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Abstract: The rapidly increasing volume of visual Earth Observation data calls for effective content based
image retrieval solutions, specifically tailored for their high spatial resolution and heterogeneous
content. In this paper, we address this issue with a novel local implementation of the well-known
morphological descriptors called pattern spectra. They are computationally efficient histogram-like
structures describing the global distribution of arbitrarily defined attributes of connected image
components. Besides employing pattern spectra for the first time in this context, our main contribution
lies in their dense calculation, at a local scale, thus enabling their combination with sophisticated
visual vocabulary strategies. The Merced Landuse/Landcover dataset has been used for comparing
the proposed strategy against alternative global and local content description methods, where the
introduced approach is shown to yield promising performances.

Keywords: content based image retrieval; mathematical morphology; pattern spectra; remote sensing;
scene description

1. Introduction

Visual Earth Observation technologies are of crucial importance to contemporary societies, as the
scale of our effect on our surroundings is now greater than ever. Moreover, the rapid improvement of
spatial and spectral resolutions of image acquisition devices has rendered satellite and aerial imagery
an invaluable source of information with an ever-growing range of social, environmental and military
applications. Consequently, this constant proliferation and increasing sophistication of remotely sensed
images has created an urgent need for equally effective and efficient methods for their exploitation.

More specifically, the rapid accumulation of gigabytes worth of aerial and satellite data on a daily
basis has rendered scalable, robust and automated tools, designed for their management, search, and
retrieval, essential for their effective exploitation. This motivates us to focus on the retrieval of such
aerial overhead images and propose a novel approach for their content based description and retrieval.

Content based image retrieval (CBIR) is typically achieved by means of computing descriptors [1–4],
either globally for the whole image [5,6] or on selected [1,7,8] or predetermined parts of the image [9,10].
In case the descriptors are computed locally on patches, which produces multiple descriptors per
image, they are first aggregated to produce a singular descriptor entry for each image [11,12]. Finally,
the image descriptors are further used in dedicated indexing schemes [9,13–15] to achieve the end goal
of successful retrieval.

Mathematical morphology has long enjoyed the attention of the remote sensing image analysis
community, especially in terms of pixel classification with morphological profiles [16] and more recently
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attribute profiles [17–20], as it possesses unique tools capable of spatial-spectral content analysis.
Its application to content based retrieval has, however, been surprisingly limited in this context with
using mostly texture descriptors [21,22], considering it possesses many more powerful alternatives.

One such alternative are the well-known pattern spectra [23], a multiscale tool operating globally
on connected image components, and producing the histogram-like distribution of one or more of their
arbitrarily defined spatial and/or spectral attributes. Although pattern spectra are powerful content
descriptors, up until recently one could only calculate them globally from a given image. This has
changed through our extension to their underlying theory that has enabled their computation at a
local level [24]. Our preliminary works with local pattern spectra have focused on their successful
calculation from local salient regions [25,26].

Motivated by these results, in this paper, we present a novel content description strategy relying
for the first time on the dense calculation of local pattern spectra from a regular grid, and further
combine them with vectors of locally aggregated descriptors (VLAD). The resulting content description
solution is tested against global pattern spectra, and alternative local strategies using the largest aerial
CBIR dataset that is publicly available, namely the UC Merced Landuse/Landcover dataset, where it
achieves promising performances.

The paper is organized as follows. Section 2 reviews previous work on the content based retrieval
of aerial and satellite imagery and elaborates on our contributions. Next, Section 3 recalls the definition
of pattern spectra, both as global and local descriptors, and also details the different attributes involved
in our study. We describe the evaluation protocol used in our experiments in Section 4, while results
are discussed in Section 5 before we conclude and give future research directions.

2. Previous Work

Content based image retrieval has come a long way in the last 20 years. After the initial successful
feasibility tests, a lot of effort has been dedicated on bridging the “semantic gap”, i.e., the gap between
lower level content descriptors and the semantics of an image, and on the implementation of further
retrieval modalities (e.g., action based retrieval from video, etc.). For an in-depth study of the issues
related to CBIR and a comprehensive review of the field, the reader is referred to [27].

The relatively recent advent of very large commercial databases of remotely sensed images has
led the research community to adapt and further develop the existing CBIR solutions for this new
context, characterized primarily by an overhead viewpoint, high spatial resolution and heterogeneous
content. Consequently, a wide array of new strategies has emerged, of which an overview follows.

2.1. Related Work

A standard CBIR system is composed by at least two components: its content description or
feature extraction module, which reduces the visual data into compact representations, and the
similarity measure which will be used on the extracted features in order to determine the images
similar to the query (cf. Figure 1).
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Figure 1. A CBIR system overview.
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As far as the content description of aerial and satellite images, with the end goal of retrieval,
are concerned, one encounters a rich variety of feature extraction solutions. Early attempts have started
with the basic statistical properties of spectral image classes [28], and quickly advanced to adapting
already tested methods of color CBIR to this field, using shape [29] and especially known texture
descriptors such as Gabor filters [30], morphological covariance [21], Local Binary Patterns [31] and
grayscale co-occurrence matrices [32].

More recent approaches, however, in parallel to the developments in the computer vision field,
have oriented themselves towards local description strategies and visual vocabularies. In this regard,
GIST [33], SIFT [9,34], and MSER [35] have been thoroughly studied and SIFT has been concluded to
be the best performing among them. Moreover, new and challenging datasets have been also proposed
with the CBIR of geographical images in mind, with the Landcover/Landuse UC Merced dataset being
the largest to date among them, possessing 21 classes and 2100 samples. As such, it has been rapidly
adopted by the scientific community of both content based retrieval and scene classification for remote
sensing [9,21,22,36–44].

As of late, further works published in this field have focused on combining both global and
local descriptors [45], while others have concentrated on exploiting user feedback through active
learning [46]. Finally, deep learning techniques have also been applied to the problem under
consideration, mostly in the form of convolutional neural networks [44].

2.2. Our Contributions

In this paper, we explore the potential of local pattern spectra, computed with a dense strategy,
for the content description of aerial images, with CBIR being the end goal. We further combine them
with the vector of locally aggregated descriptors (VLAD) to form a visual vocabulary.

In more detail, pattern spectra are one of the oldest and most powerful content descriptors that
are offered by mathematical morphology [23]. They were initially introduced for describing the size
distribution of objects within images through histogram-like representations. In time, they have been
extended [6,47] to describe not only the size, but the shape and texture distribution as well as the
distributions of any arbitrarily selected attribute among connected image components. Furthermore,
their efficient implementation through tree based image representations has further rendered them
effective, efficient and multiscale, general purpose, holistic (i.e., global) content description tools.
Hence, our first contribution to the state-of-the-art, is applying pattern spectra for the first time to the
CBIR of aerial images.

Moreover, the theoretical background needed in order to compute them locally has only recently
been introduced [24]. The first reported implementation of local pattern spectra has been in the context
of general purpose image classification, where they have been computed from salient regions that
have been detected by means of MSER [25,26]. Following the promising performances that have been
obtained in that context, in this paper, for the first time, we explore calculating local pattern spectra not
from salient regions, but instead from the entire input image, using not a global approach but rather a
dense grid with fixed steps. This constitutes the second novelty aspect of our approach.

In addition, following the work of Ozkan et al. [9], where SIFT has been explored along with
VLAD, we investigate and report the results of combining locally computed pattern spectra along
with the visual vocabulary obtained through VLAD. In this regard, our work is the second time in
the state-of-the-art that any morphological approach is used to form a visual vocabulary (with the
first being [22]), and the first time with local pattern spectra, which constitutes the third original
contribution of our work to the state-of-the-art.

The proposed approach is tested and validated with the largest publicly available dataset of
its kind, and is shown to be comparable in terms of retrieval performance to the widely-used SIFT
descriptors at a much shorter feature vector length.
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3. Pattern Spectra

This section will first recall the principles behind pattern spectra, and then elaborate on the
particularities and differences between their global and local implementation.

Pattern spectra are histogram-like structures originating from mathematical morphology,
commonly used for content analysis [23], and capture information on the distribution of sizes
and shapes of image components. They can be seen as estimates of probability density functions,
with histograms as their basic and oldest form [48]. They can be efficiently computed using a technique
known as (size or shape) granulometry [49,50] on a max-tree and min-tree hierarchy [51,52].

3.1. Min- and Max-Trees

The min- and max-trees [51,52] are hierarchical decompositions of an image, working with its
level sets. In more detail, the upper level sets are defined for each gray level k of an image I. The upper
level set at level k comprises all the pixels p with the gray level value f (p) higher than the threshold k,
Lk = {p ∈ I| f (p) ≥ k}. Each level set can contain several connected components, called also the peak
components. The peak components of the upper level set Lk are denoted by Lk,i (where i is from some
index set) and are nested for the decreasing values of k. When organized in a hierarchy, these nested
components form a hierarchy called a max-tree (cf. Figure 2) which contains a node corresponding to
each peak component Lk,i.
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Figure 2. The max-tree for the shape in (a) is displayed in (b). The regions corresponding to the nodes
are displayed besides them, with the level sets indicated inside the nodes.

The max-tree hierarchy contains bright image details and regions (local gray level maxima)
in its leaves. On the contrary, for operating with dark image regions, lower level sets denoted by
Lk = {p ∈ I| f (p) ≤ k} are used, and organized in a hierarchy called a min-tree. The min-tree
hierarchy can also be constructed as a max-tree of the inverted image−I, due to the duality relation
between the two hierarchies. As the hierarchies themselves store the gray levels of all the components,
a full image can be reconstructed directly from its min and max-trees.

3.2. Filtering and Granulometries

To characterize the regions of these hierarchies, we can assign to each node the attributes
pertaining to the characteristics of that node. An attribute K(·) is increasing if, for two nested
regions Lk,i ⊆ Ll,j, its value is always greater for the larger region: K(Ll,j) ≥ K(Lk,i). Consequently,
the attribute value of a node, K(Lk,i), will be smaller than any of the values of its ancestors. These
kinds of attributes typically describe the size of the node.
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If this property does not hold, the attribute is non-increasing. Out of all the non-increasing
attributes, here we are interested by the strict shape attributes, which respond only to region shape
and are thus invariant to scaling, rotation, and translation [49].

We rely on the standard approach of measuring the number of pixels of a region to describe its size,
which is thus represented by the corresponding area A(Lk,i). We tackle the shape information through
two different attributes. The first attribute used is an elongation measure of the region, called the
corrected noncompactness (CNC):

CNC(Lk,i) = 2π

(
I(Lk,i)

A(Lk,i)2 +
1

6A(Lk,i)

)
(1)

where I(Lk,i) is the moment of inertia of the region here. This attribute in fact corresponds to the first
moment invariant of Hu [53] corrected for its application on the discrete image space, as opposed to the
continuous space [54]. It is a shape attribute commonly used in remote sensing [20]. Thus, the first term

I(Lk,i)
A(Lk,i)2 computes the first moment invariant of Hu, while the term 1

6A(Lk,i)
corresponds to the correction

factor. This attribute takes the value of 1 for a perfectly circular (compact) object, which grows as the
shape of the object approaches that of a long thin line. However, in practice, values higher than a
threshold of around 50–60 tend to be discarded when working with this attribute [6,24] as the regions
achieving such high noncompactness values are extremely rare (1% or less of all the regions per min
and max-trees corresponding to the dataset used in this paper). Other measures exist which correspond
better to the elongation of the object, such as geodesic diameter [55]. However, while such attributes
are needed when the region selection process depends solely on one (or several) attributes such as
extraction of fingerprint structures presented in [56], the pattern spectra approach presented hereafter
is more robust due to relying on multiple attribute measures from a single region to characterize it
with a region descriptor. Additionally, even the efficient approximation of the geodesic diameter called
barycentric diameter [56] still requires modification to the max-tree algorithm due to the max-tree
being suited only for calculation of attributes which can be efficiently updated as the tree is constructed
from the local maxima by an aggregation process. Thus, in the efficient implementation of filtering
using the barycentric diameter, the max-tree traversal order is modified to better suit the nature of the
attribute, and only partial information pertaining to the attribute is updated during the tree traversal,
while the final attribute values still need to be computed by examining the pixels of each node in the
traversal anew.

The second non-increasing attribute we use is Shannon entropy, defined using the frequency with
which a pixel of gray level i occurs in the region Lk,i, expressed by the probability p(i,Lk,i):

H(Lk,i) = − ∑
i∈ gray levels

p(i,Lk,i) log2 p(i,Lk,i) (2)

Low attribute values ofH(·) will be observed when the region content is homogeneous in terms
of gray level distribution, while heterogeneous regions containing many different gray levels will have
higher values of this attribute. However, the range of this attribute is much smaller than that of the
CNC attribute, so that the attribute values of interest are between 0 and 8 [6]. Attributes assigned
to nodes can also be based on more complex notions, such as texture, motion, or even similarity to
predefined shapes [57]. Many other attribute examples can be found in [49,51,58].

After the tree construction phase and the attribute assignment of their nodes, we can consider
nodes for further processing only if their attribute value K(Lk,i) is above a certain threshold t. The trees
are then pruned by removing all the connected components below this threshold. Processing the
hierarchies in such a manner (in which the decision to preserve or reject the nodes of the hierarchy
is based on their attribute values) is called filtering. For a general attribute K(·) and threshold t,
we represent by Ψt the filter which keeps only the nodes with K(Lk,i) > t, and Ψt(I) the image
obtained by the reconstruction of the filtered tree.
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When performing a single attribute filtering with an increasing attribute such as size, the resulting
operation Γt will have properties of an attribute opening (i.e., anti-extensivity, increasingness and
idempotence). A size granulometry [49] is a series of such openings {Γti}with increasing size, ti+1 > ti,
which removes more components from the image in every step and can be seen as a set of sieves of
increasing grades. After each consecutive opening, a granulometry notes the amount of detail still
present in the image. When using a non-increasing, scale-invariant attribute Φt, the resulting attribute
filtering, or attribute thinning is still anti-extensive and idempotent, but no longer increasing. If the
image Φt(I) is reconstructed from a tree pruned by applying the subtractive rule [50], the extension of
the technique to shape granulometries [50] allows noting the amount of image detail across classes
based on shape or other scale-independent attribute measures of the regions. The subtractive rule used
for pruning the tree is performed by removing only the components which do not satisfy the attribute,
but preserving the local contrast of the kept components. When such a rule is used, Φt(I) contains
only the components with K(Lk,i) > t, and, more importantly, the difference image I −Φt(I) contains
only the components with K(Lk,i) ≤ t.

3.3. Global Pattern Spectra

Contrary to granulometries, pattern spectra focus on the amount of detail removed between
consecutive openings. The size pattern spectrum [23] is based on area openings and size
granulometries, and is represented by a histogram over all the different size classes. Similarly, a
shape pattern spectrum [50] is based on the shape granulometry corresponding to a histogram of
component attribute distribution over a range of shape classes. Every size class (resp. shape class)
in the size pattern spectrum (resp. shape pattern spectrum) is described by its Lebesgue measure
corresponding to the amount of detail falling into that class. The pattern spectra can be interpreted as
probability density function estimates in their simplest, histogram form, describing the probability of a
component with a certain size or shape to be present in the image. In order to put the definition of the
size pattern spectra from [23] into a form more suitable for grayscale images I, we define the volume
of a grayscale image I as:

V(I) = ∑
k

A(Lk) = ∑
k

∑
i

A(Lk,i) (3)

Then, for a size granulometry {Γti}, we can define the size pattern spectrum {sΓ,ti} as:

sΓ,ti = V(Γti−1(I))−V(Γti (I))

sΓ,tmin = V(I)−V(Γtmin(I))
(4)

Similarly, according to [50], for a shape granulometry {Φti}, the shape pattern spectrum {sΦ,ti}
can be defined as:

sΦ,ti = V(Φti−1(I))−V(Φti (I))

sΦ,tmin = V(I)−V(Φtmin(I))
(5)

Combining shape and size pattern spectra into a unique 2D histogram showing the amount of
image detail across dedicated size-shape bins produces a shape-size pattern spectrum [47]. For a
size granulometry {Γti} and shape granulometry {Φuj}, we define the combined shape-size pattern
spectrum {sΓ,Φ,ti ,uj} as:

sΓ,Φ,ti ,uj = V(Γti−1(Φuj(I)))−V(Γti (Φuj(I))) + V(Γti (Φuj−1(I)))−V(Γti (Φuj(I))) (6)

= V(Γti−1(Φuj−1(I)))−V(Γti (Φuj(I)))

sΓ,Φ,tmin,uj = V(Φuj−1(I))−V(Γtmin(Φuj(I)))

sΓ,Φ,ti ,umin = V(Γti−1(I))−V(Γti (Φumin(I)))

sΓ,Φ,tmin,umin = V(I)−V(Γtmin(Φumin(I)))
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When calculated for a whole image, they can be used as translation, scale and rotation invariant
image descriptors and have been successfully applied to image classification [47] and retrieval [6]. It is
possible to use the combinations of attributes describing different object properties, such as orientation,
color and intensity as explored in [59]. As we aim the descriptor to encode the difference between
images with high and low content, we do not normalize the produced descriptors, but simply store the
amount of image detail (Lebesgue measure of contributing components) as a ratio of total image size.
The pattern spectra are parametrized by choosing the number of bins to be used for each attribute,
as well as the maximum value of each attribute to be considered in the histogram. The bin distribution
over different shape and size classes is typically logarithmic over the chosen range of attribute values.
When used in this manner, we will refer to the produced global image descriptors as Global Pattern
Spectra (GPS).

3.4. Local Pattern Spectra

Recently, a local extension of pattern spectra has been proposed [24,25], designed to characterize
patches rather than the whole image, i.e., either specifically selected regions of interest or patches of
predetermined shape and size. A local shape-size pattern spectrum is obtained by applying the series
of operators {sΓ,Φ,ti ,uj} to a specific connected component Lk,i, or more generally a regionR instead of
the whole image I. They were initially introduced on maximally stable extremal regions (MSER) [7] for
reasons of computational efficiency, as MSERs can be extracted from max-tree and min-tree hierarchies
in a straightforward manner. Initial experimental results showed that these descriptors can achieve
competitive performances in the context of grayscale image retrieval [24], motivating us to further
explore Local Pattern Spectra (LPS) in the context of remote sensing along more diversified strategies.

The inevitably smaller scale of objects contained within aerial images, with respect to regular
color photographs, alleviates the need for extracting regions of interest using detection steps such as
MSER. This is why we have chosen to instead employ a dense regular grid strategy for computing LPS.
More specifically, the LPS are computed on local rectangular patches defined on a densely sampled
regular grid over the image (cf. Section 4 for the details). If all the preselected local patches are of the
same (or very similar) size, the scale invariance property holds in the extension of GPS to LPS [25].
However, in order to achieve image description at multiple scales, different sizes of local patches can
be selected to correspond to each scale used. Due to the logarithmic binning, a common reference scale
M is used to allow for descriptor comparison in a scale-invariant manner. The local pattern spectrum
{sΓ,Φ,ti ,uj ,M}(R) is then defined as:

{sΓ,Φ,ti ,uj ,M}(R) = {sΓ,Φ,ti ,uj}(
M

A(R)R) (7)

where aR in general denotes the scaling of the region R by a. This technique, introduced in [24],
does not increase the complexity of the approach as this is achieved by simply scaling the Lebesgue
measure of individual contributions during the descriptor calculation.

4. Experimental Set-Up

4.1. Dataset and Evaluation Metrics

All of our experiments have been conducted on the publicly available UC Merced Dataset [34].
It contains 2100 color RGB images organized into 21 classes (100 images per class), examples of which
are shown in Figure 3. All images are of size 256× 256 pixels at a spatial resolution of 30 cm. We have
computed our descriptors first on the grayscale versions of the images, with the conversion being
Gray = 0.299× R + 0.587× G + 0.114× B.

To additionally boost the performance of the LPS descriptors, we applied data augmentation
techniques to the input images of the validation dataset. The best performance was achieved when all
the images from the Merced dataset were rotated for 45°, an example of which is shown in Figure 4.
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The LPS calculation is then repeated on the augmented images and appended to the descriptors
obtained for non-augmented data. It is important to note that the benefit of this approach comes
from the fact that different parts of the image are used for descriptor calculation, as the descriptors
themselves are scale invariant. For this reason, the GPS descriptors are not calculated on the augmented
data, as rotating an image does not change its content (as measured by the GPS).

Figure 3. Illustration of the 21 classes from the Merced dataset.

Figure 4. Examples of applying data augmentation on the images from the Merced dataset. The first
row shows the original images, while the corresponding 45° rotated images used for data augmentation
are shown in the second row.

The evaluation metric chosen is average normalized modified retrieval rank (ANMRR), as it is
the most commonly used metric on this dataset, thus allowing for straightforward comparison with
other published results [9,21,22,34]. It is commonly used to measure the effectiveness of retrieval [60].
Given a query q or all the queries of a same class, a number K(q) is defined, which denotes that only
the first K(q) returned images are considered as feasible in terms of retrieval evaluation. It is often set
as twice the size of the ground truth set NG(q). Assuming that the kth ground truth image is retrieved
at Rank(k), a penalty function Rank∗(k) is defined for each retrieved item:

Rank∗(k) =

{
Rank(k), if Rank(k) ≤ K(q)
1.25 K(q), if Rank(k) > K(q)

(8)
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From all the penalties Rank∗(k) for each query q, the average rank (AVR) for that q is defined as:

AVR(q) =
1

NG(q)

NG(q)

∑
k=1

Rank∗(k) (9)

After the intermediate step, ANMRR is directly defined as:

ANMRR =
1

NQ

NQ

∑
q=1

AVR(q)− 0.5(1 + NG(q))
1.25 K(q)− 0.5(1 + NG(q))

(10)

where NQ is the number of queries. Thus, ANMRR obtains values in the range of 0 for best results,
and 1 for worst results.

For the sake of completeness, we also express our results in terms of another retrieval measure,
namely mean Average Precision (mAP). This measure is designed specifically to evaluate ranked
retrieval results [61] and provide a single measure of quality across all recall levels of a system for a
set of multiple queries. For a single query image q, if a retrieval system returns K(q) results, we can
calculate precision and recall considering only the first m returned images in an unordered fashion.
Precision at m is calculated as the ratio between the number of correct (relevant) images in the set of
results and the total number of images retrieved at that point, m:

precision(m) =
relevantRetrieved(m)

m
(11)

while the recall at m is defined as the ratio between the number of relevant images in the set of results
and the total number of relevant images for that query:

recall(m) =
relevantRetrieved(m)

relevantTotal
(12)

Calculating and plotting the precision and recall values for a single query in a ranked retrieval
context produces a precision-recall curve. The area under this curve over all K results corresponds to
AP, the Average Precision of a query, and is equivalent to averaging the precision values obtained for
the set of top K retrieval results, after retrieving each new relevant result:

AP =
K

∑
m=1

precision(m)× ∆ recall(m) (13)

=
∑K

m=1 precision(m)× relevant(m)

relevantTotal

where relevant(m) is an indicator variable with the value 1 if the m-th retrieved image is relevant.
Finally, the mAP is calculated as the mean value of the Average Precision for all the queries.
This method does not penalize incorrect predictions, allowing for a large number of retrieval results to
be examined, while valuing the order of predictions by penalizing ranking incorrect predictions before
the correct ones.

4.2. Settings of Pattern Spectra Approaches

4.2.1. Global Pattern Spectra

We chose to use the 2D GPS descriptors to obtain a baseline performance for the family of Pattern
Spectra descriptors. In this baseline approach, we calculate the GPS descriptors from entire images.
The bin sizes have been determined experimentally, where the bin sizes used in previous published
works were used as a starting point [6]. This resulted in choosing to use 10 bins for the size (area)
attribute, and six for the shape attribute. The maximal allowed area in the histogram equals the size
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of the image. The maxima for the shape attributes were determined experimentally to be 56 for the
CNC attribute and eight for theH attribute. As we calculate the GPS from both the min-tree and the
max-tree of every image, this leads to global descriptors of length 6× 10 + 6× 10 = 120.

We report in Table 1 the results using the Area+CNC and Area+H as shape attributes, and observe
a further improvement when combining them into a single descriptor of length 240. Calculating GPS
from each grayscale channel of the RGB images separately (i.e., marginally) has been also explored,
but the results are not reported due to negligible improvements and because the approach cannot be
practically implemented with multi-channel images possessing an arbitrary number of channels.

4.2.2. Local Pattern Spectra

In order to improve the baseline GPS approach, we have first focused on a single-scale, local
approach. Here, the image is densely sampled and the LPS are calculated on regular rectangular
image patches over a grid on the image, as shown in Figure 5a. The patch dimensions have been
determined empirically to be between d = 32 and d = 128 pixels, and the dimensions of 80× 80
pixels were determined to be optimal. Similarly, a distance of 16 pixels between patch centers has
been selected for the best performance among the tested s = 8, 16, 32 pixels. Using eight bins for the
size attribute and six for the shape, resulting in a histogram of size 8× 6, was found to exhibit the
best performance with respect to the size of the LPS. This also agrees with our previous experiments
of LPS on salient regions [24]. As we still calculate two histograms per image patch (one per tree),
the final descriptor size of LPS is 8× 6 + 8× 6 = 96 (Table 1—dense LPS). Since all patches possess the
same size (contrary to salient regions), there is no need for any additional steps to ensure the scale
invariance of the descriptors.

(a) (b)

Figure 5. The illustration of how the patches cover the densely sampled image. In (a), the coverage
on a single scale is shown. The patch dimensions are d× d, and the parameter s determines the offset
between the centers of the patches; in (b), three final layers in a pyramid of patches covering the image
are shown (no overlap between the patches is shown in this example for clarity).

We have further experimented with LPS by calculating it across multiple scales, using a multiscale
pyramid of patches (Table 1—pyramid LPS). The patch size in the lowest scale was set to 32× 32
pixels and the size of patch increases for each level of the pyramid (2× along each dimension), as
shown in Figure 5b. As the size of patches used for LPS is no longer consistent, we follow the strategy
introduced in our previous work [24] to ensure scale invariance by using a common reference scale
for all the patches (set to the patch size on the second scale, 64× 64). The distance between the patch
centers is set to 16 pixels across all scales, thus resulting in the same descriptor length of 96, but with
three times more descriptors calculated per image.

We have tested both dense LPS and pyramid LPS with and without data augmentation. Moreover,
for both LPS based approaches, the VLAD indexing scheme has been used to produce the final



ISPRS Int. J. Geo-Inf. 2016, 5, 228 11 of 16

image descriptors [11] (Figure 6). As the crucial parameter of VLAD is the number of cluster centers,
we report the best performance for each LPS approach assuming different numbers of cluster centers,
ranging from k = 8 to k = 512 (Figure 7b). To construct the vocabulary for VLAD, we rely on
another publicly available dataset, namely ImageNet’s Large Scale Visual Recognition Challenge 2010
(ILSVRC2010) Validation dataset [62]. Let us underline that this dataset does not contain any remote
sensing data. The descriptors are calculated for the first 500 images of this ImageNet dataset (with the
same parameters for both the dense samples and the pyramid approach, where the pyramid patch size
was stopped at 256× 256 pixels), and a random subset of these descriptors is used for each experiment.
No data augmentation was performed on this dataset, as it has been used only for providing the visual
words for the VLAD cluster center calculation.

Table 1. The retrieval performances of different local and global approaches on Merced dataset.

Approach ANMRR mAP

SIFT (on keypoints, [34]) 0.601

dense SIFT [9] 0.4604
(using VLAD, k = 128)

global texture descriptors ([21]) 0.575

local texture descriptors [22] 0.585
(Bag of Words, k = 128)

GPS—Area + CNC 0.579 0.304
GPS—Area +H 0.670 0.221

GPS—both shape attributes (CNC +H) 0.557 0.325

dense LPS 0.525 0.380
(using VLAD, k = 32)

dense LPS-augmentation 0.494 0.411
(using VLAD, k = 64)

pyramid LPS 0.510 0.396
(using VLAD, k = 128)

pyramid LPS-augmentation 0.472 0.437
(using VLAD, k = 128)

Local	Pa?ern	Spectra	

VLAD 
Feature	encoding	

and	pooling	

Image	descriptor	

Figure 6. Overview of the feature extraction flow.
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Figure 7. Experiments showing the influence of the number of VLAD cluster centers as well as using
the descriptors based on augmented data. In (a), the retrieval results when calculating the LPS on a
densely sampled image are shown. The results when using a pyramid of patches are shown in (b).
Each data point was obtained by repeating the experiments between 10 and 20 times with different
random values used to initialize the VLAD clustering. The error bars on the figures express the scatter
in the results, and correspond to one standard deviation.

5. Results and Discussion

Our overall findings are shown in Table 1. From the obtained results, we report that the GPS
baseline, despite being a holistic approach, already outperforms both the previously reported global
and local morphological approaches based on texture description [21,22], as well as the seminal SIFT
approach based on salient keypoints [34].

More specifically, GPS have first been calculated along Area+CNC, since it is the shape attribute
used most commonly for pattern spectra calculation. Then, we have additionally experimented with
the Area+H combination for GPS (suggested by [6] to be the second most effective shape attribute).
The second set of pattern spectra, based onH, performs worse by itself, which can be explained by the
lower discriminatory power of theH attribute, since this attribute obtains values from a smaller range
than CNC. Nevertheless, the combination of the two attributes results in a performance improvement,
thus showing their complementary nature. The best results obtained with GPS have reached an
ANMRR of 55.7% (or the equivalent mAP of 32.5%).

As far as the proposed dense LPS and VLAD based approach is concerned, we have obtained
more significant improvements there. The first LPS approach (dense LPS), where the descriptors are
calculated from densely and regularly sampled patches of size 80× 80 pixels with 16 pixels between
the cluster centers, produces 144 descriptors per image and achieves an ANMRR of 52.5% (or mAP
of 38%).

However, the LPS results are reported using only the CNC attribute, since, contrary to GPS,
their combination with the other shape attribute did not result in an improvement. This can be
explained by the fact that the amount of detail contained in the densely sampled patches is much
smaller than in the whole image as in the case of GPS, hence resulting in fewer samples (regions)
employed during histogram calculation. Moreover, the range of the H attribute is typically smaller
than that of the CNC attribute; consequently, the histograms are no longer representative of the
distribution of this attribute in LPS, due to the lack of sufficient sample regions. Data augmentation,
on the other hand, leads to an improvement of three percentile points for both ANMRR and mAP
(Figure 7a). This figure also shows the effect of the number of VLAD cluster centers on performance,
where it can be observed that the best performance is achieved for a relatively low number of cluster
centers. It can also be seen that the optimal number of cluster centers shifts towards greater values
when data augmentation is applied, due to the greater variability expressed in the descriptors.



ISPRS Int. J. Geo-Inf. 2016, 5, 228 13 of 16

The last improvement on the proposed approach has been achieved through multiscale LPS
calculation (pyramid LPS). This strategy results in an approximately three-fold increase in the number
of descriptors, producing specifically 476 descriptors per image due to the multiple scales; while it
further improves its performances by means of data augmentation as shown in Figure 7b.

Moreover, a similar trend in the number of cluster centers can also be observed between the
augmented and non augmented versions of pyramid LPS, as they both achieve their optimum level
for the same number of cluster centers. When compared against the single scale dense approach,
the difference can be explained by the increase in the descriptor complexity as well as their number.
We note that this strategy contains the GPS approach, since the final scale of the LPS pyramid are the
images themselves.

Overall, the best LPS based results that have been achieved are 47.2% ANMRR (corresponding to
43.7% mAP), and show an improvement over all previous morphology-based approaches, as well as the
seminal keypoint based SIFT approach on this dataset [34]. Furthermore, our results are comparable to
the dense SIFT+VLAD approach of [9] with only a 1.2% difference in ANMRR performance. However,
let us highlight all the same that we achieve this by using shorter descriptors (of length 96 for LPS
and 128 for SIFT), as well as by employing fewer descriptors ([9] reports an offset of 10 pixels and five
pyramid levels, while we use a 16 pixel offset across four different scales).

6. Conclusions

In this paper, we have employed both global and local pattern spectra in the context of
geographical image retrieval, and implemented pattern spectra for the first time with a dense strategy,
in combination with the VLAD indexing scheme. We have evaluated the retrieval performance of the
Global Pattern Spectrum as well as of its new local counterpart, and compared them to the performance
of other state-of-the-art approaches. We have additionally expressed our results in terms of mAP,
another commonly used measure in retrieval, allowing for easier comparison to the performance of
the descriptors on different datasets. Our descriptor outperforms the seminal keypoint based SIFT
approach of [34] and produces the best morphology-based results thus far, outperforming all previous
morphological approaches.

When compared to the dense SIFT approach of [9], we obtain similar results using the VLAD
indexing scheme, with our performance being slightly lower by 1.2% ANMRR. However, the advantage
of our descriptor is that, despite its sparser sampling, it relies on far shorter feature vectors (75% length
of the dense SIFT descriptors), which leads to higher retrieval speeds.

Having established a multiscale and effective LPS based content based description solution,
future work will focus on exploiting the multi-variate structure of remote sensing images, which nowadays
routinely reaches the level of hundreds of bands in the case of hyperspectral images.
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