blowups. Let us define a sequence of divisors
(
Ei

)
0≤i≤k

by

induction: E0 = E, and Ei+1 is the strict transform of Ei under τi+1. Since the Ei are smooth divisors,

all the maps τi+1 : Ei+1
//Ei are isomorphisms. There exists j such that Ek = D̆j. We deduce that
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µj = τ
|D̆j

: D̆j
//D is an isomorphism. Since δ is the projection of the projective bundle P

(
NY/X

)
//Y ,

δ ∗ is injective. Thus q ∗
j = µ ∗

j δ ∗ is injective and we get ch
(
i !
Y x
)

= i ∗Y chD(x). �

Now, we can clear up the problem of the dependence of chD(F) with respect to D.

Proposition 3.7. If D1 and D2 are two divisors of X with simple normal crossing such that suppF ⊆ D1

and suppF ⊆ D2, then chD1
(F) = chD2

(F).

Proof. This property is clear if D1 ⊆ D2. We will reduce the general situation to this case. By Hironaka’s

theorem, there exists τ : X̃ //X such that τ−1(D1 ∪ D2) is a divisor with simple normal crossing. Let

D̃1 = τ−1D1 and D̃2 = τ−1D2. By the first functoriality lemma 3.4 (iii), since D̃1 ⊆ D̃, we have
τ ∗ chD1

(F) = ch
eD1

(
τ ![F ]

)
= ch

eD

(
τ ![F ]

)
. The same property holds for D2. The map τ is a succession

of blowups, thus τ ∗ is injective and we get chD1
(F) = chD2

(F). �

Definition 3.8. If supp(F) ⊆ D where D is a simple normal crossing divisor, ch(F) is defined as chD(F).

By Proposition 3.7, this definition makes sense.

3.1.3. We can now define ch(F) for an arbitrary torsion sheaf.

Let F be a torsion sheaf. We say that a succession of blowups with smooth centers τ : X̃ //X is a desingu-

larization of F if there exists a divisor with simple normal crossing D in X̃ such that τ−1
(
supp(F)

)
⊆ D.

In that case, ch(τ ![F ]) is defined by Definition 3.8. By Hironaka’s theorem applied to supp(F), there
always exists such a τ . We say that F can be desingularized in d steps if there exists a desingularization
τ of F consisting of at most d blowups.

Proposition 3.9. There exists a unique class ch(F) in A(X) such that

(i) If τ is a desingularization of F , then τ ∗ ch(F) = ch(τ ![F ]).
(ii) If Y is a smooth submanifold of X, then ch

(
i !
Y [F ]

)
= i ∗Y ch(F).

Proof. If τ is a desingularization of F , then τ ∗ is injective by Axiom B (v). This proves that a class
ch(F) satisfying (i) is unique. Let d be the number of blowups necessary to desingularize F . Assertions
(i) and (ii) will be proved at the same time by induction on d.

If d = 0, supp(F) is contained in a divisor with simple normal crossing D. The properties (i) and (ii) are
immediate consequences of the two lemmas of functoriality 3.4 (iii) and (iv).

Suppose now that Proposition 3.9 is proved for torsion sheaves which can be desingularized in d−1 steps.

Let F be a torsion sheaf which can be desingularized with at most d blowups. Let (X̃, τ) be such a
desingularization. We write τ as τ̃ ◦ τ1, where τ̃ is the first blowup in τ with E as exceptional divisor,
as shown in the following diagram:

X̃

τ1

��

E
iE

//

q

��

X̃1

eτ

��

Y
iY

// X

Then τ1 consists of at most d−1 blowups and is a desingularization of the sheaves Torj(F , τ̃ ), 0 ≤ j ≤ n.

By induction, we can consider γ
(
X̃1,F

)
=
∑n

j=0 (−1)j ch
(
Torj(F , τ̃ )

)
. We have
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i ∗Eγ
(
X̃1,F

)
=
∑n

j=0 (−1)j ch
(
i !
E

[
Torj(F , τ̃ )

])
= ch

(
i !
E τ̃ ![F ]

)
= ch

(
q !i !

Y [F ]
)

= q ∗ ch
(
i !
Y [F ]

)
, by induc-

tion property (ii), (Wn−1) and (Fn−1). By Axiom B (v), there exists a unique class ch(F , τ) on X such

that γ
(
X̃1,F

)
= τ̃ ∗ ch

(
F , τ

)
.

Now τ ∗ ch(F , τ) = τ ∗
1 γ
(
X̃1,F

)
=
∑n

j=0 (−1)j ch
(
τ !
1

[
Torj(F , τ̃ )

])
= ch

(
τ !
1 τ̃ ![F ]

)
= ch

(
τ ![F ]

)
, by induc-

tion property (i).

We can now prove (i). Let τ̆ : X̃ ′ //X be an arbitrary desingularization of F . We dominate the two
resolutions τ , τ̆ by a third one, according to the diagram

W
µ̆

~~}}
}}

}}
}}

δ

��

µ

  
@@

@@
@@

@@

X̃ ′

τ̆
  

AA
AA

AA
AA

X̃

τ
~~~~

~~
~~

~~

X

Then µ̆ ∗ ch
(
τ̆ ![F ]

)
= ch

(
δ ![F ]

)
= µ ∗ ch

(
τ ![F ]

)
= µ ∗τ ∗ ch(F , τ) = µ̆ ∗τ̆ ∗ ch(F , τ), by the first functori-

ality lemma 3.4 (iii).

It remains to show (ii). For this, we desingularize supp(F) ∪ Y exactly as in the proof of the second
lemma of functoriality 3.4 (iv). We have a diagram

D̆i
i
D̆i

//

qi

��

X̃

τ

��

Y
iY

// X

where q ∗
i is injective for at least one i. Then

q ∗
i

(
i ∗Y ch(F)

)
= i ∗

D̆i
τ ∗ ch(F) = i ∗

D̆i
ch(τ ![F ]) = ch

(
i !
D̆i

τ ![F ]
)

= ch
(
q !
i i !

Y [F ]
)

= q ∗
i ch

(
i !
Y [F ]

)
, by (i), the

second lemma of functoriality 3.4 (iv) and (Fn−1). Thus i ∗Y ch(F) = ch
(
i !
Y [F ]

)
. �

We have now completed the existence part of Theorem 3.1 for torsion sheaves.

We turn to the proof of Proposition 3.2. So doing, we establish almost all the properties listed in the
induction hypotheses for torsion sheaves.

Proof of Proposition 3.2. (i) Let (X̃, τ) be a desingularization of supp(F) ∪ supp(H) and D be the

associated simple normal crossing divisor. Then τ !F , τ !G, τ !H ∈ GD(X̃) and τ !F + τ !H = τ !G in
GD(X). Thus, by Proposition 3.9 (i), τ ∗

[
ch(F)+ch(H)

]
= ch

(
τ ![F ]

)
+ch

(
τ ![H]

)
= ch

(
τ ![G]

)
= τ ∗ ch(G).

The map τ ∗ being injective, we get the Whitney formula for torsion sheaves.

(ii) The method is the same: let x = [G] and let τ be a desingularization of G. Then, by Proposition 3.9

(i) and Proposition 3.4 (i), τ ∗ ch([E ] . [G]) = ch
(
τ ![E ] . τ ![G]

)
= ch

(
τ ![E ]

)
. ch
(
τ ![G]

)
= τ ∗

(
ch(E) . ch(G)

)
.

(iii) This property is known when f is the immersion of a smooth submanifold and when f is a bimero-
morphic morphism by Proposition 3.9. Let us consider now the general case. By Grauert’s direct image
theorem, f(X) is an irreducible analytic subset of Y . We desingularize f(X) as an abstract complex

space. We get a connected smooth manifold W and a bimeromorphic morphism τ :W //f(X) obtained

as a succession of blowups with smooth centers in f(X). We perform a similar sequence of blowups,
starting from Y1 = Y and blowing up at each step in Yi the smooth center blown up at the i-th step of

the desingularization of f(X). Let πY : Ỹ //Y be this morphism. The strict transform of f(X) is W .

The map τ : τ−1
(
f(X)reg

) ∼
// f(X)reg is an isomorphism. So we get a morphism f(X)reg //W which
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is in fact a meromorphic map from f(X) to W , and finally, after composition on the left by f , from X
to W . We desingularize this morphism:

X̃
ef

    
@@

@@
@@

@@

πX

��

X // W

and we get the following global diagram, where πX is a bimeromorphic map:

X̃
ef

//

πX

��

W
iW

//

τ

��

Ỹ

πY

��

X
f

// f(X) // Y

Now f ◦ πX = πY ◦
(
iW ◦ f̃

)
, and we know the functoriality formula for πX , πY and iW by Proposition

3.9. Since π ∗
X is injective, it is enough to show the functoriality formula for f̃ . So we will assume that f

is onto. Let (τ, Ỹ ) be a desingularization of F . We have the diagram

X ×Y Ỹ //

��

Ỹ

τ

��

X
f

// Y

where τ̃−1(suppF) = D ⊆ Ỹ is a divisor with simple normal crossing and the map X ×Y Ỹ //X is

a bimeromorphic morphism. We have a meromorphic map X // X ×Y Ỹ , and we desingularize it by

a morphism T //X ×Y Ỹ . Then we obtain the following commutative diagram, where π : T //X is a

bimeromorphic map:

T
ef

//

π

��

Ỹ

τ

��

X
f

// Y

Therefore we can assume that supp(F) is included in a divisor with simple normal crossing D. We
desingularize f−1(D) so that we are led to the case supp(F) ⊆ D, where D and f−1(D) are divisors with
simple normal crossing in Y and X respectively. In this case, we can use the first lemma of functoriality
3.4 (iii). �

3.2. The case of sheaves of positive rank. Let X be a complex compact manifold and F an analytic
coherent sheaf on X . We have seen in section 3.1 how to define ch(F) when F is a torsion sheaf.

Suppose that F has strictly positive generic rank. When F admits a global locally free resolution, we
could try to define ch(F) the usual way. As explained in the introduction, this condition on F is not
necessarily fulfilled. Even if such a resolution exists, the definition of ch(F) depends a priori on this
resolution. A good substitute for a locally free resolution is a locally free quotient with maximal rank,
since the kernel is then a torsion sheaf. Let Ftor ⊆ F be the maximal torsion subsheaf of F . Then
F admits a locally free quotient E of maximal rank if and only if F

/
Ftor

is locally free. In this case,

E ≃ F
/
Ftor

and we will say that F is locally free modulo torsion.

Unfortunately, such a quotient does not exist in general (for instance, take a torsion-free sheaf which is
not locally free), but it exists up to a bimeromorphic morphism.
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Proposition 3.10. Let X be a complex compact manifold and F a coherent analytic sheaf on X. There

exists a bimeromorphic morphism σ : X̃ //X, which is a finite composition of blowups with smooth centers,

such that σ ∗F is locally free modulo torsion.

Proof. This is an immediate consequence of Hironaka’s flattening theorem (see [Hiro2] and in the algebraic
case of [Gr-Ra]). �

3.3. Construction of the classes in the general case. Let X be a complex compact manifold of
dimension n.

3.3.1. Let F be a coherent sheaf on X which is locally free modulo torsion. We define ch(F) as ch(Ftor)+

ch(F/Ftor), where ch(Ftor) has been constructed in part 3.1.

We state now the Whitney formulae which apply to the Chern characters we have defined above.

Proposition 3.11. Let 0 // F // G // H // 0 be an exact sequence of coherent analytic sheaves on X.

Then ch(F), ch(G) and ch(H) have been previously defined and verify ch(G) = ch(F) + ch(H) under any

of the following hypotheses:

(i) F , G, H are locally free sheaves on X.

(ii) F , G, H are torsion sheaves.

(iii) G is locally free modulo torsion and F is a torsion sheaf.

Proof. (i) This is the usual theory for locally free sheaves.

(ii) This is Proposition 3.2 (i).

(iii) We have an exact sequence 0 // T // G // E // 0 where T is a torsion sheaf and E is locally free.

Since F is a torsion sheaf, the morphism F // G // E is identically zero. Let us define T ′ by the

exact sequence 0 // T ′ // H // E // 0. Then T ′ is a torsion sheaf which fits into the exact sequence

0 // F // T // T ′ // 0. Thus H is locally free modulo torsion, so that ch(H) is defined and ch(H) =

ch(E) + ch(T ′) = ch(E) + ch(T ) − ch(F) = ch(G) − ch(F) by (ii). �

Let us now look at the functoriality properties with respect to pullbacks.

Proposition 3.12. Let f :X //Y be a holomorphic map. We assume that

– dimY = n and dimX ≤ n,

– if dimX = n, f is surjective.

Then for every coherent sheaf on Y which is locally free modulo torsion, the following properties hold:

(i) The Chern characters ch
(
Tori(F , f)

)
have been previously defined.

(ii) f ∗ ch(F) =
∑

i≥0

(−1)i ch
(
Tori(F , f)

)
.

Proof. (i) If dimX < n, the classes ch
(
Tori(F , f)

)
are defined by induction. If dimX = n and f is

surjective, then f is generically finite. Thus all the sheaves Tori(F , f), i ≥ 1, are torsion sheaves on X ,
so their Chern classes are defined by Proposition 3.2. The sheaf f ∗F is locally free modulo torsion on
X , so that ch(f ∗F) is defined.

(ii) We have an exact sequence 0 // T // F // E // 0 where T is a torsion sheaf and E is a locally free
sheaf. Remark that, for i ≥ 1, Tori(F , f) ≃ Tori(T , f). Thus, by Proposition 3.2 (iii),
∑

i≥0

(−1)i ch
(
Tori(F , f)

)
= ch

(
f ∗E

)
+ ch

(
f ∗T

)
+
∑

i≥1

(−1)i ch
(
Tori(T , f)

)
= f ∗ch(E) + ch

(
f ![T ]

)
=

f ∗
(
ch(E) + ch(T )

)
= f ∗ ch(F).

�
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3.3.2. We consider now an arbitrary coherent sheaf F on X . By Proposition 3.10, there exists σ : X̃ //X
obtained as a finite composition of blowups with smooth centers such that σ ∗F is locally free modulo
torsion.

Proposition 3.13. There exists a unique class ch(F) in A(X) such that:

(i) If σ : X̃ //X is a succession of blowups with smooth centers such that σ ∗F is locally free modulo

torsion, then σ ∗ ch(F) =
∑

i≥0(−1)i ch
(
Tori(F , σ)

)
.

(ii) If Y is a smooth submanifold of X, ch
(
i !
Y [F ]

)
= i ∗Y ch(F).

Remark 3.14. By Proposition 3.12 (i), all the terms in (i) are defined.

Proof. By Axiom B (v), a class satisfying (i) is unique. We will prove the result by induction on the
number d of blowups in σ as in Proposition 3.9. If d = 0, F is locally free modulo torsion and we can use
Proposition 3.12.

Suppose now that (i) and (ii) hold at step d − 1. As usual, we look at the first blowup in σ

X̃

σ1

��

σ

��

E
iE

//

q

��

X̃1

eσ

��

Y
iY

// X.

The sheaves Torj(F , σ) are torsion sheaves for j ≥ 1 and σ ∗
1 Tor0(F , σ̃) = σ ∗F is locally free mod-

ulo torsion. Since σ1 consists of d − 1 blowups, we can define by induction on X̃1 the class γ(F) =
∑

j≥0 (−1)j ch
(
Torj(F , σ̃)

)
.

Lemma 3.15. σ ∗
1 γ(F) =

∑

i≥0

(−1)i ch
(
Tori(F , σ)

)
.

Proof. By induction, σ ∗
1 γ(F) =

∑
p,q≥0 (−1)p+q ch

[
Torp(Torq(F , σ̃), σ1)

]
=
∑

p,q≥0 (−1)p+q ch(E p,q
2 )

where the Tor spectral sequence satisfies E p,q
2 = Torp(Torq(F , σ̃), σ1) and E p,q

∞ = Grp Torp+q(F , σ).
All the E p,q

r , 2 ≤ r ≤ ∞, are torsion sheaves except perhaps E 0,0
r . Since no arrow d p,q

r starts from
or arrives at E 0,0

r , we have
∑

p,q
p+q≥1

(−1)p+q[E p,q
2 ] =

∑
p,q

p+q≥1

(−1)p+q[E p,q
∞ ] =

∑
i≥1 (−1)i

[
Tori(F , σ)

]

in Gtors(X). Using Proposition 3.11 (ii), we get σ ∗
1 γ(F) = ch

(
E 0,0

2

)
+ ch

(∑
i≥1 (−1)i Tori(F , σ)

)
=∑

i≥0 (−1)i ch
(
Tori(F , σ)

)
. �

We compute i ∗Eγ(F) = i ∗E

(∑
j≥0 (−1)j ch

(
Torj(F , σ)

))
=
∑

j≥0 (−1)j ch
(
i !
E

[
Torj(F , σ)

])

= ch
(
i !
Eσ̃ ![F ]

)
= ch

(
q !i !

Y [F ]
)

= q ∗ ch
(
i !
Y [F ]

)
, by induction property (ii) and (Fn−1). By Axiom B (v),

there exists a unique class ch(F , σ) on X such that γ(F) = σ̃ ∗ ch(F , σ). By Lemma 3.15, σ ∗ ch(F , σ) =
σ ∗

1 γ(F) =
∑

i≥0(−1)i ch
(
Tori(F , σ)

)
.
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Let σ′ : X̃ ′ //X be a succession of blowups with smooth centers such that σ ∗F is locally free modulo
torsion. We dominate the two resolutions σ and σ′ by a third one as shown in the following diagram

W
µ

~~~~
~~

~~
~~ µ′

  
AA

AA
AA

AA

eσ

��

X̃

σ
  

@@
@@

@@
@@

X̃ ′

σ′

~~}}
}}

}}
}}

X

Now µ′ ∗σ′ ∗ ch(F , σ) = µ ∗σ ∗ ch(F , σ) = µ ∗
∑

i≥0(−1)i ch
(
Tori(F , σ)

)
=
∑

i≥0(−1)i ch
(
Tori(F , σ̃)

)

= µ′ ∗
∑

i≥0(−1)i ch
(
Tori(F , σ′)

)
by Proposition 3.12 (ii) and Lemma 3.15, so that σ′ ∗ ch(F , σ) =∑

i≥0(−1)i ch
(
Tori(F , σ′)

)
.

We must now prove Proposition 3.13 (ii). Let Y be a smooth submanifold of X . We choose σ : X̃ //X such
that σ ∗F is locally free modulo torsion and σ−1(Y ) is a simple normal crossing divisor with irreducible
components Dj . Let j be such that q ∗

j is injective, qj being defined by the diagram

Dj

iDj
//

qj

��

X̃

σ

��

Y
iY

// X

We have q ∗
j ch

(
i !
Y [F ]

)
= ch

(
q !
j i

!
Y [F ]

)
= ch

(
i !
Dj

σ ![F ]
)

=
∑

i≥0(−1)i i ∗Dj
ch
(
Tori(F , σ)

)
, by Proposi-

tion 3.12 (ii). Now, by the point (i), we have
∑

i≥0(−1)i ch
(
Tori(F , σ)

)
= σ ∗ ch(F). Thus we get

q ∗
j ch(i !

Y [F ]) = i ∗Dj
σ ∗ ch(F) = q ∗

j

(
i ∗Y ch(F)

)
. Therefore ch

(
i !
Y [F ]

)
= i ∗Y ch(F) and the proof is com-

plete. �

4. The Whitney formula

In the previous section, we achieved an important step in the induction process by defining the classes
ch(F) when F is any coherent sheaf on a n-dimensional manifold. To conclude the proof of Theorem 3.1,
it remains to check properties (Wn), (Fn) and (Pn). The crux of the proof is in fact property (Wn). The
main result of this section is Theorem 4.1. The other induction hypotheses will be proved in Theorem
4.10.

Theorem 4.1. (Wn) holds.

To prove Theorem 4.1, we need several reduction steps.

4.1. Reduction to the case where F and G are locally free and H is a torsion sheaf.

Proposition 4.2. Suppose that (Wn) holds when F and G are locally free sheaves and H is a torsion

sheaf. Then (Wn) holds for arbitrary coherent sheaves F , G and H.

We start with a preliminary lemma:

Lemma 4.3. It is sufficient to prove (Wn) when F , G are locally free modulo torsion and H is a torsion

sheaf.

Proof. We take a general exact sequence 0 // F // G // H // 0. Let σ : X̃ //X be a bimeromorphic

morphism such that σ ∗F , σ ∗G and σ ∗H are locally free modulo torsion (we know that such a σ exists
by Proposition 3.10). We have an exact sequence defining Q and T1:
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· · · Tor1(G, σ) Tor1(H, σ) σ ∗F σ ∗G σ ∗H 0

T1

0 0

Q

0 0

Remark that T1 is a torsion sheaf. By Proposition 3.11 (iii), Q is locally free modulo torsion and

ch(σ ∗F) = ch(T1) + ch(Q). Besides, [T1] −
[
Tor1(H, σ)

]
+
[
Tor1(G, σ)

]
− · · · = 0 in Gtors(X̃). Then by

Proposition 3.9 (i) and Proposition 3.11 (ii), σ ∗
(
ch(F) + ch(H)− ch(G)

)
=
∑

i≥0(−1)i
[
ch
(
Tori(F , σ)

)
+

ch
(
Tori(H, σ)

)
− ch

(
Tori(G, σ)

)]
= ch

(
σ ∗F

)
+ ch

(
σ ∗H

)
− ch

(
σ ∗G

)
− ch(T1) = ch(Q) + ch

(
σ ∗H

)
−

ch
(
σ ∗G

)
. Since σ ∗ is injective, we can assume without loss of generality that F , G and H are locally

free modulo torsion. Let E1 be the locally free quotient of maximal rank of H, so we have an exact

sequence 0 // T1
// H // E1

// 0. We define F1 by the exact sequence 0 // F1
// G // E1

// 0. Then we

get a third exact sequence 0 // F // F1
// T1

// 0. We have by definition ch(H) = ch(E1)+ch(T1). Thus,

ch(F)+ch(H)−ch(G) =
(
ch(F)+ch(T1)−ch(F1)

)
+
(
ch(F1)+ch(E1)−ch(G)

)
−
(
ch(T1)+ch(E1)−ch(H)

)
=(

ch(F)+ch(T1)−ch(F1)
)
+
(
ch(F1)+ch(E1)−ch(G)

)
. Let E2 be the locally free quotient of maximal rank

of G. We define T2 by the exact sequence 0 // T2
// G // E2

// 0. The morphism from G to E1 (via H)

induces a morphism E2
//E1 which remains of course surjective. Let E3 be the kernel of this morphism,

then E3 is a locally free sheaf. We get an exact sequence 0 // T2
// F1

// E3
// 0. Therefore F1 is locally

free modulo torsion and ch(F1) = ch(T2) + ch(E3). On the other hand, ch
(
E1

)
+ ch

(
E3

)
= ch

(
E2

)
and

we obtain ch
(
F1

)
+ ch

(
E1

)
− ch(G) =

(
ch(T2) + ch(E3)

)
+
(
ch(E2) − ch(E3)

)
−
(
ch(T2) + ch(E2)

)
= 0.

Therefore, ch(F)+ch(H)− ch(G) = ch(F)+ch(T1)− ch(F1). Since T1 is a torsion sheaf, we are done. �

Proof of Proposition 4.2. By Lemma 4.3, we can suppose that F , G are locally free modulo torsion and
H is a torsion sheaf. Let E1 and E2 be the locally free quotients of maximal rank of F and G. The

associated kernels will be denoted T1 and T2. The morphism F //G induces a morphism T1
//T2 . We

get a morphism E1
//E2 with torsion kernel and cokernel. Since E1 is a locally free sheaf, this morphism

is injective. In the following diagram, we introduce the cokernels T3 and T4:

0

��

0

��

0

��

0 // T1

��

// F //

��

E1
//

��

0

0 // T2

��

// G //

��

E2
//

��

0

T3

��

H

��

T4

��

0 0 0

By the snake lemma, 0 // T3
// H // T4

// 0 is an exact sequence of torsion sheaves. Then by Proposition

3.2 (i), ch(F)+ch(H)−ch(G) = ch
(
T1

)
+ch

(
E1

)
+ch

(
T3

)
+ch

(
T4

)
−ch

(
T2

)
−ch

(
E2

)
= ch

(
E1

)
+ch

(
T4

)
−

ch
(
E2

)
. This finishes the proof. �
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4.2. A structure theorem for coherent torsion sheaves of projective dimension one. In section
4.1 we have reduced the Whitney formula to the particular case where F and G are locally free sheaves
and H is a torsion sheaf. We are now going to prove that it is sufficient to suppose that H is the
push-forward of a locally free sheaf on a smooth hypersurface of X . The main tool of this section is the
following proposition:

Proposition 4.4. Let H be a torsion sheaf which admits a global locally free resolution of length two.

Then there exist a bimeromorphic morphism σ : X̃ //X obtained by a finite number of blowups with

smooth centers, an effective divisor D in X whose associated reduced divisor has simple normal crossing,

and an increasing sequence
(
Di

)
1≤i≤r

of subdivisors of D such that σ ∗H is everywhere locally isomorphic

to
r⊕

i=1

O
eX/IDi

.

Proof. Let 0 // E1
// E2

// H // 0 be a locally free resolution of H, rank
(
E1

)
= rank

(
E2

)
= r. Recall

that the kth Fitting ideal of H is the coherent ideal sheaf generated by the determinants of all the k × k

minors of M when M is any local matrix realization in coordinates of the morphism E1
//E2 (see [Ei]).

By Hironaka’s theorem, we can suppose, after taking a finite number of pullbacks under blowups with
smooth centers, that all the Fitting ideals Fittk(H) are ideal sheaves associated with effective divisors
D′

k whose associated reduced divisors have simple normal crossing. Then it is easy to prove that H is

everywhere locally isomorphic to
r⊕

i=1

O
eX/IDi

, where Dk = D′
k − D′

k−1. �

From now on, we will say that a torsion sheaf H is principal if it is everywhere locally isomorphic to a

fixed sheaf
r⊕

i=1

OX/IDi

where the Di are effective divisors such that Dred
i have simple normal crossing

and D1 ≤ D2 ≤ · · · ≤ Dr. We will denote by ν(H) the number of irreducible components of D, counted
with their multiplicities.

Proposition 4.5. It suffices to prove the Whitney formula when F and G are locally free sheaves and H
is the push-forward of a locally free sheaf on a smooth hypersuface.

Proof. We proceed in several steps. By Proposition 4.2, it is enough to prove the Whitney formula
when F , G are locally free sheaves and H is a torsion sheaf, so we suppose that F , G and H verify

these hypotheses. By Proposition 4.4, there exists a bimeromorphic morphism σ : X̃ //X such that
σ ∗H is principal. The sheaf Tor1(H, σ) is zero since it is a torsion subsheaf of σ ∗F . Thus the sequence

0 // σ ∗F // σ ∗G // σ ∗H // 0. is exact and σ ∗(chF + chG − chH) = ch(σ ∗F) + ch(σ ∗G) = ch(σ ∗H)

by Proposition 3.2 (iii). We can therefore suppose that H is principal, then we argue by induction on
ν(H). If ν(H) = 0, H = 0 and F ≃ G. If ν(H) = 1, H is the push-forward of a locally free sheaf
on a smooth hypersurface and there is nothing to prove. In the general case, let Y be an irreducible

component of D1. Since Y ≤ Di for every i with 1 ≤ i ≤ r, E = H|Y is locally free on Y . If we define H̃

by the exact sequence 0 // H̃ // H // iY ∗E
// 0, H̃ is everywhere locally isomorphic to

r⊕
i=1

OX/IDi−Y
.

Thus H̃ is principal and ν(H̃) = ν(H) − 1. We define the locally free sheaf Ẽ by the exact sequence:

0 // Ẽ // G // iY ∗E
// 0. Furthermore, we have an exact sequence 0 // F // Ẽ // H̃ // 0. By induction,

ch
(
Ẽ
)

= ch(F)+ch
(
H̃
)

and by our hypothesis ch(G) = ch
(
Ẽ
)
+ch

(
iY ∗E

)
. Since H̃, H and iY ∗E are torsion

sheaves, ch(H) = ch
(
H̃
)

+ ch
(
iY ∗E

)
and we get ch(G) = ch(F) + ch(H). This finishes the proof. �

4.3. Proof of the Whitney formula. We are now ready to prove Theorem 4.1.

In the sections 4.1 and 4.2, we have made successive reductions in order to prove the Whitney formula
in a tractable context, so that we are reduced to the case where F and G are locally free sheaves and
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H = iY ∗E , where Y is a smooth hypersurface of X and E is a locally free sheaf on Y . Our working
hypotheses will be these.

Let us briefly explain the sketch of the argument. We consider the sheaf G̃ on X × P1 obtained by

deformation of the second extension class of the exact sequence 0 // F // G // H // 0. Then G̃|X×{0} ≃

F ⊕ H and G̃|X×{t} ≃ G for t 6= 0. It will turn out that G̃ is locally free modulo torsion on the blowup

of X × P1 along Y × {0}, and its torsion part N will be the push-forward of a locally free sheaf on the
exceptional divisor E, say N = iE∗L. Then we consider the class α = ch(Q) + iE∗

(
ch(L) td(NE/X)−1

)

on the blowup, where Q = G̃/N . After explicit computations, it will appear that α is the pullback of
a form β on the base X × P1. By the P1-homotopy invariance of the cohomology theory (see Axiom A
(iii)), β|X×{t} does not depend on t. This will give the desired result.

Let us first introduce some notations. The morphism F // G will be denoted by γ. Let s be a global

section of O
P1(1) which vanishes exactly at {0}. Let pr1 : X × P1 //X be the projection on the first

factor. The relative O(1), namely OX ⊠ O
P1(1), will still be denoted by O(1). We define a sheaf G̃

on X × P1 by the exact sequence 0 // pr ∗
1 F // pr ∗

1 F(1) ⊕ pr ∗
1 G // G̃ // 0, where the first map is by

(id⊗s, γ). Remark that G̃0 ≃ F ⊕H and G̃t ≃ G if t 6= 0.

Lemma 4.6. There exist two exact sequences

0 // pr ∗
1 F(1) // G̃ // pr ∗

1 H // 0(i)

0 // G̃ // pr ∗
1 G(1) // iX0∗

H // 0.(ii)

Remark 4.7. (i) implies that G̃ is flat over P1.

Proof. (i) The morphism pr ∗
1 F(1) ⊕ pr ∗

1 G // // pr ∗1 G // // pr ∗
1 H induces a morphism G̃ // // pr ∗

1 H . If K

is the kernel of this morphism, the sequence 0 // pr ∗
1 F // pr ∗

1 F(1) ⊕ pr ∗
1 F // K // 0 , where the first

morphism is (id⊗s, id), is exact. Thus K = pr ∗
1 F(1).

(ii) We consider the morphism pr ∗
1 F(1) ⊕ pr ∗

1 G // // pr ∗
1 G(1) defined by f + g �

// γ(f) − g ⊗ s. It in-

duces a morphism φ: G̃ //pr ∗
1 G(1) . The last morphism of (ii) is the composition of pr ∗

1 G(1) // // iX0∗
G

and iX0∗
G // // iX0∗

H . The cokernel of this morphism has support in X × {0}. Besides, the action of t

on this cokernel is zero. The restriction of φ to the fiber X0 = X×{0} is the morphism F ⊕H //G , thus

the sequence G̃ // pr ∗
1 G(1) // iX0∗

H // 0 is exact. The kernel of φ, as its cokernel, is an OX0
-module.

Thus we can find Z such that kerφ = iX0∗
Z. Since X0 is a hypersurface of X × P1, for every coherent

sheaf L on X × P1, we have Tor2(L, iX0
) = 0. Applying this to L = G̃/

iX0∗
Z

and using Remark 4.7, we

get Tor1(iX0∗
Z, iX0

) ⊆ Tor1(G̃, iX0
) = {0}. But Tor1(iX0∗

Z, iX0
) ≃ Z ⊗N ∗

X0/X×P1 ≃ Z, so Z = {0}. �

Recall now that H = iY ∗E where Y is a smooth hypersurface of X and E is a locally free sheaf on Y . We
consider the space MY/X of the deformation of the normal cone of Y in X (see [Fu]); MY/X is the blowup

of X × P1 along Y × {0}. Let σ :MY/X
//X × P1 be the canonical morphism. Then σ ∗X0 is a reduced

divisor in MY/X with two simple irreducible components: E = P
(
NY/X ⊕ OY

)
and D = BlY X ≃ X ,

which intersect at P
(
NY/X

)
≃ Y . The projection of the blowup from E to Y ×{0} will be denoted by q,

and the canonical isomorphism from D to X × {0} will be denoted by µ.

We now show:
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Lemma 4.8. The sheaf σ ∗G̃ is locally free modulo torsion on MY/X, and the associated kernel N is

the push-forward of a locally free sheaf on E. More explicitly, if F is the excess conormal bundle of q,
N = iE∗

(
q ∗E ⊗ F

)
.

Proof. We start from the exact sequence 0 // G̃ // pr ∗
1 G(1) // iX0∗

H // 0. We define the sheaf Q by

the exact sequence 0 // Q // σ ∗ pr ∗
1 G(1) // σ ∗iX0∗

H // 0. Since σ ∗iX0∗
H is the push-forward of a lo-

cally free sheaf on E, the sheaf Q is locally free on MY/X . Then the following sequence is exact:

0 // Tor1(iX0∗
H, σ) // σ ∗G̃ // Q // 0. The first sheaf being a torsion sheaf, Q is a locally free quotient

of G̃ with maximal rank. Besides, using the notations given in the following diagram

E � � iE
//

q

��

MY/X

σ

��

Y × {0} � �

iY ×{0}

// X × P1

we have Tor1(iX0∗
H, σ) = iE∗

(
q ∗E ⊗ F

)
where F is the excess conormal bundle of q (see [Bo-Se, § 15].

Be aware of the fact that what we note F is F ∗ in [Bo-Se]). �

We consider now the exact sequence 0 // N // σ ∗G̃ // Q // 0 where Q is locally free on MY/X and

N = iE∗

(
q ∗E ⊗ F

)
= iE∗L. We would like to introduce the class ch(σ ∗G̃), but it is not defined since

MY/X is of dimension n + 1. However, σ ∗G̃ fits in a short exact sequence where the Chern classes of the
two other sheaves can be defined. Remark that we need Lemma 4.8 to perform this trick. It cannot be

done on X × P1 since G̃ is torsion-free.

Lemma 4.9. Let α be the cohomology class on MY/X defined by α = ch(Q)+iE∗

(
ch(L) td

(
NE/M

Y/X

)−1
)
.

(i) The class α is the pullback of a cohomology class on X × P1.

(ii) We have i ∗Dα = µ ∗ ch
(
G̃0

)
.

Proof. We compute: i ∗Eα = i ∗E iE∗

(
ch(L) td

(
NE/M

Y/X

)−1
)

= ch(L) td
(
NE/M

Y/X

)−1
c1

(
NE/M

Y/X

)
=

ch(L)

(
1− e

−c1

(
NE/M

Y/X

))
= ch(L)− ch

(
L⊗N ∗

E/M
Y/X

)
= ch

(
i ∗EN

)
− ch

(
L⊗N ∗

E/M
Y/X

)
, by Axiom B

(vi). From the exact sequence 0 // N // σ ∗G̃ // Q // 0, we get the exact sequence of locally free sheaves

on E: 0 // i ∗EN
// i ∗E σ ∗G̃ // i ∗EQ

// 0. We obtain i ∗Eα = ch
(
i ∗EQ

)
+ ch

(
i ∗EN

)
− ch

(
L ⊗ N ∗

E/M
Y/X

)
=

ch
(
i ∗Eσ ∗G̃

)
−ch

(
L⊗N ∗

E/M
Y/X

)
= ch

(
q ∗i ∗Y F

)
+ch

(
q ∗i ∗Y H

)
−ch

(
L⊗N ∗

E/M
Y/X

)
= q ∗ch

(
i ∗Y F

)
+q ∗ch(E)−

ch
(
q ∗E ⊗ F ⊗ N ∗

E/M
Y/X

)
. The conormal excess bundle F is the line bundle defined by the exact se-

quence 0 // F // q ∗N ∗
Y/X×P1

// N ∗
E/MY/X

// 0. Thus, we have det
(
q ∗N ∗

Y/X×P1

)
= F ⊗N ∗

E/M
Y/X

. Since

det
(
q ∗N ∗

Y/X×P1

)
= q ∗ det

(
N ∗

Y/X×P1

)
, we get i ∗Eα = q ∗

[
ch
(
i ∗Y F

)
+ch(E)− ch

(
E ⊗det

(
N ∗

Y/X×P1

))]
. This

proves (i).

(ii) The divisors E and D meet transversally. Then i ∗Dα = i ∗Dch(Q) + i ∗DiE∗

(
ch(L) td

(
NE/M

Y/X

)−1
)

=

ch
(
i ∗DQ

)
+iE∩D/D∗ i ∗E∩D/E

(
ch(L) td

(
NE/M

Y/X

)−1
)

= ch
(
i ∗DQ

)
+iE∩D/D∗

(
ch
(
i ∗E∩D/EL

)
td
(
NE∩D/D

)−1
)

by Axiom B (iii). We remark now that i ∗E∩D/EL = i ∗E∩D N . Since dimD = n, we obtain i ∗Dα =
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ch
(
i ∗DQ

)
+ ch

(
iE∩D/D∗i

∗
E∩DN

)
= ch

(
i ∗DQ

)
+ ch

(
i ∗DN

)
. Taking the pullback on D, we get an exact se-

quence 0 // i ∗DN // i ∗D σ ∗G̃ // i ∗DQ // 0. Therefore i ∗D σ ∗G̃ is locally free modulo torsion and, µ being

an isomorphism, ch
(
i ∗DQ

)
+ ch(i ∗DN ) = ch

(
i ∗D σ ∗G̃

)
= ch

(
µ ∗G̃0

)
= µ ∗ ch

(
G̃0

)
. �

Proof of Theorem 4.1. Let α be the form defined in Lemma 4.9. Using (i) of this lemma and Axiom B

(v), we can write α = σ ∗β. Thus i ∗D α = i ∗D σ ∗β = µ ∗i ∗X0
β. By (ii) of the same lemma, i ∗Dα = µ ∗ ch

(
G̃0

)

and we get i ∗X0
β = ch

(
G̃0

)
. If t ∈ P1\{0}, we have clearly β|Xt

= ch(G). Since β|Xt
= β|X0

we obtain

ch(G) = ch
(
G̃0

)
= ch(F) + ch(H). �

We can now establish the remaining induction properties.

Theorem 4.10. The following assertions are valid:

(i) Property (Fn) holds.

(ii) Property (Pn) holds.

Proof. (i) We take y = [F ]. Let us first suppose that f is a bimeromorphic map. Then there exists a

bimeromorphic map σ : X̃ //X such that (f ◦ σ) ∗F is locally free modulo torsion. Then by Proposition

3.13 (i), σ ∗ ch
(
f ![F ]

)
= ch

(
σ ! f ![F ]

)
= (f ◦ σ) ∗ chF = σ ∗

[
f ∗ ch(F)

]
. Suppose now that f is surjective.

Then there exist two bimeromorphic maps πX : X̃ //X, πY : Ỹ //Y and a surjective map f̃ : X̃ // Ỹ such

that:

– the diagram X̃
ef

//

πX

��

Ỹ

πY

��

X
f

// Y

is commutative.

– the sheaf π ∗
Y F is locally free modulo torsion.

We can write π !
Y [F ] = [E ] + ỹ in G(Ỹ ), where ỹ is in the image of the natural map ι:Gtors(Ỹ ) //G(Ỹ ).

and E is locally free. The functoriality property being known for bimeromorphic maps, it holds for πX

and πY . The result is now a consequence of Proposition 3.2 (iii).

In the general case, we consider the diagram used in the proof of Proposition 3.2 (iii)

X̃
ef

//

πX

��

W
iW

//

τ

��

Ỹ

πY

��

X
f

// f(X) // Y

where f̃ is surjective. Then the functoriality property holds for f̃ by the argument above and for iW by
Proposition 3.13 (ii). This finishes the proof.

(ii) We can suppose that x = [F ], y = [G] and that F and G admit locally free quotients E1, E2 of maximal
rank. Let T1 and T2 be the associated kernels. We can also suppose that supp(T1) lies in a simple
normal crossing divisor. Then ch([F ].[G]) = ch([E1].[E2]) + ch([E1].[T2]) + ch([E2].[T1]) + ch([T1].[T2]) =
ch(E1)ch(E2) + ch(E1) ch(T2) + ch(E2) ch(T1) + ch([T1].[T2]) by Theorem 4.1 and Proposition 3.2 (ii). By
dévissage, we can suppose that T1 is a OZ-module, where Z is a smooth hypersurface of X . We write
[T1] = iZ∗u and [T2] = v. Then [T1] . [T2] = iZ∗

(
u . i !

Zv
)
. So, by (Pn−1), Proposition 3.9 (ii) and the

projection formula, ch
(
[T1].[T2]

)
= iZ∗

(
ch(u . i !

Zv) td
(
NZ/X

)−1
)

= iZ∗

(
ch(u)i ∗Z ch(v) td

(
NZ/X

)−1
)

=

iZ∗

(
ch(u) td

(
NZ/X

)−1
)

ch(v) = ch
(
iZ∗u

)
ch(v) = ch

(
[T1]
)
ch
(
[T2]
)
. �

The proof of Theorem 3.1 is now concluded with the exception of property (RRn).
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5. The Grothendieck-Riemann-Roch theorem for projective morphisms

5.1. Proof of the Grothendieck-Riemann-Roch theorem. We have already obtained the Grothen-
dieck-Riemann-Roch theorem for the immersion of a smooth divisor. We reduce now the general case to
the divisor case by a blowup. This construction is classical (see [Bo-Se]).

Theorem 5.1. Let Y be a smooth submanifold of X. Then, for all y in G(Y ), we have

ch
(
iY ∗y

)
= iY ∗

(
ch(y) td(NY/X)−1

)
.

Proof. We blow up Y along X as shown below, where E is the exceptional divisor.

E
iE

//

q

��

X̃

p

��

Y
iY

// X

The exact sequence 0 // F // q ∗N ∗
Y/X

// N ∗
E/ eX

// 0 defines the excess conormal bundle F of q. If d is

the codimension of Y in X , then rank(F ) = d − 1. Recall the following formulae:

(a) ∀y ∈ G(Y ), p ! iY ∗y = iE∗

(
q !y . λ−1F

)
.

(b) ∀β ∈ A(Y ), p ∗ iY ∗ β = iE∗

(
q ∗β cd−1(F

∗)
)
.

(c) If G is a vector bundle of rank r, then ch
(
λ−1[G]

)
= cr(G

∗) td(G ∗)−1 ([Bo-Se, Lemme 18]).

We obtain p ∗ ch
(
iY !y

)
= ch

(
p ! iY !y

)
= ch

(
iE∗(q

!y . λ−1[F ])
)

= iE∗

(
ch
(
q !y . λ−1[F ]

)
td
(
NE/ eX

)−1
)

= iE∗

(
q ∗ ch(y) ch

(
λ−1[F ]

)
q ∗ td

(
NY/X

)−1
td
(
F ∗
))

= iE∗

(
q ∗
(
ch(y) td

(
NY/X

)−1)
cd−1(F

∗)
)

= p ∗ iY ∗

(
ch(y) td

(
NY/X

)−1
)
. Thus ch

(
iY ∗y

)
= iY ∗

(
ch(y) td

(
NY/X

)−1)
. �

Now we can prove a more general Grothendieck-Riemann-Roch theorem:

Theorem 5.2. The Grothendieck-Riemann-Roch theorem holds for projective morphisms between smooth

complex compact manifolds.

Proof. Let f :X //Y be a projective morphism. Then we can write f as the composition of an immersion

i:X //Y × PN and the second projection p:Y × PN //Y . By Theorem 5.1, the Grothendieck-Riemann-

Roch theorem is true for i. Now the arguments in [Bei] show that the canonical map from G(Y )⊗ZG(PN )
to G(Y ×PN) is surjective. Therefore, it is enough to prove the Grothendieck-Riemann-Roch theorem for
p with elements of the form y . w, where y ∈ G(Y ) and w ∈ G(PN ). By the product formula for the Chern
character, we are led to the Hirzebruch-Riemann-Roch formula for PN , which is Axiom B (vii). �

5.2. Compatibility of Chern classes and the Grothendieck-Riemann-Roch theorem. We will
show that the Grothendieck-Riemann-Roch theorem for immersions combined with some basic properties
can be sufficient to characterize completely a theory of Chern classes. The following compatibility theorem
will apply in various situations:

Theorem 5.3. Let X
�
// A(X) be a cohomology theory on smooth complex compact manifolds which

satisfies Axioms C in Section 2.1. Let ch, ch′ :G(X) //A(X) be two group morphisms such that

(i) ch and ch′ are functorial by pullback under holomorphic maps.

(ii) For every line bundle L, ch(L) = ch′(L).
(iii) ch and ch′ verify the Grothendieck-Riemann-Roch theorem for smooth immersions.

Then ch = ch′.

Remark 5.4. 1. The same conclusion holds for cohomology algebras over Z if we assume the
Grothendieck-Riemann-Roch theorem without denominators.
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2. If X is projective, (i) and (ii) are sufficient to imply the equality of ch and ch′ because of the
existence of global locally free resolutions.

Proof. We start by proving that for any holomorphic vector bundle E, ch(E) and ch′(E) are equal.

We argue by induction on the rank of E. Let π : P(E) //X be the projective bundle of E. Then

we have the exact sequence 0 // OE(−1) // π ∗E // F // 0 on P(E), where F is a holomorphic vector

bundle on P(E) whose rank is the rank of E minus one. By induction, ch(F ) = ch′(F ) and by (iii),
ch(OE(−1)) = ch′(OE(−1)). Thus, ch(π ∗E) = ch′(π ∗E) and by (i), π ∗[ch(E) − ch′(E)] = 0. By Axiom
C (iii), ch(E) = ch′(E).

We can now prove Theorem 5.3. The proof proceeds by induction on the dimension of the base manifold
X .

Let F be a coherent sheaf on X . By Proposition 3.10 there exists a bimeromorphic morphism σ : X̃ //X

which is a finite composition of blowups with smooth centers and a locally free sheaf E on X̃ which
is a quotient of maximal rank of σ ∗F . Furthermore, by Hironaka’s theorem, we can suppose that the

exceptional locus of σ and the kernel of the morphism σ ∗F // E are both contained in a simple normal

crossing divisor D of X̃ . Thus σ ![F ] =
∑n

i=0(−1)i
[
Tori(F , σ)

]
= [E ] +

∑n
i=1(−1)i

[
Tori(F , σ)

]
and then

σ ![F ] ∈ [E ] + GD(X̃). Now there is a surjective morphism ⊕N
i=1GDi

(X̃) // GD(X̃) . Moreover, G(Di)

is isomorphic to GDi
(X̃). Remark that td

(
N

Di/ eX

)
= td′

(
N

Di/ eX

)
. By the Grothendieck-Riemann-Roch

theorem and the induction hypothesis, ch and ch′ are equal on each GDi
(X̃). By the first part of the

proof, ch(E) = ch′(E). Thus ch
(
σ ![F ]

)
= ch′

(
σ ![F ]

)
. By (ii), σ ∗

[
ch(F) − ch′(F)

]
= 0. Since σ ∗ is

injective by Axiom C (ii), ch(F) = ch′(F). �

Corollary 5.5. Let F be a coherent analytic sheaf on X. Then:

(i) The Chern character ch(F) in rational Deligne cohomology given by Theorem 1.1 is mapped to the

topological Chern character of F by the natural morphism from ⊕i H2i
D (X, Q(i)) to ⊕i H2i(X, Q).

(ii) The image of ch(F) via the natural morphism from ⊕i H2i
D (X, Q(i)) to ⊕i Hi(X, Ωi

X) is the Atiyah

Chern character of F

Proof. It suffices to notice that the Grothendieck-Riemann-Roch theorem for immersions holds for the
topological Chern character by [At-Hi] and for Atiyah Chern character by [OB-To-To]. Thus Theorem
5.3 applies. �

Remark 5.6. If X is a Kähler complex manifold, the Green Chern classes are the same as the Atiyah
Chern classes and the complex topological Chern classes. If X is non Kähler, the Grothendieck-Riemann-
Roch theorem does not seem to be known for the Green Chern character, except for a constant morphism
(see [To-To]). If this were true for immersions, it would imply the compatibility of ch(F) and ch(F)Gr,

via the map from ⊕i H2i
D (X, Q(i)) to ⊕i H2i(X, Ω•>i

X ). On the other hand, if this compatibility holds, it
implies the Grothendieck-Riemann-Roch theorem for immersions for the Green Chern character.
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1
2 , Cohomologie étale, Lecture

Notes in Math., 569, Springer, (1976).
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