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L2-COHOMOLOGY AND COMPLETE HAMILTONIAN

MANIFOLDS

RAFE MAZZEO1 ÁLVARO PELAYO2 TUDOR S. RATIU3

Abstract. A classical theorem of Frankel for compact Kähler mani-
folds states that a Kähler S1-action is Hamiltonian if and only if it has
fixed points. We prove a metatheorem which says that when Hodge the-
ory holds on non-compact manifolds, then Frankel’s theorem still holds.
Finally, we present several concrete situations in which the assumptions
of the metatheorem hold.

1. The Classical Frankel Theorem

An S1-action on a symplectic manifold (M,ω) is Hamiltonian if there
exists a smooth map, the momentum map,

µ : M → (s1)∗ ≃ R

into the dual (s1)∗ of the Lie algebra s
1 ∼= R of S1, such that

iξMω := ω(ξM , ·) = dµ,

for some generator ξ of s1, that is, the 1-form iξMω is exact. Here ξM is the

vector field on M whose flow is given by R × M ∋ (t,m) 7→ eitξ · m ∈ M ,
where the dot denotes the S1-action on M . If (M,ω) is connected, compact
and Kähler, the following result of T. Frankel is well-known:

Frankel’s Theorem ([Fr59]). Let M be a compact connected Kähler mani-

fold admitting an S1-action preserving the Kähler structure. If the S1-action

has fixed points, then the action is Hamiltonian.

This theorem generalizes in various ways; for example, the S1-action may
be replaced by a G-action, where G is any compact Lie group and the Kähler
structure may be weakened to a symplectic structure. The purpose of this
paper is to generalize Frankel’s theorem to certain noncompact complete
Riemannian manifolds. More specifically, we describe a set of hypotheses
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under which the proof in the compact case can be generalized. This relies
on the existence of a Hodge decomposition on 1-forms.

2. Hodge Decomposition implies Frankel’s Theorem

Let (M,ω) be a symplectic manifold. The triple (ω, g,J) is a compatible

triple on (M,ω) if g is a Riemannian metric and J is an almost complex
structure such that g(·, ·) = ω(·,J·). Denote by dVg the measure associated
to the Riemannian volume.

Let G be a connected Lie group with Lie algebra g acting on M by
symplectomorphisms, i.e., diffeomorphisms which preserve the symplectic
form. We refer to (M, ω) as a symplectic G-manifold. Any element ξ ∈ g

generates a vector field ξM on M , called the infinitesimal generator, given
by

ξM (x) :=
d

dt

∣

∣

∣

∣

t=0

exp(tξ) · x.

The G-action on (M,ω) is said to be Hamiltonian if there exists a smooth
equivariant map µ : M → g

∗, called the momentum map, such that for all
ξ ∈ g we have

iξMω := ω(ξM , ·) = d〈µ, ξ〉,

where 〈·, ·〉 : g∗ × g → R is the duality pairing. For example, if G ≃ (S1)k,
k ∈ N, is a torus, the existence of such a map µ is equivalent to the exactness
of the one-forms iξMω for all ξ ∈ g.

In this case the obstruction of the action to being Hamiltonian lies in
the first de Rham cohomology group of M . The simplest example of a S1-
Hamiltonian action is rotation of the sphere S2 about the polar axis. The
flow lines of the infinitesimal generator defining this action are the latitude
circles.

Denote by L2
λ the Hilbert space of square integrable functions relative to

a given measure dλ on M , and write the associated norm either on functions
or 1-forms as ‖ · ‖L2

λ
. This measure determines a formal adjoint δλ of the de

Rham differential. A L2
λ 1-form ω is called λ-harmonic if it is in the common

null space of d and δλ.

Theorem 1. Let G be a compact connected Lie group acting on the symplec-

tic manifold (M,ω), with (ω, g,J) a G-invariant compatible triple. Suppose,

in addition, that dλ = fdVg is a G-invariant measure on M , where f is

smooth and bounded. Suppose that ‖ξM‖L2

λ
< ∞ for all ξ ∈ g. Assume

that every smooth closed 1-form ω in L2
λ decomposes as an L2

λ-orthogonal

sum df + χ, where f,df ∈ L2
λ, χ ∈ L2

λ is λ-harmonic, and that each coho-

mology class in H1(M) has a unique λ-harmonic representative in L2
λ. If

J preserves the space of L2
λ harmonic one-forms and the G-action has fixed

points on every connected component, then the action is Hamiltonian.

Proof. The proof extends Frankel’s method [Fr59]. For clarity, we divide the
proof into several steps.
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Step 1 (Infinitesimal invariance of λ-harmonic 1-forms). We show first that
if α ∈ Ω1(M) is harmonic and ‖α‖L2

λ
< ∞, then LξMα = 0. This is standard

in the usual setting, but requires checking here since we have that δλα = 0
rather than δα = 0.

If ϕ is an isometry of (M,g) and preserves the measure dλ, then

ϕ∗ (〈〈ν, ρ〉〉 dλ) = 〈〈ϕ∗ν, φ∗ρ〉〉 dλ

for any ν, ρ ∈ Ω1(M), where 〈〈ν, ρ〉〉 dentes the pointwise inner product of ν
and ρ on M .

Next, denote by Φ : G×M → M the G-action and Ft := Φexp(tξ) the flow
of ξM . Since dα = 0 it follows that

dF ∗

t α = F ∗

t dα = 0.

In addition, since F ∗
t commutes with λ, we also have

δλF
∗

t α = F ∗

t δλα = 0.

Hence if α is harmonic, then so is F ∗
t α.

However, because Ft is isotopic to the identity,

[F ∗

t α] = F ⋆
t [α] = [α]

in H1(M,R), where F ⋆
t is the map on cohomology induced by Ft. This

implies that F ∗
t α = α since this cohomology class contains only one harmonic

representative. Taking the t-derivative yields

LξMα = 0,

as required.

Step 2 (Using the existence of fixed points). Define

ξ♭M := g(ξM , ·) ∈ Ω1(M).

If α ∈ Ω1(M) is harmonic and ‖α‖L2

λ
< ∞, it follows from Step 1 that

0 = LξMα = iξMdα+ diξMα = diξMα.

Thus α(ξM ) is constant on each connected component of M . Now, ξM
vanishes on the fixed point set of G, and each component of M contains at
least one such point. Thus α(ξM ) ≡ 0 on M , whence

〈

ξ♭M , α
〉

L2

λ

=
w

M

α(ξM ) dλ = 0

for any harmonic one-form α satisfying ‖α‖L2

λ
< ∞.

Step 3 (Hodge decomposition). Since

diξMω = LξMω = 0

and ‖iξMω‖L2

λ
< ∞, our hypothesis implies that

iξMω = df ξ + χξ,

where f ξ ∈ C∞(M), χξ ∈ Ω1(M) is λ-harmonic and ‖df ξ‖L2

λ
, ‖χξ‖L2

λ
< ∞.
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We now prove that χξ = 0. If α ∈ Ω1(M) is any harmonic one-form with
‖α‖L2

λ
< ∞, then

〈iξMω,α〉L2

λ
=

〈

ξ♭M ,Jα
〉

L2

λ

= 0

by Step 2 since Jα is harmonic (by the hypotheses of the theorem). In
particular, since

ξ♭M = Jdf ξ + Jχξ

and ξ♭M is also orthogonal to the first term on the right, we conclude that

χξ = 0.
The conclusion of this step is

iξMω = df ξ

for any ξ ∈ g; note that both sides of this identity are linear in ξ.

Step 4 (Equivariant momentum map). Using a basis {e1, . . . , er} of g, we
define µ : M → g

∗ by

µξ := ξ1f e1 + · · · + ξrf er , where ξ = ξ1e1 + · · ·+ ξre.

Clearly,

iξMω = dµξ,

so µ is a momentum map of the G-action. Since G is compact, one can
average µ in the standard way (see, e.g., [MR03, Theorem 11.5.2]) to obtain
an equivariant momentum map. This completes the proof of the theorem.

�

3. Applications

We now discuss several different criteria which ensure that the results
of the last section can be applied. The first is the classical setting of ‘un-
weighted’ L2 cohomology, which is the cohomology of the standard Hilbert
complex of L2 differential forms on a complete Riemannian manifold. The
existence of a strong Kodaira decomposition is known in many instances, and
we present a few examples. We then discuss two other criteria, the first by
Ahmed and Stroock and the second by Gong and Wang, which allow one to
prove a similar strong Kodaira decomposition for forms which are in L2 rel-
ative to some weighted measure. We present some examples to which these
criteria apply. Finally, we recall some well-known facts about the Hodge
theory on spaces with ‘fibered boundary’ geometry; these include asymp-
totically conical spaces, as well as the important classes of ALE/ALF/...
gravitational instantons. Many of these spaces admit circle actions.

3.1. Unweighted L2 cohomology. The nature of the Kodaira decompo-
sition and L2 Hodge theory on a complete manifold relative to the standard
volume form is now classical. An account may be found in de Rham’s book
[DeR84]; see also [Ca02].
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Theorem 2. If (Mn, g) is a complete Riemannian manifold and 0 ≤ k ≤ n,
then the following conditions are equivalent:

(i) Im(dδ + δd) = (Hk
2(M))⊥;

(ii) There is an L2-orthogonal decomposition

L2(M,Λk) = Imd⊕ Im δ ⊕Hk
2(M);

(iii) Imd and Im δ are closed in L2(M,Λk);
(iv) The quotients

rand
/

rand = 0

in L2(M,Λk) and L2(M,Λn−k).

If the smooth form α ∈ Ωk(M) decomposes as dβ + δµgγ + χ, then β ∈

Ωk−1(M), γ ∈ Ωk+1(M), and χ ∈ Ωk(M) ∩H2
k(M) are all smooth.

Theorems 1 and 2 imply the following result.

Corollary 3. Let G be a compact Lie group which acts isometrically on

(M,ω), a 2n-dimensional complete connected Kähler manifold, and suppose

that any one of the conditions (i) - (iv) of Theorem 2 holds. If the infini-

tesimal generators of the action all lie in L2
ωn and if the G-action has fixed

points, then it is Hamiltonian.

The only point to note is that since M is Kähler, the complex structure
J preserves the space of harmonic forms [We08, Cor 4.11, Ch. 5].

3.2. Examples. There are many common geometric settings where the re-
sult above applies. We recall a few of these here.

Conformally compact manifolds: A complete manifold (M,g) is called
conformally compact if M is the interior of a compact manifold with bound-
ary M̄ and g can be written as ρ−2ḡ, where ρ is a defining function for ∂M̄
(i.e., ∂M̄ = {ρ = 0} and dρ 6= 0 there) and ḡ is a metric on M̄ which is
non-degenerate and smooth up to the boundary. The sectional curvatures
of g become isotropic near any point p ∈ ∂M̄ , with common value −|dρ|2ḡ.
If this value is constant along the entire boundary, then (M,g) is called
asymptotically hyperbolic.

An old well-known result [Ma88] states that if n = dimM 6= 3 (automatic
if M is symplectic), then the conditions of Theorem 2 are satisfied when
k = 1, and hence Corollary 3 holds. There are now much simpler proofs of
this result; see [Ca01].

As explained in [Ca01], the conditions of Theorem 2 are invariant under
quasi-isometry, which means that we obtain a similar result for any symplec-
tic manifold quasi-isometric to a conformally compact space. This allows us,
in particular, to substantially relax the regularity conditions on ρ and ḡ in
this definition.

There is an interesting generalization of this to the set of complete edge
metrics. The geometry here is a bit more intricate; as before, M is the
interior of a smooth manifold with boundary. Now, however, the boundary
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∂M̄ is assumed to be the total space of a fibration over a compact smooth
manifold Y with compact fiber F . We can use local coordinates (x, y, z)
near a point of the boundary where x is a boundary defining function, y is
a set of coordinates on Y lifted to ∂M̄ and then extended inward, and z is a
set of functions which restrict to coordinates on each fiber F . A metric g on
M is called a complete edge metric if in each such local coordinate system
it takes the form

g =
dx2 +

∑

a0α(x, y, z)dxdyα +
∑

aαβaαβ(x, y, z)dyαdyβ
x2

+
∑

b0µ
dx

x
dzµ + bαµ

dyα
x

dzµ + bµνdzµdzν .

The prototype is the product X × F where X is a conformally compact
manifold and F is a compact smooth manifold, or more generally, a manifold
which fibers over a neighborhood of infinity in a conformally compact space
X with compact smooth fiber F .

The analytic techniques developed in [Ma91] generalize those in [Ma88]
and show that if (M,g) is a space with a complete edge metric, and if
dimY 6= 2, then the Hodge Laplace operator on 1-forms is closed.

Surfaces of revolution: A Riemannian surface (M,g) which admits an
isometric S1 action must be a surface of revolution, hence in polar coordi-
nates,

g = dr2 + f(r)2dθ2,

where θ ∈ S1 and either f > 0 on (0,∞) and is a function of r2 (i.e., its
Taylor expansion near r = 0 has only even terms) which vanishes at r = 0,
or else f is strictly positive on all of R. In the first case, M ∼= R

2, while in
the second, M ∼= S1 × R.

The symplectic form is ω = f(r)dr ∧ dθ, so the action is generated by
the vector field ∂θ. Since i∂/∂θω = −f(r)dr, one of the basic hypotheses
becomes

(1) ‖i∂θω‖
2
L2
ω
=

2πw

0

∞w

0

f(r)3 dr dθ = 2π

∞w

0

f(r)3 dr < ∞.

Proposition 4. [Tr09, Theorem 1.2] If M ∼= R
2 and f ≤ Cr−k for some

k > 1/3, then the range of the Hodge Laplace operator on 1-forms is closed.

With these hypotheses, we can then apply Corollary 3 as before.
It is worth contrasting Proposition 4 with the well-known criterion of

McKean [McK70]. This states that if (M2, g) is simply connected and has
Gauss curvature Kg ≤ −1, then the L2 spectrum of the Laplacian on func-
tions is contained in [1/4,∞). The spectrum of the Laplacian on 2-forms is
the same, and using a standard Hodge-theoretic argument, the spectrum of
the Laplacian on 1-forms is contained in {0}∪ [1/4,∞). Thus this curvature
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bound would also guarantee the conclusion of Theorem 2. Now,

Kg = −f ′′(r)/f(r) ≤ −1

is the same as
f ′′(r) ≥ f(r).

Using this and the initial condition f(0) = 0, it is not hard to show that f
must grow exponentially as r → ∞, so that (1) cannot hold. In other words,
McKean’s condition is useless for our purposes.

Of course, if the hypotheses of Proposition 4 hold, then we do not need
to apply these Hodge-theoretic arguments since the momentum map of this
circle action is given by any function µ(r) satisfying

µ′(r) = −f(r).

Compact stratified spaces: Although it is outside the framework of com-
plete manifolds, there is another class of spaces to which these results may be
applied. These are the smoothly stratified spaces with iterated edge metrics.
These include, at the simplest level, spaces with isolated conic singularities
or simple edge singularities. More general spaces of this type are obtained
recursively, by using spaces such as these as cross-sections of cones, and
these cones can vary over a smooth base. Hodge theory on such spaces was
first considered by Cheeger [Ch79]; the recent papers [ALMP12], [ALMP13]
provide an alternate approach and generalize the spaces to allow ones for
which it is necessary to impose boundary conditions along the strata. A
complete Hodge theory is available, cf. the papers just cited. One impor-
tant way that such spaces might arise in our setting is if the group G acts
symplectically on a compact smooth manifold M ′, but G commutes with
the symplectic action by another group K. Then the action of G descends
to the quotient M = M ′/K, and this latter space typically has precisely the
stratified structure and iterated edge metric as described above .

3.3. Ahmed-Stroock conditions. Under certain rather weak requirements
on the geometry of (M,g) and an auxiliary measure

dλ = e−UdVg,

Ahmed and Stroock [AS00, §6] have proved a Hodge-type decomposition.
In the theorem below and the rest of the paper, ∆f := div∇f = −δdf is
the usual Laplacian on functions and ∇2f := Hess f is the Hessian of f , i.e.,
the second covariant derivative of f .

Theorem 5 ([AS00]). Assume that (M,g) is complete and

• Ricg ≥ −κ1;
• the curvature operator is bounded above, i.e., 〈〈Rα,α〉〉 ≤ κ2‖α‖L2

for all α ∈ Ω2(M), where κ1, κ2 ≥ 0.

Suppose further that U is a smooth nonnegative proper function on M which

satisfies

• ∆U ≤ C(1+U) and ‖∇U‖2 ≤ C eθU for some C < ∞ and θ ∈ (0, 1);
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• εU1+ε ≤ 1 + ‖∇U‖2 for some ε > 0;
•
〈〈

v, (∇2U)(v)
〉〉

≥ −B‖v‖2 for every x ∈ M and v ∈ TxM , where

B < ∞.

Write δλ for the adjoint of d relative to dλ = e−UdVg and L2
λ for the asso-

ciated Hilbert space. Note that since U ≥ 0, λ is bounded.

Then

(1) [AS00, Theorem 5.1] There is a strong Hodge decomposition on 1-
forms. In particular, if α ∈ L2

λΩ
1 ∩ C∞ is closed, then α = df + χ,

where f ∈ L2
λ ∩ C∞ and χ ∈ H1

λ.

(2) [AS00, Theorem 6.4] Each class [α] ∈ H1(M,R) has a unique repre-

sentative in H1
λ.

Corollary 6. Assume that M is symplectic and that (g, ω,J) are a G-

invariant compatible triple, and that U is also G-invariant. If the hypotheses

of Theorem 5 all hold, JH1
λ ⊂ H1

λ, and if the G-action has fixed points, then

it is Hamiltonian.

3.4. Gong-Wang conditions. There are other conditions, discovered by
Gong and Wang, which lead to a strong Hodge decomposition.

Theorem 7 ([GW04]). Let G act on the noncompact symplectic manifold

(M,ω), and suppose that (ω, g,J) is a G-invariant compatible triple. Assume

that dλ = eV dVg is also G-invariant and has finite total mass. Suppose

finally that

• Ric−Hess(V ) ≥ −CId;
• there exists a positive G-invariant proper function U ∈ C2(M) such

that U + V is bounded;

• ‖∇U‖ → ∞ as U → ∞;

• lim supU→∞

(

∆U/‖∇U‖2
)

< 1.

Then there is a strong Hodge decomposition on L2
λΩ

1(M), as before.

Corollary 8. With all notation as above, if J preserves H1
λ, and the G-

action has fixed points, then it is Hamiltonian.

3.5. Further examples. There are many interesting types of spaces to
which the Ahmed-Stroock and Gong-Wang results can be applied, but which
are not covered by the more classical Theorem 2. We describe a few of these
here, including spaces with asymptotical cylindrical or asymptotically conic
ends or with complete fibered boundary geometry. Amongst these are the
asymptotically locally Euclidean (ALE) spaces, as well as the slightly more
complicated ALF, ALG, and ALH spaces which arise in the classification
of gravitational instantons. (We refer to [HHM] for a description of the
geometry of ALE/F/G/H spaces.) We can also handle Joyce’s quasi-ALE
(QALE) spaces [Jo00] and their more flexible Riemannian analogues, the
quasi-asymptotically conic (QAC) spaces of [DM14]. The interest in includ-
ing all of these spaces is that they seem to be intimately intertwined with
symplectic geometry; indeed, many of them arise via hyperKähler reduction.
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The obvious idea is to let the function U in Theorem 5 depend only on
the radial function r on M . Actually, it is clear that Theorem 5 holds on
all of M if and only if it holds on each end (with, say, relative boundary
conditions on the compact boundaries), so we can immediately localize to
each end. We can also replace g on each end by a perhaps simpler metric
which is quasi-isometric to it. The general feature of all these spaces is that
the distance function r from a suitably chosen inner boundary has “symbolic
decay properties”, i.e., successively higher derivatives of r decay increasingly
more quickly. Writing U = ra, then we require that

i) ∆U = a(a− 1)ra−2|∇r|2 + ara−1∆r ≤ C(1 + ra)

ii) ǫU1+ǫ = ǫra(1+ǫ) ≤ 1 + a2r2a−2|∇r|2

iii) ∇2U = ara−1∇2r + a(a− 1)ra−2dr2 ≥ −B.

Recalling that |∇r| = 1 holds in general, then ii) implies that a > 2, while
i) shows that ∆r must grow slower than r, and finally iii) shows that the
level sets {r = const.} have some sort of convexity.

Rather than trying to determine the most general spaces for which these
restrictions hold, we explain why they are true for the various examples
listed above. For the reasons we have explained (namely, that it suffices to
consider a quasi-isometric model), we focus on the simplest models for each
of these spaces. In each of the following, we consider one end E of M . In
general we can apply our results to manifolds M which decompose into some
compact piece K and a finite number of ends

E1, . . . , EN ,

each of which is of one of the following types.

Cylindrical ends: Here E = [0,∞)× Y where (Y, h) is a compact smooth
Riemannian manifold, and r is the linear variable on the first factor. The
metric is the product dr2+h. We obtain conditions i), ii), iii) directly since
∇2r = 0.

Conic ends: Now suppose that E = [1,∞) × Y where (Y, h) is again
a compact smooth manifold and r ≥ 1, and the metric is given by g =
dr2 + r2h. Then

∆r = (n− 1)/r

and
∇2r ≥ 0,

so, once again, all three conditions hold.

Fibered boundary ends: This is slightly more complicated. Suppose
that Z is a compact smooth manifold which is the total space of a fibration
π : Z → Y with fiber F . Let h be a metric on Y and suppose that k is
a symmetric 2-tensor on Z which restricts to each fiber F to be positive
definite and so that π∗h+ k is positive definite on Z. Then

E = [1,∞) × Z,
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and
g = dr2 + r2π∗h+ k.

In other words, this metric looks conical in the base (Y ) directions and
cylindrical in the fiber (F ) directions. For the specific cases of such metrics
that arise in the gravitational instantons above, Y is the quotient of some
Sk by a finite group Γ (typically in SU(k + 1)) and F is a torus T ℓ. The
four-dimensional ALF/ALG/ALH spaces correspond to the cases

(k, ℓ) = (2, 1), (1, 2), (0, 3).

The pair (k, ℓ) = (3, 0) is precisely that of ALE spaces.
For each of these, it is a simple computation to check that r has all the

required properties.

QALE and QAC ends: The geometry of quasi-asymptotically conic spaces
are considerably more difficult to describe in general, and we defer to [Jo00]
and [DM14] for detailed descriptions of the geometry. These spaces are
slightly more complicated in the sense that while they are essentially coni-
cal as r → ∞, the cross-sections {r = const.} are families of smooth spaces
which converge to a compact stratified space. This is consistent with the
fact that QALE spaces arise as (complex analytic) resolutions of quotients
C
n/Γ. The basic types of estimates for r and its derivatives are almost the

same as above, and so conditions i), ii), and iii) still hold. We refer to the
monograph and paper cited above for full details.

Bundles over QAC ends: The final example consists of ends E which are
bundles over QAC spaces, and with metrics which do not increase the size
of the fibers as r → ∞. This is in perfect analogy to how fibered boundary
metrics generalize and fiber over conic metrics. The behavior of the function
r on these spaces is similarly benign and these same three conditions hold.

These examples have been given with very little detail (in the last two
cases, barely any). The reason for including the, here is because they arise
frequently. In particular, the last category, i.e., bundles over QAC (or more
specifically, QALE) spaces contain the conjectural picture for the important
family of moduli spaces of monopoles on R

3. On none of these spaces is
the range of the Laplacian on unweighted 1-forms usually closed, but the
Ahmed-Stroock conditions provide an easily applicable way to obtain Hodge
decompositions on these spaces.

4. History of the problem: Frankel’s Theorem and further

results

The first result concerning the relationship between the existence of fixed
points and the Hamiltonian character of the action is Frankel’s celebrated
theorem [Fr59] stating that if the manifold is compact, connected, and
Kähler, G = S1, and the symplectic action has fixed points, then it must
be Hamiltonian (note that JH ⊂ H holds, see [We08, Cor 4.11, Ch. 5]).
Frankel’s work has been very influential: for example, Ono [On84] proved



COMPLETE HAMILTONIAN MANIFOLDS 11

the analogue theorem for compact Lefschetz manifolds and McDuff [Mc88,
Proposition 2] has shown that any symplectic circle action on a compact
connected symplectic 4-manifold having fixed points is Hamiltonian.

However, this result fails in higher dimensions: McDuff [Mc88, Propo-
sition 1] gave an example of a compact connected symplectic 6-manifold
with a symplectic circle action which has nontrivial fixed point set (equal
to a union of tori), which is nevertheless not Hamiltonian. If the S1-action
is semi-free (i.e., free off the fixed point set), then Tolman and Weitsman
[TW00, Theorem 1] have shown that any symplectic S1-action on a compact
connected symplectic manifold having fixed points is Hamiltonian. Feldman
[Fe01, Theorem 1] characterized the obstruction for a symplectic circle ac-
tion on a compact manifold to be Hamiltonian and deduced the McDuff and
Tolman-Weitsman theorems by applying his criterion. He showed that the
Todd genus of a manifold admitting a symplectic circle action with isolated
fixed points is equal either to 0, in which case the action is non-Hamiltonian,
or to 1, in which case the action is Hamiltonian. In addition, any symplectic
circle action on a manifold with positive Todd genus is Hamiltonian. For ad-
ditional results regarding aspherical symplectic manifolds (i.e.

r
S2 f

∗ω = 0

for any smooth map f : S2 → M) see [KRT08, Section 8] and [LP95]. As
of today, there are no known examples of symplectic S1-actions on compact
connected symplectic manifolds that are not Hamiltonian but have at least
one isolated fixed point.

Less is known for higher dimensional Lie groups. Giacobbe [Gi05, Theo-
rem 3.13] proved that a symplectic action of a n-torus on a 2n-dimensional
compact connected symplectic manifold with fixed points is necessarily Hamil-
tonian; see also [DP07, Corollary 3.9]. If n = 2 this result can be checked
explicitly from the classification of symplectic 4-manifolds with symplectic
2-torus actions given in [Pe10, Theorem 8.2.1] (since cases 2–5 in the state-
ment of the theorem are shown not to be Hamiltonian; the only non-Kähler
cases are given in items 3 and 4 as proved in [DP11, Theorem 1.1]).

If G is a Lie group with Lie algebra g acting symplectically on the sym-
plectic manifold (M,ω), the action is said to be cohomologically free if the
Lie algebra homomorphism

ξ ∈ g 7→ [iξMω] ∈ H1(M,R)

is injective; H1(M,R) is regarded as an abelian Lie algebra. Ginzburg [Gi92,
Proposition 4.2] showed that if a torus T

k = (S1)k, k ∈ N, acts symplec-
tically, then there exist subtori Tk−r, Tr such that T

k = T
r × T

k−r, the
T
r-action is cohomologically free, and the Tk−r-action is Hamiltonian. This

homomorphism is the obstruction to the existence of a momentum map: it
vanishes if and only if the action admits a momentum map. For compact
Lie groups the previous result holds only up to coverings. If G is a compact
Lie group, then it is well-known that there is a finite covering

T
k ×K → G,
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where K is a semisimple compact Lie group. So there is a symplectic action
of Tk ×K on (M,ω). The K-action is Hamiltonian, since K is semisimple.
The previous result applied to T

k implies that there is a finite covering

T
r × (Tk−r ×K) → G

such that the (Tk−r ×K)-action is Hamiltonian and the T
r-action is coho-

mologically free; this is [Gi92, Theorem 4.1]. The Lie algebra of Tk−r×K is
ker (ξ 7→ [iξMω]). (It appears that the argument in [Gi92] implicitly requires
M to satisfy the Lefschetz condition or more generally the flux conjecture to
hold for M . Thus ultimately it depends on [On06] where the flux conjecture
is established in full generality. We thank V. Ginzburg for pointing this
out.)
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