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Geometry of non-holonomic diffusion

Simon Hochgerner Tudor S. Ratiu

Abstract

We study stochastically perturbed non-holonomic systems from a geometric point
of view. In this setting, it turns out that the probabilistic properties of the perturbed
system are intimately linked to the geometry of the constraint distribution. For G-
Chaplygin systems, this yields a stochastic criterion for the existence of a smooth
preserved measure. As an application of our results we consider the motion planning
problem for the noisy two-wheeled robot and the noisy snakeboard.

Keywords. non-holonomic system, symmetry, measure, reduction, diffusion, Brow-
nian motion, generator, Chaplygin system, snakeboard, two-wheeled carriage
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1 Introduction

The goal of this paper is the study of stochastic non-holonomic systems. This is a natural
continuation of the work on stochastic Hamiltonian systems pioneered by Bismut [5] and
revitalized, brought up to date, and expanded by Lázaro-Camı́ and Ortega [32] who also
connected it to symmetries, momentum maps, and reduction.

1.A Motivation and basic idea

A non-holonomic system is, essentially, a rigid body together with a set of constraints on
the velocities. A prototypical example is the Chaplygin ball ([10]; for a modern treatment
see [13] and [12, Chapter 6]). Here, the configuration space is the direct product Lie
group G = SO(3) × R2, describing orientation and position of the ball, and the kinetic
energy is specified by a left-invariant metric µ; there are two (non-integrable) velocity
constraints so that the ball does not slip, i.e., the point of contact of the ball and the plane
has zero velocity. Without constraints (which is clearly not the case in the problem just
presented), this would describe the motion of a rigid body in the plane, hence it would be
a Hamiltonian system.
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Stochastically perturbed versions of the latter setting (i.e., without constraints) have
been considered by Lázaro-Camı́ and Ortega [33, Section 7.3]: Let h0 be the kinetic en-
ergy Hamiltonian of a left invariant metric on the Lie group G, {yi}i an orthonormal
basis of the Lie algebra g of G, {ui}i its extension to a left invariant frame on G, and
hi : T ∗G→ R, (q, p) 7→ 〈p, ui(q)〉. Note that hi is the component 〈JR, yi〉 of the momen-
tum map JR : T ∗G → g∗ defined by the lift to T ∗G of right translation of G on itself.
The R×g∗-valued function H = (h0, h

i) on T ∗G is left invariant. Following [32, 33] and
assuming that the perturbation is given by white noise, the stochastic rigid body is thus
modeled by the Stratonovich equation

δΓ = Xh0(Γ)δt+
∑

Xhi(Γ)δW i, (1.1)

where Xh denotes the Hamiltonian vector field of the function h : T ∗G → R and W =

{W i} is Brownian motion in g ∼= Rn. A physical system modeled by this equation is
that of a rigid body subject to small random impacts. Note that, since ui is auto-parallel
for the Levi-Civita connection, the equation δΓ =

∑
Xhi(Γ)δW i yields the Hamiltonian

construction of Brownian motion, as in [32].
To pass to the nonholonomic setting, we note that the equations of motion of the con-

strained (Chaplygin) ball can be encoded in the vector field PXh0 where P is the con-
straint force projection and is defined in (2.12) below. The effect of P is to force the
dynamics generated by Xh0 to satisfy the constraints. Thus, the idea of ‘the Hamiltonian
construction of stochastic non-holonomic systems’ is to apply P to (1.1). In fact, since
PXh0 is nothing but the non-holonomic vector field (see Section 2), we will focus on
studying the effects of P on the second term in equation (1.1). This yields non-holonomic
constraints on the operator which is used to construct Brownian motion, thus leading to
‘constrained Brownian motion’ described by

δΓ =
∑

P (Γ)Xhi(Γ)δW i. (1.2)

As it stands, this equation has some problems. It depends very much on the basis {ui}i
that was chosen in the definition of the hi. For example, since the no-slip constraints are
actually right invariant, one could have chosen a right invariant frame. But then the Hamil-
tonian description of Brownian motion needs a correction term involving the Levi-Civita
connection of µ. This approach has been taken in [23]. However, the basis dependence
implies that the generator of (1.2) also changes when we pass to a different frame, and
there would be many natural choices depending on whether the frame should be left or
right invariant, adapted to the constraint distribution, or the direct product structure of G,
etc. Even if one ignores these issues, it is not clear what to do if the configuration space
is not parallelizable. For all these reasons we transfer the construction to the bundle of
orthonormal frames itself. It is only then that the generator of the resulting ‘constrained
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Brownian motion’ is basis independent. This constrained Brownian motion has some in-
teresting features:

• To visualize it, we can think of a microscopic robot (or ball, snakeboard, etc.) sub-
ject to molecular bombardment. The robot thus experiences small impacts from all
sides (isotropic in space) which force it to move around, but it still has to respect
the constraints.

• Now, it turns out, that the geometry of the constraints determines the probabilistic
properties of the perturbed system. Indeed, if the constraints are integrable, then
the robot’s net drift will vanish. However, when the constraints are non-integrable
and non-mechanical (which is the generic case) the Gaussian noise will induce a
net drift on the robot. In Section 4 we quantify this drift in terms of the geometry
of the constraint distribution. Mechanical constraints are given, by definition as
level sets of conserved quantities, such as momentum maps. E.g., the constraints
could be given by the horizontal bundle of the mechanical connection, which is just
orthogonal to the vertical bundle in the case of a symmetry group action.

• This leads to a dictionary between probabilistic aspects of the perturbed system
and classical properties of the original (deterministic) non-holonomic system. See
Theorem 1.2 below for a preliminary statement of this dictionary and Section 4 for
further details.

1.B Description of contents and results

Since this paper addresses both the geometric mechanics and the stochastic differential
equations communities, we shall give the necessary background for all concepts and quote
the main results that are used later on. The paper is self contained. We briefly present the
main results and the structure of the paper.

Non-holonomic systems

We start by recalling the necessary facts, concepts, and results of non-holonomic systems
and their geometry. This includes a careful presentation of symmetries, reduction, and
conditions for the existence of a (smooth) preserved measure. We will have to rephrase
some of the existing results in view of applying them to our stochastic study later on and
develop the theory in the direction needed in subsequent sections in the paper.

Thus, we will have to give complete proofs not only for some of the known results,
due to our reformulation, but we also need to establish new formulas. For example, the
global formula (2.8) of the symplectic form on the tangent bundle given in terms of an
underlying Riemannian metric on configuration space is new, as far as we know. In (2.12)
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we introduce the above mentioned constraint force projection and explain its properties
to prepare for Section 4. We also study Chaplygin systems, which are non-holonomic
systems with a particularly rich geometric structure, and the symmetry reduction of such
systems. One of the main points of Section 2 is the presentation of a certain one-from β

which, according to Proposition 2.5, characterizes the existence of a (smooth) preserved
measure for a given Chaplygin system. This result has been previously derived in [8] but
both our proof and our interpretation of the relevant one-form β are different. In fact, our
formulation of β in (2.25) is a prerequisite for Section 4.

Stochastic dynamics on manifolds

First, we recall some notions about manifold valued stochastic differential equations and
diffusions from [26, 18].

Then we study symmetries of Stratonovich equations. We consider a manifold Q to-
gether with a proper action by a Lie groupG and a diffusion ΓQ generated by a Stratonovich
operator S from TRk+1 to TQ satisfying the equivariance relation (3.11). In this setting,
the Stratonovich operator does not (in general) induce a Stratonovich operator on the base
Q/G; however, the diffusion ΓQ and its generator AQ are projectable to Q/G. Thus, there
is an induced diffusion ΓQ/G with induced generator AQ/G on the base space Q/G. See
Theorem 3.2.

Two examples for this procedure of ‘equivariant reduction’ are the Eells-Elworthy-
Malliavin construction of Brownian motion (cf. equation (3.10)) on a Riemannian mani-
fold and the stochastic Calogero-Moser systems (see [24]), as remarked in Subsection 3.B.
In particular, we allow for non-free G-actions on Q and hence Q/G is, in general, not a
smooth manifold but a stratified space. Thus, we extend the reduction theorem of [33,
Theorem 3.1] to the case when the Stratonovich operator on the total space is not invari-
ant but equivariant with respect to a symmetry group action.

This naturally leads to the introduction, in Subsection 3.C, of certain notions of equiv-
ariant diffusions, previously studied in [16, 17]. The material of this subsection will also
be useful in Section 5. In particular, we prove a mean reconstruction equation for diffu-
sions in principal bundles which is analogous to a concept by the same name in mechanics
(see, e.g., [1, §4.3], [35, §3], [36, Theorem 11.8]) and uses that of [16, 17].

Non-holonomic diffusions

This section contains the main results of the paper. We introduce constrained Brownian
motion as motivated above. This involves a careful analysis of the underlying geometry.
Then we study the generator and symmetry reduction of the resulting diffusion process.
The reduction relies on Theorem 3.2.
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The surprising fact in this regard, is that there is a very strong interrelation of some
probabilistic aspects of constrained Brownian motion and certain deterministic properties
of the original non-holonomic system. A first instance of this relation is:

Theorem 1.1. Constrained Brownian motion is a martingale with respect to the non-
holonomic connection on the configuration space.

A second result yields a probabilistic characterization of the existence of a preserved
measure which is a very important concept in the theory of non-holonomic systems (see
[3, 6, 10, 15, 25, 22, 30]):

Theorem 1.2. Let (Q,D, L) be a G-Chaplygin system such that the base M := Q/G is
compact. Let ΓM be the non-holonomic diffusion in M associated to these data. Then the
following are equivalent:

(1) (Q,D, L) has a (smooth) preserved measure;

(2) ΓM is time-reversible;

(3) ΓM has vanishing entropy production rate.

The compactness assumption onM is met in all classical examples such as the Chaply-
gin ball or the two-wheeled robot. This theorem sums up some of the results of Sections 4
and 3.D, where also the relevant notions are introduced.

Examples

As examples, we consider the two-wheeled robot and the snakeboard. The former is G-
Chaplygin and does (in general) not allow for a preserved measure. The latter is not a
Chaplygin system but does fit the general set-up of Section 4. For both of these examples
we consider also the stochastic perturbation of deterministic trajectory planning. This em-
phasizes the way in which the noise couples with the constraints to produce a non-trivial
drift vector field (the emergence of which is at the heart of the geometry of Section 4);
this is in sharp contrast to stochastic Hamiltonian systems. Indeed, the Hamiltonian ana-
logue of non-holonomic reduction is reduction at the 0-level set of the standard cotangent
bundle momentum map, which reduces Brownian motion to Brownian motion in the base
with respect to the induced metric. This is a manifestation of the idea that the amount by
which a non-holonomic system differs from a Hamiltonian one can be measured by the
amount by which the induced diffusion differs from Brownian motion – and vice versa.

However, in the non-holonomic setting, the constraints induce a drift giving rise to
drifted Brownian motion on the base space. This drift is quantified in Section 4 and we
use it to make the perturbed motion follow a given curve on average. We show how the
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explicit form of the drift allows, in principle, for a simple numerical implementation to
solve such a motion planning problem. It should be noted, though, that we have made no
attempt to study stability or convergence properties of the resulting numerical algorithm.
Similar problems have been treated, from a different perspective, in the engineering liter-
ature; see [2, 42] and the references therein.

2 Non-holonomic systems

We recall some facts about non-holonomic and, specifically, G-Chaplygin systems. Then
we give a necessary and sufficient condition for the existence of a preserved measure that
is suitable for our applications in Section 4.

A non-holonomic system is a triple (Q,D,L) consisting of a n-dimensional configura-
tion manifold Q, a constraint distribution D ⊂ TQ which is smooth and of constant rank
r < n (i.e., it is a vector subbundle of TQ of rank r), and a smooth Lagrangian function
L : TQ → R. The dynamics of (Q,D,L) are given by the Lagrange-d’Alembert prin-
ciple; see [3, 4, 6, 9, 10, 25, 30]. Throughout this paper, we assume that L is the kinetic
energy of a Riemannian metric µ on Q.

2.A Almost Hamiltonian formulation

Since TQ 3 uq 7→ µ(q)(uq, ·) ∈ T ∗Q is a vector bundle isomorphism covering the
identity on Q, we shall identify the vector bundles TQ with T ∗Q. We follow [4] to give
an almost Hamiltonian description of the dynamics of (Q,D,L). Let τQ : TQ → Q be
the tangent bundle projection and ι : D ↪→ TQ the inclusion. Define

C :=
{
Xuq ∈ TD | uq ∈ D, Tuq(τQ ◦ ι)

(
Xuq

)
∈ D

}
= (T (τQ ◦ ι))−1 (D). (2.1)

In standard vector bundle charts of TQ and TTQ, we write uq as (q, q̇) and Xuq as
(q, q̇, δq, δq̇), respectively. Since (τQ ◦ ι)(q, q̇) = q, it follows that T (τQ ◦ ι)(q, q̇, δq, δq̇) =

(q, δq) and hence C = {(q, q̇, δq, δq̇) | (q, q̇), (q, δq) ∈ D}, ker (T (τQ ◦ ι)(q, q̇, ·, ·)) =

{(q, q̇, 0, δq̇) | δq̇ ∈ Rn}. Thus C is a vector subbundle of TD of rank 2r. (IfD is the hori-
zontal subbundle of a principal connection of some proper and free G-action on Q then C
is the horizontal space of the tangent lifted G-action on D. See (2.14) below.) According
to [4, Section 5] we have (

T (TQ)
)
|D = C ⊕ CΩ (2.2)

where CΩ := {Xuq ∈ Tuq(TQ) | uq ∈ D, Ω(uq)(Xuq , Yuq) = 0,∀Yuq ∈ C} is the Ω-
orthogonal complement of C in

(
T (TQ)

)
|D; Ω denotes the canonical symplectic form on

TQ ∼= T ∗Q. We will prove identity (2.2) later on, after the proof of Proposition 2.1.
For reasons that will become clear in Section 4, we elaborate on (2.2). We use the

Levi-Civita connection ∇µ on TQ → Q to decompose TTQ = Horµ ⊕ Ver(τQ), where
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Ver(τQ) = ker(TτQ : TTQ → TQ) is the vertical and Horµ ⊂ TTQ is the hori-
zontal subbundle. Recall that a curve v(t) in TQ is horizontal if its covariant derivative
Dv(t)
Dt

:= d
ds

∣∣
s=0

Pt+st v(t+ s) vanishes; here Pt+st : Tq(t+s)Q→ Tq(t)Q is the parallel trans-
port operator of the Levi-Civita connection ∇µ and q(t) := τQ(v(t)). Alternatively, since
Dv(t)
Dt

= ∇µ
dq(t)/dtv(t), or in coordinates, Dvi(t)

Dt
= dvi(t)

dt
+ Γijk(q(t))

dqj(t)
dt

vk(t), the curve
v(t) is horizontal if and only if in any standard tangent bundle chart

dvi(t)

dt
+ Γijk(q(t))

dqj(t)

dt
vk(t) = 0. (2.3)

A vector Xuq ∈ TuqTQ is called horizontal if it is tangent to a horizontal curve. The
horizontal space Horµuq ⊂ TuqTQ is the vector subspace formed by all horizontal vectors.

If uq = q̇i ∂
∂qi
∈ TqQ, the decomposition of a vector Xuq = Ai ∂

∂qi
+ Bi ∂

∂q̇i
∈ TuqTQ

in its horizontal and vertical part is

Ai
∂

∂qi
+Bi ∂

∂q̇i
=

(
Ai

∂

∂qi
− Γijkq̇

jAk
∂

∂q̇i

)
+
(
Γijkq̇

jAk +Bi
) ∂

∂q̇i
. (2.4)

Indeed, since TuqτQ
(
Ri ∂

∂qi
+ Si ∂

∂q̇i

)
= Ri ∂

∂qi
it follows that

kerTuqτQ =

{
Si

∂

∂q̇i

∣∣∣∣ Si ∈ R
}

which shows that the second summand in (2.4) is vertical. The first summand is horizontal
since it verifies the horizontality condition (2.3) (with vi = q̇i, Ai = dqi

dt
, and dvi

dt
=

−Γijkq̇
jAk). In particular, note that TuqτQ : Cuq ∩Horµuq → Dq is an isomorphism:Ai ∂

∂qi
−

Γijkq̇
jAk ∂

∂q̇i
∈ Horµuq maps to the given vector Ai ∂

∂qi
∈ Dq. Similarly TuqτQ : Horµuq →

TqQ is an isomorphism. Its inverse is the horizontal lift mapping which is often written
as a map hlµ : TQ ×Q TQ ∼= Horµ, (uq, vq) 7→ (TuqτQ|Horµuq)

−1(vq). Interpreting pr1 :

TQ ×Q TQ → TQ as a vector bundle over TQ with base the first factor, makes hlµ :

TQ×Q TQ
∼→ Horµ into a vector bundle isomorphism covering the identity on TQ.

Let K : Ver(τQ) → TQ ×Q TQ be the inverse to the vertical lift mapping vl :

TQ×Q TQ
∼−→ Ver(τQ) defined by vl(uq, vq) := d

dt

∣∣
t=0

(uq + tvq), for all uq, vq ∈ TqQ.
In standard coordinates, K(q, q̇, 0, δq̇) = (q, q̇, q, δq̇). In particular, K(Xuq) ∈ TqQ. In
addition, TτQ : Horµ → TQ and K : Ver(τQ) → TQ restricted to each fiber over TQ
are linear isomorphisms. Let Phor and Pver denote the horizontal and vertical projections
associated to Horµ. By abuse of notation, we sometimes write K also for K ◦ Pver :

TTQ→ Ver(τQ)→ TQ. We have thus the vector bundle isomorphism over D

C ∼−→ (D ×Q D)⊕ kerT (τQ ◦ ι), (2.5)

Xuq 7−→
(
uq, TuqτQ

(
Xuq

)
, K
(
Pver

(
Xuq

)) )
, (2.6)

hlµuq(vq) + vl(uq, wq)←−7 (uq, vq, wq), (2.7)
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where we regard D ×Q D 3 (uq, vq) 7→ uq ∈ D as a vector bundle over D. Notice also
that TD ⊃ kerT (τQ ◦ ι) =

⊔
(q,u)∈D vl(q,u)Dq.

Proposition 2.1. The canonical symplectic form Ω ∈ Ω2(TQ) has the expression

Ω(uq)
(
Xuq , Yuq

)
= µ(q)(TuqτQ(Xuq), K(Yuq))− µ(q)(TuqτQ(Yuq), K(Xuq)), (2.8)

for any q ∈ Q, uq ∈ TqQ, Xuq , Yuq ∈ Tuq(TQ).

Proof. In an arbitrary standard tangent bundle chart, we have

Ω =
∂µik
∂qj

q̇kdqi ∧ dqj + µijdq
i ∧ dq̇j, (2.9)

where the Riemannian metric is written as µ = µijdq
i ⊗ dqj , with µij = µji. Thus, if

Xuq = Ai
∂

∂qi
+Bi ∂

∂q̇i
, Yuq = Ci ∂

∂qi
+Di ∂

∂q̇i
,

we get

Ω(uq)(Xuq , Yuq) =
∂µik
∂qj

q̇k(AiCj − AjCi) + µij(A
iDj − CiBj). (2.10)

On the other hand, TuqτQ(Xuq) = Ai ∂
∂qi

, TuqτQ(Yuq) = Ci ∂
∂qi

and

K

(
Ai

∂

∂qi
+Bi ∂

∂q̇i

)
=
(
Γijkq̇

jAk +Bi
) ∂

∂qi
,

K

(
Ci ∂

∂qi
+Di ∂

∂q̇i

)
=
(
Γijkq̇

jCk +Di
) ∂

∂qi

by (2.4) and the definition of K. Therefore,

µ(q)(TuqτQ(Xuq), K(Yuq))− µ(q)(TuqτQ(Yuq), K(Xuq))

= µijΓ
j
rkq̇

r(AiCk − AkCi) + µij(A
iDj − CiBj)

= µij
1

2
µjs
(
∂µsk
∂qr

+
∂µsr
∂qk
− ∂µrk

∂qs

)
q̇r(AiCk − AkCi) + µij(A

iDj − CiBj)

=
1

2

(
∂µik
∂qr

+
∂µir
∂qk
− ∂µrk

∂qi

)
q̇r(AiCk − AkCi) + µij(A

iDj − CiBj)

=
1

2

(
∂µik
∂qr
− ∂µir
∂qk
− ∂µrk

∂qi

)
q̇r(AiCk − AkCi) +

∂µir
∂qk

q̇r(AiCk − AkCi)

+ µij(A
iDj − CiBj)

= −Γsikgrsq̇
r(AiCk − AkCi) +

∂µir
∂qk

q̇r(AiCk − AkCi) + µij(A
iDj − CiBj)

=
∂µir
∂qk

q̇r(AiCk − AkCi) + µij(A
iDj − CiBj)

because Γsik is symmetric and (AiCk − AkCi) is skew-symmetric in (i, k). However, this
expression coincides with (2.10) which proves (2.8).



10 Simon Hochgerner, Tudor S. Ratiu

Thus by (2.8) we get

CΩ
uq =

{
Xuq ∈ Tuq(TQ) | uq ∈ Dq, (2.11)

µ(q)(TuqτQ(Xuq), K(Yuq))− µ(q)(TuqτQ(Yuq), K(Xuq)) = 0, ∀Yuq ∈ Cuq
}

=
{
Xuq ∈ Tuq(TQ) | uq ∈ Dq, K(Pver(Xuq)) ∈ D⊥q , TuqτQ(Phor(Xuq)) ∈ D⊥q

}
∼= (D ×Q D⊥)⊕

⊔
uq∈D

vluq(D⊥)

since K,TuqτQ : Cuq → Dq are surjective, where D⊥ ⊂ TQ is the µ-orthogonal of
D and the vector bundle isomorphism in the last line of (2.11) is given by Xuq 7→
(uq, TuqτQ(Xuq), Pver(Xuq)). This expression of CΩ and (2.1) show that C ∩ CΩ = {0}
which proves (2.2).

In particular, if

P : (T (TQ))|D = C ⊕ CΩ → C (2.12)

is the projection along CΩ and Π : TQ = D ⊕D⊥ → D is the orthogonal projection then
it follows that

T (τQ ◦ ι) ◦ P = Π ◦ T (τ ◦ ι). (2.13)

Indeed, using the above description of C and CΩ, this follows immediately by decompos-
ing
(
T (TQ)

)
|D into its horizontal and vertical parts.

Let H be the kinetic energy Hamiltonian on TQ which we regard as the Legendre
transform of L. Then the dynamics of the non-holonomic system (Q,D,L) are given by
the vector field

XCH := PXH ∈ X(D)

where XH is the Hamiltonian vector field of H. More generally, for a function f ∈
C∞(TQ) we regard XCf := PXf ∈ X(D) as the non-holonomic vector field of f . Let
ΩC denote the fiberwise restriction of ι∗Ω to C × C. Then (2.2) implies that ΩC is non-
degenerate and we may rewrite the defining equation for XCf as

iXCf ΩC = (df)C

where (df)C is the fiberwise restriction of ι∗(df) to C.

2.B G-Chaplygin systems

Now we shall consider the case when the non-holonomic system is invariant under a
group action such that the constraints are given by a principal bundle connection. A G-
Chaplygin system consists of a Riemannian configuration space (Q, µ), a Lie group G
with Lie algebra g which acts freely and properly on (Q, µ) by isometries, and a principal
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bundle connection A ∈ Ω1(Q; g) on π : Q � Q/G =: M . For ξ ∈ g denote by
ξQ ∈ X(Q) the infinitesimal generator defined by

ξQ(q) :=
d

dt

∣∣∣∣
t=0

exp(tξ) · q

for all q ∈ Q, where exp : g→ G is the exponential map.
The Lagrangian of this system is the kinetic energy L := 1

2
‖ · ‖2

µ. It is also assumed
that the constraint distribution is the horizontal subbundle of the connection A, i.e., D :=

kerA ⊂ TQ. Thus the system (Q,D,L) is a non-holonomic system and the dynamics
are determined by the Lagrange-d’Alembert equations; see [3, 4, 6, 9, 10, 25, 30]. It is not
assumed that D is orthogonal to the vertical space kerTπ.

Since D is the horizontal subbundle, it is invariant with respect to the tangent lifted
G-action on TQ. Thus we obtain a principal G-fiber bundle D � D/G = TM . This
bundle carries an induced connection ι∗τ ∗A, where ι : D ↪→ TQ is the inclusion and
τ : TQ→ Q is the tangent bundle projection. Its associated horizontal bundle is

ker(τ ◦ ι)∗A = {uq ∈ TD | T (τ ◦ ι)uq ∈ kerA = D} = C. (2.14)

Let µ0 denote the induced Riemannian metric on M := Q/G. Then the isomorphism

Tqπ : (Dq, µ(q)|Dq)→
(
Tπ(q)M,µ0(π(q))

)
is an isometry for the indicated inner products for all q ∈ Q.

2.C The non-holonomic correction

In order to carry out non-holonomic reduction we need to introduce a two-form on TM
induced by the momentum map and the curvature CurvA ∈ Ω2(Q; g) of the connectionA.
As we shall see in the next subsection, this form is the correction that one needs to subtract
from the canonical symplectic form in order to give an almost Hamiltonian formulation
of the reduced non-holonomic system. To define this form, we need three ingredients:

(i) The adjoint bundle: Let G act on Q × g by the (free and proper) action given by
g · (q, ξ) := (g · q,Adg ξ), for all g ∈ G, q ∈ Q, ξ ∈ g, and let g̃ := Q ×G g =

(Q× g)/G be the orbit space. Elements of g̃ are denoted by [q, ξ]G. The projection
ρ : g̃ 3 [q, ξ]G 7→ π(q) ∈ M defines the adjoint vector bundle whose fibers are Lie
algebras.

(ii) The curvature on the base: CurvA ∈ Ω2(Q; g) naturally induces a two-form on
CurvA0 ∈ Ω2(M ; g̃) on the base M with values in the adjoint bundle g̃ by

CurvA0 (π(q)) (Tqπ(uq), Tqπ(vq)) :=
[
q,CurvA(q)(uq, vq)

]
G

for all q ∈ Q, uq, vq ∈ TqQ.
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(iii) The momentum map of the tangent lifted G-action: JG : TQ → g∗ is defined by
〈JG(uq), ξ〉 = µ(q)(uq, ξQ(q)) for all ξ ∈ g, uq ∈ TQ, and is equivariant.

To get a grip on the non-holonomic correction two-form, we begin describing it if G
is a commutative group. Then the adjoint bundle is trivial: ρ : g̃ = M × g → M is the
projection on the first factor. Thus, CurvA0 ∈ Ω2(M ; g) and we define the non-holonomic
correction two-form Ξ ∈ Ω2(TM) by Ξ :=

〈
JG ◦ hlA, τ ∗M CurvA0

〉
, that is,

Ξ(ux) (Xux , Yux) :=
〈
JG
(
hlAq(ux)

)
,CurvA0 (x) (TuxτM(Xux), TuxτM(Yux))

〉
(2.15)

for all x ∈ M , ux ∈ TxM , Xux , Yux ∈ Tux(TM), where hlAq := (Tqπ|Dq)−1 : TxM →
Dq ⊂ TQ, x = π(q), is the horizontal lift operator associated to the connection A.
The pairing on the right hand side of this formula is between g∗ and g. The right hand
side of this formula seems to depend on q ∈ Q. However, this is not the case because
the horizontal lifts at two distinct points in Q are related by a group element and the
momentum map is invariant under the G-action (since G is commutative).

As stated, this formula does not make sense for general Lie groups because the mo-
mentum map is g∗-valued and the curvature on the base is g̃-valued so the pairing makes
no sense. However, the idea for the general formula is based on (2.15). We define Ξ ∈
Ω2(TM) by

Ξ(ux)(Xux , Yux)

:= 〈JG(hlAq(ux)),CurvA(q)
(
hlAq (TuxτM(Xux)) , hlAq (TuxτM(Yux)))

)
〉 (2.16)

for X(x,u), Y(x,u) ∈ T(x,u)(TM) and q ∈ π−1(x); since both entries in this pairing are
G-equivariant the ambiguity cancels out, that is, the right hand side in (2.16) does not
depend on q but only on π(q) = x.

Due to the importance of this formula we make a few additional comments. Recall
that the momentum map JG : TQ→ g∗ is equivariant with respect to the coadjoint action
on g∗. The tangent lifted G-action restricts to an action on D ⊂ TQ; indeed D = kerA
is the horizontal subbundle and is hence G-invariant. Corresponding to the G-principal
bundle projection D � D/G = TM there is a natural connection which is induced from
the connection A on Q � Q/G, namely ι∗τ ∗A where ι : D ↪→ TQ is the inclusion
and τ : TQ → Q is the tangent bundle projection. The curvature of ι∗τ ∗A is ι∗τ ∗CurvA

which is equivariant: l∗gι
∗τ ∗CurvA = Adg ◦

(
ι∗τ ∗CurvA

)
, where lg : D → D is the

action of g ∈ G. Thus the two-form 〈JG, ι∗τ ∗QCurvA〉 defines a G-invariant two-form
on D. This two-form is, moreover, horizontal: since ι∗τ ∗CurvA is a curvature form on
D � D/G it vanishes upon insertion of vertical vectors, whence the same holds also for
〈JG, ι∗τ ∗CurvA〉. Thus the two-form 〈JG, ι∗τ ∗QCurvA〉 is basic and hence drops to a well-
defined two-form Ξ on D/G = TM . Implementing the computations suggested above
gives (2.16).
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2.D Non-holonomic reduction

Identify TQ with T ∗Q by the metric µ and TM with T ∗M by the metric µ0. Consider the
orbit projection map

Tπ|D : D � D/G = TM.

We may also associate a fiberwise inverse to this mapping which is given by the horizontal
lift mapping hlA : Q×M TM → D associated toA. The following statements are proved
in [4, 15, 25].

Proposition 2.2 (Non-holonomic reduction). The following hold.

(1) ΩC descends to a non-degenerate two-form Ωnh on TM .

(2) Ωnh = ΩM −Ξ ∈ Ω2(TM), where ΩM = −dθM is the canonical symplectic form on
TM and Ξ is the non-holonomic correction two-form given by (2.16).

(3) Let h : TQ → R be G-invariant. Then the vector field XCh is Tπ|D-related to the
vector field Xnh

h0
on TM defined by

iXnh
h0

Ωnh = dh0

where h0 : TM → R is the induced Hamiltonian.

In general, Ωnh is an almost symplectic form, that is, it is non-degenerate and non-
closed. We will denote the reduced Hamiltonian byHc and refer to the almost Hamiltonian
system (TM,Ωnh,Hc) as the reduced data. The identity Ωnh = ΩM − Ξ appears for the
first time, albeit not completely explicitly, in [4]. A proof using moving frames is given
in [15] where it is also called the “〈J,K〉-formula”. A different proof following the above
outline is contained in [25, Prop 2.2].

2.E The preserved measure

Does (TM,Ωnh,Hc) possess a preserved measure? This is an important question since
it says something about the possible existence of asymptotic equilibria and also plays a
prominent role in the theory of integration of non-holonomic systems. Correspondingly,
this topic is touched upon in all of [3, 6, 10, 15, 25, 22, 30]. In [8], a necessary and
sufficient condition for the existence of a preserved measure in terms of local coordinates
on the base manifold M is given. We derive derive below an equivalent formulation of
this result which is more closely adapted to the Riemannian structure on M . This point of
view will then be exploited in Section 4 in the stochastic context.

For brevity we will denote X = Xnh
Hc

in this subsection. Let Ωm, m = dimM , be the
Liouville volume on TM . Then there is a preserved measure for the flow of X if and only
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if there is a strictly positive function N : M → R such that (N ◦ τM)Ωm is preserved,
that is,

£X((N ◦ τM)Ωm) = 0; (2.17)

see [8] for a proof. In such a case N is called the density of the preserved measure with
respect to the Liouville volume. As shown in [8, Remark 7.4], it suffices to consider
density functions on M .

To reformulate condition (2.17) we want to use the fact that (M,µ0) is a Riemannian
manifold. Hence we equip TM with the Sasaki metric σ associated to µ0 (see, e.g., [20]),

σ(ux)(Xux , Yux) := µ0(x) (TxτM(Xux), TxτM(Yux)) + µ0(x) (KM(Xux), KM(Yux))

(2.18)
for all Xux , Yux ∈ Tux(TM), where τM : TM → M is the tangent bundle projection and
KM : Ver(τM) → TM ×M TM is the inverse of the vertical lift map vlM : TM ×M
TM

∼→ Ver(τM); note, in particular that KM(Xux) ∈ TxM . We recall some of the key
properties of the Sasaki metric; see [20] for proofs.

(i) The Sasaki metric σ is the unique Riemannian metric on TM such that τM :

(TM, σ)→ (M,µ0) is a Riemannian submersion, that is, the isomorphism

TumτM :
(

(kerTumτM)⊥σ = Horum , σ(um)
)
−→ (TmM,µ0(m))

is an isometry (for the indicated inner products) for all um ∈ TTM , where ⊥σ
denotes the perpendicular relative to the Sasaki inner product σ(um) on Tum(TM).

(ii) Hor and Ver are σ-perpendicular complements of each other: Hor = Ver⊥σ .

(iii) The vertical lift map vl : TM ×M TM → Ver ⊂ TTM is an isometry of vector
bundles over TM , thinking of the projection onto the first factor pr1 : TM ×M
TM → TM as a vector bundle over TM and µ0 as a vector bundle metric.

Given a vector field X on M we shall denote its horizontal lift relative to the Rieman-
nian metric µ0 by Xh ∈ X(TM,Hor) and its vertical lift by Xv ∈ X(TM,Ver).

Lemma 2.3 (The non-holonomic vector field). If X0 = XHc = Ω−1
M (dHc) ∈ X(TM) is

the standard Hamiltonian vector field, X = Ω−1
nh (dHc) ∈ X(TM) is the non-holonomic

vector field, and {u1, . . . , um} is a local orthonormal frame on M , then the following
hold:

TuxτM(X(ux)) = TuxτM(X0(ux)) = ux for all ux ∈ TM, (2.19)

Pver

(
X −X0

)
(ux) = −

m∑
i=1

Ξ(ux)
(
X(ux), u

h
i (ux)

)
uvi (ux) (2.20)

= −
m∑
i=1

〈(JG ◦ hlAq)(ux), (CurvAq ◦ ∧2hlAq)(ux, ui(x))〉uvi (ux)
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where the second equation holds locally in the domain of definition of the given frame,
and is well-defined independently of the choice of q ∈ π−1(x).

Proof. We begin by noting that ΩM(X0, Y ) = dHc(Y ) = Ωnh(X, Y ) for all Y ∈
X(TM). Hence by Propositions 2.2 and 2.1

Ξ(ux)
(
X(ux), Y (ux)

)
= ΩM(X −X0, Y )ux

= µ0(x)(TuxτM((X −X0)(ux)), KuxY (ux))

− µ0(x)(TuxτM(Y (ux)), Kux(X −X0)(ux)).

This implies, firstly, that TuxτM(X(ux)) = TuxτM(X0(ux)) = ux since Hc is the kinetic
energy Hamiltonian of the induced metric µ0. Secondly, since Kux (uvi (ux)) = ui(x) =

TuxτM
(
uhi (ux)

)
, we find locally

Pver(X −X0)(ux) =
∑

σ
(

(X −X0)(ux), u
v
i (ux)

)
uvi (ux)

=
∑

µ0

(
Kux(X −X0)(ux), ui(ux)

)
uvi (ux)

= −
∑

ΩM(X −X0, u
h
i )ux u

v
i (ux)

= −
∑

Ξ(ux)
(
X, uhi

)
uhi (ux)

= −
∑
〈(JG ◦ hlA)q(ux), (CurvAq ◦ ∧2hlAq)(ux, ui(x))〉uvi (ux)

where we have used TuxτM (X(ux)) = ux in the last line.

Let volσ be the volume form on TM induced by the Riemannian metric σ. We shall
prove the following formula:

volσ = 1
m!

Ωm. (2.21)

Indeed by (2.9), denoting by Sm the permutation group of {1, . . . ,m}, we have

Ωm =

(
∂µik
∂qj

q̇kdqi ∧ dqj + µijdq
i ∧ dq̇j

)m
= (µijdq

i ∧ dq̇j)m

=
∑
π∈Sm

µ1π(1) · · ·µmπ(m)dq
1 ∧ dq̇π(1) ∧ . . . ∧ dqm ∧ dq̇π(m)

= m!

(∑
π∈Sm

(−1)signπµ1π(1) · · ·µmπ(m)

)
dq1 ∧ dq̇1 ∧ . . . ∧ dqm ∧ dq̇m

= m! det(µij)dq
1 ∧ dq̇1 ∧ . . . ∧ dqm ∧ dq̇m.

On the other hand, in the coordinates (v1, v2, . . . , v2m−1, v2m) of TM , where v2i−1 = qi

and v2i = q̇i for i = 1, . . . ,m, we have by the usual formula of the Riemannian volume,
volσ =

√
det(σIJ)dq1 ∧ dq̇1 ∧ . . . ∧ dqm ∧ dq̇m, where σIJ := σ

(
∂
∂vI
, ∂
∂vJ

)
. Since, by
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the definition (2.18) of the Sasaki metric we have µij = σ
(

∂
∂qi
, ∂
∂qj

)
= σ

(
∂
∂q̇i
, ∂
∂q̇j

)
and

σ
(

∂
∂qi
, ∂
∂q̇j

)
= 0, it follows that the matrix (σIJ) is of the form

(σIJ) = P

(
(µij) 0

0 (µij)

)
P−1

for a permutation matrix P . Therefore,
√

det(σIJ) = det(µij) which proves (2.21).
By (2.21), condition (2.17) holds if and only if

£X((N ◦ τM)volσ) = 0 ⇐⇒ 〈d(logN ◦ τM), X〉+ divvolσ X = 0. (2.22)

Let us define

L(TM) := {l ∈ C∞(TM) : lx := l | TxM : TxM → R is linear for all x ∈M}

and consider the prescription Φ : L(TM) → Ω1(M), Φ(l)(ux) = lx(ux), ux ∈ TxM ,
which is an isomorphism of C∞(M)-modules.

Lemma 2.4. The following statements hold.

(1) divvolσX ∈ L(TM).

(2) Let {ui | i = 1, . . . ,m} denote a local orthonormal frame on M . Then

divvolσ X(ux) = −
m∑
i=1

Ξ(ui(x))
(
X(ux), u

h
i (ux)

)
(2.23)

= −
m∑
i=1

〈
(JG ◦ hlAq)(ui(x)), (CurvAq ◦ ∧2hlAq)(ux, ui(x))

〉
.

Proof. Clearly (2) implies (1) so we shall prove (2) below.
We use the Levi-Civita connection ∇µ0 to split TTM = Hor ⊕ Ver where Ver =

kerT (τ : TM → M). Given a vector field X on M we shall, as before, denote its
horizontal lift by Xh ∈ X(TM,Hor) and its vertical lift by Xv ∈ X(TM,Ver).

Let {ui ∈ X(M) | i = 1, . . . , dimM}, be a local orthonormal frame for TM . Then
{(uhi , uvi ) | i = 1, . . . , dimM} is a local orthonormal frame for TTM with respect to σ.
By Lemma 2.3, if X0 = XHc = Ω−1

M (dHc) ∈ X(TM) is the standard Hamiltonian vector
field, then we can locally express X as

X = X0 −
∑
〈(JG ◦ hlAq)(ux), (CurvAq ◦ ∧2hlAq)(ux, ui(x))〉uvi (ux).

Notice that X0 preserves Ωm whence divvolσX0 = 0. According to, e.g., [20, Proposi-
tion 7.2], it is true that ∇σ

uhi
uhi = (∇µ0

ui
ui)

h and ∇σ
uvi
uvi = 0 where ∇σ is the Levi-Civita
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connection of σ. Therefore, sometimes suppressing the base point ux for readability,

divvolσX = Tr∇σ
. X =

m∑
i=1

(
σ(∇σ

uhi
X, uhi ) + σ(∇σ

uvi
X, uvi )

)
=

m∑
i=1

(
− σ(X,∇σ

uhi
uhi ) + uhi σ(X, uhi )− σ(X,∇σ

uvi
uvi ) + uvi σ(X, uvi )

)
=

m∑
i=1

(
− σ(X0,∇σ

uhi
uhi ) + uhi σ(X0, u

h
i ) + uvi σ(X0, u

v
i )

− uvi 〈(JG ◦ hlAq)(ux), (CurvAq ◦ ∧2hlAq)(ux, ui(x))〉
)

= divvolσX0 −
m∑
i=1

〈
(JG ◦ hlA)q(ui(x)), (CurvAq ◦ ∧2hlAq)(u, ui(x))

〉
= −

m∑
i=1

〈
(JG ◦ hlA)q(ui(x)), (CurvAq ◦ ∧2hlAq)(u, ui(x))

〉
.

To see that the formula does not depend on the particular choice of q ∈ π−1(x) one
uses equivariance of the involved expressions together with the observation that any G-
ambiguity cancels out in the pairing.

Therefore, divvolσX can be turned into a one-form on M through the canonical iso-
morphism Φ : L(TM)→ Ω1(M). Let us define

β := −Φ
(

divvolσX
)
∈ Ω1(M) (2.24)

for the non-holonomic vector field X = Xnh
Hc

.

Proposition 2.5. The system (TM,Ωnh,Hc) admits a preserved measure if and only if
β ∈ Ω1(M) is exact. If β = dF for some function F on M then N = eF is the density of
the preserved measure for the Liouville volume.

Proof. By Lemma 2.3, 〈d(logN ◦τM), X〉(ux) = d(logN )(ux) for ux ∈ TM and hence
Φ
(
〈d(logN ◦ τM), X〉

)
= d(logN ). Now by (2.22) a preserved measure (N ◦ τM)Ωm

M

exists if and only if

d(logN ) = Φ
(
〈d(logN ), X〉

)
= −Φ(divvolσX) = β,

i.e., β ∈ Ω1(M) is exact.

As stated above, this result is proved in [8, Theorem 7.5] but our interpretation of the
form β is slightly different. The formula

β(x)(ux) =
m∑
i=1

Ξ(ui(x))
(
X(ux), u

h
i (ux)

)
(2.25)

=
m∑
i=1

〈
(JG ◦ hlAq)(ui(x)), (CurvAq ◦ ∧2hlAq)(ux, ui(x))

〉
,
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ux ∈ TxM , in a local orthonormal frame {u1, . . . , um} will be useful in Section 4 below.

3 Stochastic dynamics on manifolds

3.A Diffusions on manifolds

This subsection is a review of some necessary definitions and results which are all con-
tained in the books [26, 18].

A diffusion is a continuous stochastic process which has the strong Markov property.
This is a concept which can be formulated in any topological space.

Diffusion processes

Let X be a locally compact topological space with one-point compactification Ẋ = X ∪
{∞} and endow Ẋ with its Borel σ-algebra B(X). Define W (X) to be the set of all maps
w : [0,∞)→ Ẋ such that there is a ζ(w) ∈ [0,∞] satisfying

(1) w(t) ∈ X for all t ∈ [0, ζ(w)) and w : [0, ζ(w))→ X is continuous;

(2) w(t) =∞ for all t ≥ ζ(w).

Let l ∈ N, 0 ≤ t1 < . . . < tl ∈ R+, A ⊂ Πl
i=1Ẋ a Borel set, and consider the

evaluation mapping ev(t1, . . . , tl) : W (X)→ Πl
i=1Ẋ , w 7→ (w(t1), . . . , w(tl)). Then

S = ev(t1, . . . , tl)
−1(A)

is called a Borel cylinder set in W (X). If t ≥ 0 and tl ≤ t then S is a Borel cylinder set
up to time t.

The set W (X) is equipped with the σ-algebra B(W (X)) generated by all Borel cylin-
der sets in W (X). This σ-algebra has a natural filtration given by the family of

(Bt(W (X)))t≥0

which are the σ-algebras generated by Borel cylinder sets up to time t.
A family of probabilities (Px)x∈Ẋ on (W (X),B(W (X))) is said to be a system of dif-

fusion measures on (W (X),B(W (X)),Bt(W (X))) if it has the strong Markov property,
the definition of which we will give shortly.

A (Bt(W (X)))t-stopping time is a random variable τ : W (X) → Ṙ+ = R+ ∪ {∞}
such that {w ∈ W (X) | τ(w) ≤ t} ∈ Bt(W (X)) for all t ∈ R+.

For s ∈ R+ we define the time shift operator

Σs : W (X) −→ W (X), w 7−→ (Σsw : t 7→ w(s+ t)). (3.1)



Geometry of non-holonomic diffusion 19

A family of probabilities (Px)x∈Ẋ on (W (X),B(W (X))) satisfies the strong Markov
property if, for all x ∈ X , (Bt(W (X)))t-stopping times τ , boundedBτ (W (X))×B(W (X))-
measurable functions F : W (X)×W (X)→ R, and s ∈ R+, we have∫

τ(w)<∞
F (w,Στ(w)w)Px(dw) =

∫
τ(u)<∞

(∫
W (X)

F (u,w)Pu(τ(u))(dw)

)
Px(du).

(3.2)
See [41, p. 249].

Let (Ω,F , P ) be a probability space and Γ : Ω × R+ → Ẋ a map. Then Γ is called
a stochastic process if Γt : Ω → Ẋ , ω 7→ Γt(ω), is a random variable for all t ∈ R+.
Define Γ̌ : ω 7→ (t 7→ Γt(ω)). Then Γ is said to be a continuous stochastic process in X if
Γ̌ : (Ω,F) → (W (X),B(W (X))) is a random variable. (Below, when X is a manifold,
we will only be dealing with continuous processes.) Note that, for all ω ∈ Ω, the paths
[0, ζ(Γ̌(ω))) 3 t 7→ Γt(ω) ∈ X are continuous; the map ζ : W (X)→ [0,∞] was part of
the definition of W (X).

The law of Γ is, by definition, the push-forward probability Γ̌∗P on (W (X),B(W (X))),
i.e., Γ̌∗P (S) = P (Γ̌−1(S)) for all S ∈ B(W (X)).

The process Γ : Ω×R+ → Ẋ defined on the probability space (Ω,F , P ) is a diffusion
in X if it is a continuous process and there is a system of diffusion measures (Px)x∈Ẋ
such that Γ̌∗P = Pµ as probability laws on (W (X),B(W (X))); here

Pµ(S) :=

∫
Ẋ

Px(S)µ(dx) for all S ∈ B(W (X))

and µ = (Γ0)∗P : B(X)→ [0, 1] is the initial distribution of Γ.
A diffusion Γ in X with associated system of diffusion measures (Px)x is said to be

generated by a linear operator A on the Banach space of continuous functions C(Ẋ) with
domain of definition A ⊂ C(Ẋ) if, for all x ∈ X , t ≥ 0, and f ∈ A, the stochastic
process M f

t : W (X)→ R,

M f
t (w) := f(w(t))− f(w(0))−

∫ t

0

(Af)(w(s)) ds,

is a Px-martingale on (W (X),B(W (X))) for the filtration (Bt(W (X)))t≥0. In this case,
A is called the generator of Γ. See [26, Defs. IV.5.3 and IV.6.2]. The definition of a
martingale is recalled below.

Let (Ω,F , P ) be a probability space. A family (Ft)t∈R+ of sub-σ-algebras Ft ⊂ F
is called a reference family if it is increasing, i.e., Ft ⊂ Fs for 0 ≤ t ≤ s, and right-
continuous, i.e., ∩ε>0Ft+ε = Ft for all t ∈ R+. Whenever we mention (Ft) we will
suppress the index set R+, tacitly assume that it is a reference family, and refer to it as the
filtration of F so that (Ω,F , (Ft), P ) becomes a filtered probability space.

A stochastic process M : Ω × R+ → Ṙ+ is called a martingale on (Ω,F , (Ft), P ) if
the following conditions are met:
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(1) Mt : Ω→ R is integrable for all t ∈ R+;

(2) Mt : Ω→ R is Ft-measurable for all t ∈ R+, i.e., M is (Ft)-adapted;

(3) E[Mt|Fs] = Ms for all t ≥ s ≥ 0, i.e., E[(Mt −Ms)χF ] = 0 for all t ≥ s ≥ 0 and
all F ∈ Fs, where χF is the characteristic function of the set F .

If W : Ω × R+ → Rk is the (a fortiori continuous) diffusion defined on the filtered
probability space (Ω,F , (Ft), P ) with initial condition W0 = 0 a.s. and with genera-
tor 1

2
∆ = 1

2

∑
∂i∂i, then W is called a(Ft)-adapted Brownian motion. See [26, Exam-

ple IV.5.2] or [41, Remark 7.1.23] for this characterization of Brownian motion. Below,
we will be concerned with Brownian motion on a Riemannian manifold and then this
aforementioned characterization will be taken to be the definition of Brownian motion.

Diffusions via Stratonovich equations

Let (Ω,F , (Ft), P ) be a filtered probability space as above and suppose now that X = Q

is a manifold. From now on, all stochastic processes will be assumed to be continuous.
If N is manifold then a Stratonovich operator S from TN to TQ is a section of

T ∗N⊗TQ→ N×Q. Equivalently, we can view S as a smooth map S : Q×TN → TQ

which is linear in the fibers and covers the identity on Q. Let X0, X1, . . . , Xk be vector
fields on Q and define the associated Stratonovich operator S : Q× TRk+1 −→ TQ by

S(x,w,w′) :=
k∑
i=0

Xi(x)〈ei, w′〉,

where x ∈ Q, w ∈ Rk+1, (w,w′) ∈ TwRk+1 = {w} × Rk+1, {ei | i = 0, 1, . . . , k} is the
orthonormal standard basis in Rk+1, and 〈 , 〉 is the standard inner product in Rk+1. We
note that the number k is not related to the dimension of Q.

Consider the stochastic process Y : Ω × R+ → Rk+1, (t, ω) 7→ (t,Wt(ω)) where W
denotes (Ft)-adapted Brownian motion in Rk.

We will be concerned with Stratonovich equations of the form

δΓ = S(Y,Γ)δY ; (3.3)

a continuous (Ft)-adapted process Γ : Ω × R+ → Q is called a solution to (3.3) if there
is a (Ft)-adapted Brownian motion W = (W i) in Rk such that, in the Stratonovich sense,

f(Γt)− f(Γ0) =

∫ t

0

(X0f)(Γs)ds+
k∑
i=1

∫ t

0

(Xif)(Γs)δW
i
s (3.4)

for all smooth functions f ∈ C∞(Q) with compact support.
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A few comments are in order. The definition of (3.3) is (3.4). The second integral in
(3.4) is the Stratonovich integral (signaled by saying that the equation is to hold “in the
Stratonovich sense”). We will not go into the elaborate definition and construction of the
Stratonovich integral here and refer to [37, 26, 18] for the definition and an in depth study
of the Stratonovich integral.

For the readers more familiar with Itô calculus we add the following remarks. Itô in-
tegrals are defined by a Riemann sum approximation with the rather essential difference
that, in the sum, one evaluates the integrand at the left end-points of the partition intervals.
The Stratonovich integral, on the other hand, can be obtained by evaluating the integrand
at the mid-points of the sub-intervals. While Itô integrals give rise to a new transforma-
tion rule (the Itô formula), transformed Stratonovich integrals obey the same change of
variables formula as Riemann integrals. This is the essential reason why, on manifolds,
Itô calculus is replaced by Stratonovich calculus. Concretely, the Stratonovich integral is
characterized in [26, Thm. III.1.4] by∫ t

0

Y δX = l.i.p.|Λ|→0

n∑
i=1

Y (ti)−Y (Ti−1)
2

(X(ti)−X(ti−1))

where Λ is a partition 0 = t0 < t1 < . . . < tn = t with maximal step size |Λ| and
l.i.p. is “limit in probability”; here X , Y are quasimartingales (a general class of semi-
martingales). We do not go into more details of the definition of the Stratonovich integral
here and refer the reader to the above mentioned books.

Suppose Γ is a solution to (3.3) such that Γ0 = x a.s. and Γ satisfies (3.4) with
respect to an Rk-valued Brownian motion W defined on a filtered probability space
(Ω,F , (Ft), P ). Then we will write Γ = Γx,W to remember these data. The explosion
time ζ of a solution Γx,W is a stopping time on (Ω,F , (Ft)) with the following property:
the path Γx,W[0,T ](ω) is contained in Q for all T < ζ(ω) but if ζ(ω) < ∞ then Γx,W[0,ζ(ω))(ω)

is not contained in any compact subset of Q. The following is a partial account of [26,
Theorems V.1.1 and V.1.2] and [18, Theorem (7.21)] that is sufficient for our purposes.

Theorem 3.1. Let the assumptions be as above and consider equation (3.3).

(1) For each initial condition, Γ0 = x a.s., and continuous (Ft)-adapted Brownian mo-
tion W , a solution Γx,W exists and is unique up to explosion time.

(2) Let Px := Γ̌x,W∗ P . Then Px is independent of W and (Px) is a system of diffusion
measures generated by the second order differential operator

A = X0 + 1
2

k∑
i=1

Xixi. (3.5)

which acts on the space C∞(Q)0 of smooth functions with compact support.
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Assume that Q is endowed with a linear connection ∇ : X(Q) × X(Q) → X(Q),
where X(Q) denotes the Lie algebra of smooth vector fields on Q.

If f ∈ C∞(Q), its Hessian is defined by Hess(f) := ∇∇f , i.e., Hess(f)(X, Y ) =

X(Y (f))− (∇XY )(f) for any X, Y ∈ X(Q). The Hessian is bilinear in X and Y but is
not symmetric, unless∇ is torsion-free.

Let Γ be a diffusion in Q with generator A. Then the drift of Γ with respect to ∇ is
defined to be the first order part of A which is determined by ∇. If A is of the form (3.5)
then this is X0 + 1

2

∑
∇XiXi.

According to [18, Theorem 7.31], the A-diffusion Γ is a martingale in (Q,∇) if and
only if A is purely second order with respect to ∇, i.e., the ∇-drift vanishes. In [18] this
is stated for torsion-free connections but it is noted that one can use the same definition
for connections with torsion.

If (Q, µ) is a Riemannian manifold then an A-diffusion is called Brownian motion if
A = 1

2
∆ where ∆ := div grad = −δd is the metric Laplacian; see [26, Def. V.4.2] or

[18, Def. 5.16].
To construct Brownian motion in (Q, µ), we need the principal connection

ω ∈ Ω1 (F; so(d))

on the orthonormal frame bundle ρ : F → Q over (Q, µ), uniquely induced by the Levi-
Civita connection∇µ on Q (whose Christoffel symbols in a chart are denoted by Γikl). We
recall its construction and basic properties. Let u ∈ F with base point ρ(u) = q ∈ Q.
Then we define the horizontal bundle as Horω =

⊔
u∈F Horωu , where the horizontal space

at u, a vector subspace of TuF, is given by

Horωu := Tqσ (TqQ) ; (3.6)

here σ is local section of ρ : F → Q such that σ(q) = u and ∇µ
Xσi = 0 for all X ∈ TqQ

and local vector fields σi := σ(ei) with {e1, . . . , ed} being the standard basis in Rd.
We may express (3.6) in local coordinates (qi, uij) defined on a bundle coordinate patch
U × V ↪→ F as

Horωu =

{
Ak

∂

∂qk
− Γiklu

l
jA

k ∂

∂uij

∣∣∣∣ Ak ∈ R
}
. (3.7)

Restricting ω to this coordinate patch, it can be written as pr2 +ωloc : T (U ×V )→ so(d),
where ωloc = (ωji ) ∈ Ω1(U ; so(d)). It follows that, in terms of the Christoffel symbols,

ωij = Γiklu
l
jdq

k. (3.8)

Thus, the local expression of the horizontal lift defined by ω is hlωu( ∂
∂qk

) = ∂
∂qk
−Γiklu

l
j
∂
∂uij

.

An orthonormal frame u ∈ F can be regarded as an isometry u : Rd → Tρ(u)Q, where
d = dimQ. Define the canonical horizontal vector fields Li ∈ X(F,Horω), i = 1, . . . , d,
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by

Li(u) = hlωu(u(ei)), (3.9)

where hlω : X(Q)→ X(F) is the horizontal lift map of ω. If (W i) is Brownian motion in
Rd and Γ solves the Stratonovich equation

δΓ =
∑

Li(Γ)δW i (3.10)

then ρ ◦ Γ is a diffusion in Q with generator 1
2
∆µ, that is, a Brownian motion. This is

explained in [26, Chapter V.4] and follows also from Theorem 3.2 below; the essential
observation in this context is that the Stratonovich operator S(u,w,w′) = S(u,w)w′ =∑
Li(u)〈ei, w′〉 of (3.10) is equivariant:

S(ug, g−1w, g−1w′) =
∑(

hlωu(u(gei))〈ei, g−1w′〉
)
g = S(u,w,w′)g

for the principal right action of the structure group, i.e., g ∈ O(d). Indeed, this follows
since hlω : F×Q TQ→ kerω = Horω ⊂ TF is O(d)-equivariant.

To connect with Theorem 3.2, the principal right action can be turned to a left action
via inversion in the group.

3.B Equivariant reduction

Equivariant reduction is a natural extension of the reduction theory of [33, Theorem 3.1].
While the results of [33] are stronger, in the sense that they provide a Stratonovich equa-
tion on the base space, they are only applicable when the original Stratonovich operator
is G-invariant (i.e., equivariant with respect to the trivial action on the source space). By
contrast, the observation in equivariant reduction is that although the upstairs Stratonovich
operator is not projectable, the diffusion still factors to a diffusion in the base and the
downstairs generator is induced from that of the original diffusion on the total space.

Two immediate examples are the construction of Brownian motion on a general Rie-
mannian manifold as well as a stochastic version of Calogero-Moser systems (see below).
For both of these cases, the diffusion upstairs is defined in terms of a Stratonovich operator
which is equivariant but not projectable.

Let (Ω,F , (Ft), P ), Q, X0, X1, . . . , Xk ∈ X(Q) and δΓ = S(Y,Γ)δY be as before.
Suppose there is a Lie group G which acts smoothly and properly on Q from the left. We
continuously extend this action to the one point compactification Q̇ by requiring∞ to be
a fixed point. Let π : Q � Q/G be the projection and C∞(Q)G denote the subspace of
G-invariant smooth functions on Q. Note that Q/G need not be a manifold; in general
Q/G is a topological space which is naturally stratified by smooth manifolds (see, e.g.
[14, Chapter 2]).
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In the following all actions are tangent lifted, where appropriate, without further no-
tice. Generally, for Lie group actions, we will interchangeably use the notation g · q and
gq.

Theorem 3.2. Given is a group representation ρ : G→ O(k) and let O(k) act on Rk+1 =

R × Rk such that the first factor is acted upon trivially. If the Stratonovich operator S
satisfies the equivariance property

S(gx, ρ(g)y, ρ(g)y′) = gS(x, y, y′) (3.11)

for all (x, y, y′) ∈ Q × TRk+1, then the diffusion Γ induces a diffusion π ◦ Γ in Q/G.
Moreover, the generator A of the diffusion Γ on Q preserves C∞(Q)G and the induced
generator A0 of the diffusion π ◦ Γ on Q/G is characterized by

π∗(A0f) = A(π∗f) (3.12)

for all f ∈ C∞(Q/G) := {f ∈ C(Q/G) : π∗f ∈ C∞(Q)G}.

Proof. Let us begin by noting that gΓx,W = Γgx,ρ(g)W . Indeed,

δ(gΓx,W ) = gS(Y,Γx,W )δY = S(ρ(g)Y, gΓx,W )δ(ρ(g)Y )

whence Γ̃ := gΓx,W satisfies Γ̃0 = gx a.s. and δΓ̃ = S(ρ(g)Y, Γ̃)δ(ρ(g)Y ). By existence
and uniqueness of solutions the claim follows. In particular, we have π ◦ Γx,W = π ◦
Γgx,ρ(g)W .

Claim:
Pgx = g∗Px (3.13)

where G acts on W (Q) as g : w 7→ (t 7→ gw(t)). To see this, let S ⊂ W (Q) be a Borel
cylinder set. This means that there are l ∈ N, 0 ≤ t1 < . . . < tl ∈ R+, and a Borel
set A ⊂ ΠlQ̇ such that S = ev(t1, . . . , tl)

−1(A), where ev(t1, . . . , tl) : W (Q) → ΠlQ̇,
w 7→ (w(ti))

l
i=1. From the identity (Γx,ρ(g)W )ˇ∗P = (Γx,W )ˇ∗P we find

Pgx(S) = (Γgx,ρ(g)W )ˇ∗P (S) = P{ω : (Γ
gx,ρ(g)W
ti (ω))li=1 ∈ A}

= Px(ev(t1, . . . , tl)
−1(g−1A)) = Px(g

−1S)

which proves (3.13).
Consider the push forward map π∗ : W (Q)→ W (Q/G), w 7→ π ◦w. It is straightfor-

ward to see that B(W (Q/G)) = π∗B(W (Q)). For S0 = π∗(S) ∈ B(W (Q/G)) we may
write the law

(
P[x]

)
[x]∈Q̇/G of π ◦ Γ as

P[x](S0) = (π ◦ Γgx,ρ(g)W )ˇ∗P (S0) = Pgx(π
−1
∗ (S0)).

By (3.13) this does not depend on g ∈ G.
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Let us show that the system
(
P[x]

)
[x]∈Q̇/G satisfies the strong Markov property. Let p :=

π∗ : W (Q)→ W (Q/G), [x] ∈ Q/G, τ : W (Q/G)→ R+ be a (Bt(W (Q/G)))t-stopping
time, and F : W (Q/G) × W (Q/G) → R a bounded Bτ (W (Q/G)) × B(W (Q/G))

measurable function. Then p−1(Bt(W (Q/G))) ⊂ Bt(W (Q)) and p∗τ = τ ◦ p : W (Q)→
R+ is a (Bt(W (Q)))t-stopping time. For s ∈ R+ let Σs be the time shift operator defined
in (3.1) and observe that (Σspw)(t) = pw(s + t) = π(w(s + t)) = (pΣsw)(t). (We use
the same notation for the time-shift on W (Q) and that on W (Q/G).) Now, since P[x] is
the push forward of Px via p, we can use the strong Markov property of (Px)x to conclude
that∫

{w∈W (Q/G):τ(w)<∞}
F (w,Στ(w)w)P[x](dw)

=

∫
{u∈W (Q):p∗τ(u)<∞}

p∗F (u,Σp∗τ(u)u)Px(du)

=

∫
{p∗τ(u)<∞}

(∫
W (Q)

p∗F (u, v)Pu(p∗τ(u))(dv)
)
Px(du)

=

∫
{p∗τ(u)<∞}

(∫
W (Q/G)

F (pu, w)P[u(p∗τ(u))](dw)
)
Px(du)

=

∫
{τ(u0)<∞}

(∫
W (Q/G)

F (u0, w)Pu0(τ(u0))(dw)
)
P[x](du0)

which, according to (3.2), shows that (P[x])[x] is strong Markov.
To show that

∑
XiXif ∈ C∞(Q)G for all f ∈ C∞(Q)G consider the standard basis

{e0, e1, . . . , ek} of R× Rk. For j = 1, . . . , k we find

g ·Xj(x) = g · S(x, y, ej) = S(gx, ρ(g)y, ρ(g)ej) =
∑
k

gkjXk(gx),

where gkj := 〈ek, ρ(g)ej〉 is independent of x ∈ Q. Since
∑

j gijgkj = δik,

Xi(gx) =
∑
j,k

gijgkjXk(gx) =
∑
j

gijg ·Xj(x).

Thus
(
df(Xi)

)
(gx) =

∑
j gij

(
df(Xj)

)
(x) for f ∈ C∞(Q)G and also

d
(
df(Xi)

)
(gx) ◦ Txg = d

(∑
j

gijdf(Xj)
)

(x) =
∑
j

gijd
(
df(Xj)

)
(x).

This implies that∑
i

(
XiXif

)
(gx) =

∑
i

〈
d
(
df(Xi)

)
(gx), Xi(gx)

〉
=
∑
i,j,k

〈
gijd

(
df(Xj)

)
(x) ◦ (Txg)−1, gik(Txg) ·Xk(x)

〉
=
∑
i

(
XiXif

)
(x).
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Similarly, it is also easy to see that X0 is G-invariant. Thus the generator A = X0 +
1
2

∑
XiXi acts on C∞(Q)G, whence it induces a projected operator A0 characterized by

A ◦ π∗ = π∗ ◦ A0.
Finally, to see that A0 is the generator of π ◦ Γ we need to show that, for all t ∈ R+,

[x] ∈ Q/G, and f ∈ C∞(Q/G)0, the R-valued process

M f
t : W (Q/G) −→ R,

M f
t (w) := f(w(t))− f(w(0))−

∫ t

0

(A0f)(w(s)) ds

is a P[x]-martingale on (W (Q/G),B(W (Q/G)) for the filtration (Bt(W (Q/G)))t. See
[26, Def. IV.5.3]. This means that for all t ≥ 0, s ∈ [0, t], and A ∈ Bs(W (Q/G)) we
should check that (see [41, Chapter V])∫

A

EP[x]

[
M f

t

∣∣∣Bs(W (Q/G))
]
(w)P[x](dw) =

∫
A

M f
s (w)P[x](dw);

EP[x] denotes the expectation on
(
W (Q/G),B(W (Q/G))

)
with respect to P[x]. Indeed,∫

A

EP[x]

[
M f

t

∣∣∣Bs(W (Q/G))
]
(w)P[x](dw) =

∫
A

M f
t (w)P[x](dw)

=

∫
p−1A

(p∗M f
t )(u)Px(du)

=

∫
p−1A

(M̂π∗f
t )(u)Px(du)

=

∫
p−1A

EPx
[
M̂π∗f

t

∣∣∣Bs(W (Q))
]
(u)Px(du)

=

∫
p−1A

M̂π∗f
s (u)Px(du)

=

∫
p−1A

(p∗M f
s )(u)Px(du)

=

∫
A

M f
s (w)P[x](dw).

Here, M̂π∗f
t : W (Q) → R is analogously defined to M f

t . We have used that M̂π∗f
t is a

Px-martingale with respect to (Bt(W (Q)))t for all x ∈ Q and that p∗M f
t = M̂π∗f

t which
holds because of (A0f) ◦ π = A(π∗f).

Stochastic Calogero-Moser systems

To construct classical trigonometric or rational Calogero-Moser models one can take the
configurations space Q to be a (real or complex) semisimple Lie group G or a semisim-
ple Lie algebra g, respectively. The metric µ on Q is then accordingly given by the
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(essentially unique) bi-invariant (pseudo-)metric in the group or the Ad-invariant non-
degenerate bilinear form in the Lie algebra. Thus one obtains a G-invariant Hamiltonian
system (T ∗Q,ΩQ,H) where ΩQ is the canonical symplectic form on T ∗Q, H is the ki-
netic energy Hamiltonian, and G acts by the cotangent lift of the conjugation action or
the adjoint action, respectively. The resulting Calogero-Moser system is then realized
by passing to the (singular) symplectic quotient of (T ∗Q,ΩQ,H) with respect to the G-
action. See [28, 19, 21]. In other words, Calogero-Moser systems are obtained by reducing
the Hamiltonian description of geodesic motion on the Riemannian manifold (Q, µ) with
respect to its obvious symmetry group.

Here we propose the stochastic analogue of this construction which should consist
of reducing the Hamiltonian construction of Brownian motion on (Q, µ) with respect to
the G-action. To this end, we consider the Hamiltonian version in [32] of (3.10). Using
the left trivialization we may write TQ = Q × g (recall that Q = G or Q = g) and
choose an orthonormal basis Li of g with respect to the Ad-invariant inner product 〈·, ·〉;
suppose from now on, for simplicity of exposition, that G is compact. We obtain a g-
valued Hamiltonian

H = (H i) : T ∗Q = Q× g∗ −→ g, (q, p) 7−→
∑
〈p, Li〉Li.

The Hamiltonian version of Brownian motion is determined by the associated Stratonovich
equation

δΓ =
∑
i

XHi(Γ)〈Li, δW 〉,

whereW is Brownian motion in g ∼= Rn. It is shown in [32] that τ ◦Γ is Brownian motion
in (Q, µ), where τ : T ∗Q → Q is the projection. In the left trivialization T ∗Q = Q × g∗

the Hamiltonian H is nothing but the projection onto the second factor when g and g∗

are identified. Clearly, H is not G-invariant but it is G-equivariant for the Ad-action on
g. It is easy to see that the same is true for the Stratonovich operator (q, p;w,w′) 7→∑
XHi(q, p)〈Li, w′〉. In fact, we are ultimately concerned with the Stratonovich equation

δ(τ ◦Γ) = S(W,Γ)δW =
∑
δW iLi = δW and now it is evident that S(g·q, g·(w,w′)) =

Ad(g)w′ whence we need the Ad(G)-action on (w,w′) to make the Stratonovich operator
S : Q×Tg→ TQ equivariant for the respective actions. Thus the above theorem applies
and we obtain a diffusion π ◦ τ ◦ Γ in the (singular) space Q/G when π : Q � Q/G is
the projection.

This construction has been carried out in [24] where it is shown that the associated
stochastic Hamilton-Jacobi equation of [34] is related to the quantum Calogero-Moser
Schrödinger equation of [38, 39].

The issue of equivariant reduction leads immediately to the setting of [16, 17]. There,
one of the topics treated is that of a diffusion on the total space of a principal bundle such
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that the diffusion factors through the projection and the generator induces also a generator
on the base.

3.C Reconstruction of an equivariant diffusion

Proposition 3.3 that we shall state and prove in this subsection will be used in the examples
considered later on. Before we can state it, we need to recall some notions of [16, 17].

Let π : Q � Q/G =: M be a left G-principal bundle with connection form A ∈
Ω1(Q; g). Denote the horizontal and vertical spaces by Hor and Ver, respectively. Assume
that Γ is a diffusion in Q generated by a Stratonovich equation

δΓ = X0(Γ)δt+
m∑
a=1

Xa(Γ)δW a + v0(Γ)δt+
k∑

α=1

vα(Γ)δBα (3.14)

such that X0, X1, . . . , Xm are basic, v0, v1, . . . , vk are vertical vector fields, and (W,B) is
Brownian motion in Rm+k with respect to the underlying filtered probability space. Thus
the generator of Γ is

AQ = X0 + 1
2

∑
XaXa + v0 + 1

2

∑
vαvα.

By construction, this generator can be decomposed as follows. There are Y0, Y1, . . . , Ym ∈
X(M) such that X0 = hlA(Y0), . . . , Xm = hlA(Ym) and xt := π ◦ Γt is a diffusion in M
with generator AM = Y0 + 1

2

∑
YaYa. Note that π∗ ◦ AM = AQ ◦ π∗, that is, AQ is

projectable. Moreover, AQ decomposes into a horizontal part Ah = X0 + 1
2

∑
XaXa and

a vertical part Av = v0(Γ)δt+
∑k

α=1 vαδB
α.

In [16, 17] one of the main points is that, assuming a non-degeneracy condition, the
induced operator AM gives rise to a connection in π : Q → M with respect to which
the operator AQ can be decomposed. In our applications the connection is given by the
problem and the decomposition into horizontal and vertical part arises naturally.

We are going to use the observation of [16, 17] that, for q ∈ Q and Γ0 = q a.s., the
diffusion Γ can be written as

Γt = gx
h

t · xht . (3.15)

Here xht is the diffusion inQwith generatorAh and xh0 = q a.s. That is, xht is the horizontal
lift of the AM diffusion xt. The process gxht in G with gxh0 = e a.s. can be written as the
solution to a time-dependent Stratonovich equation: for w ∈ W (Q) we define

δgwt = TeRgwt

(
Agwt ·wtv0(gwt · wt) +

∑
Agwt ·wtvα(gwt · xwt )

)
. (3.16)

Here Rg : G → G is the action by right multiplication of G on itself. Equation (3.15) is
reminiscent of a well-known concept in mechanics and can be viewed as a reconstruction
equation (see, e.g., [1, §4.3], [35, §3], [36, Theorem 11.8]).
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Let Qe(w) be the law on W (G) of (3.16). This depends only on π ◦ w ∈ W (M). Let
xt be an AM -diffusion path in M with horizontal lift xh. Consider the evaluation map
evt : W (G)→ G, g(·) 7→ g(t). We call

EQe(xh)[ev] · xh : t 7−→ EQe(xh)[evt] · xht

the mean reconstruction of the sample path xt.
From now on, we shall assume thatG can be realized as a matrix groupG ⊂ GL(N) ⊂

RN2 . The flat connection on RN2 thus induces a connection∇ on G. For X ∈ g ⊂ gl(N)

we denote the associated left- and right-invariant vector field by L∗X(g) = TeLg(X) =

gX ∈ gl(N) and R∗X(g) = TeRg(X) = Xg ∈ gl(N).

Proposition 3.3. If x ∈ W (M) is an AM -sample path and v0, . . . , vk are G-invariant
vector fields then the expectation EQe(xh)[evt] =: c(t) associated to the mean recon-
struction of an AM -diffusion path x in M is given as the solution to the left-invariant
time-dependent ODE

TeL
−1
c(t) (c′(t)) = Axht v0(xht ) + 1

2

k∑
α=1

∇
L∗

(
A
xht
vα(xht )

)L∗(Axht vα(xht ))(e).

Proof. We can use G-invariance of the vector fields together with the equivariance prop-
erty Agq(guq) = Ad(g)Aquq, q ∈ Q, uq ∈ TqQ, of the principal bundle connection form
A to rewrite the defining equation (3.16) as

δgx
h

t = TeRgx
h
t

(
Te(R

−1

gx
h
t

◦ L
gx
h
t

)
(
Axht

(
v0(xht )δt+

∑
vα(xht )δB

α
)))

.

Letting

g(t) = (g(t)ln)nl := gx
h

t ,

a(t)α = (a(t)mnα )mn := Axht vα(xht ) ∈ gl(N),

b(t) = (b(t)mn)mn := Axht v0(xht ) ∈ gl(N),

this becomes with the summation convention, for l = 1, . . . , N , the Stratonovich equation

δgl =
(
glma

mn
α δBα + glmb

mnδt
)N
n=1

in RN when we think of gl as a column vector and suppress the time-dependency. The
associated Itô equation in RN is, for l = 1, . . . , N ,

dgl =
(
glma

mn
α dBα + (glmb

mn + 1
2
arnα g

l
ma

mr
α )dt

)N
n=1

.

(See e.g. [37, Equ. (6.1.3)] for the conversion rule of Stratonovich equations to Itô equa-
tions.) This is a linear time-dependent Itô equation in RN . Hence, the mean motion is
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found by erasing the martingale term in the corresponding integral equation. This implies
that the expected motion of g is given by

c′(t) = d
dt
E[g](t) = E[g](t)

(
b(t) + 1

2
a(t)αa(t)α

)
which is an equation in GL(N). Since a(t)αa(t)α = ∇L∗a(t)α(L∗a(t)α)(e) the claim fol-
lows.

3.D Time reversible diffusions

The references for this section are [31, 29, 26]. Let (M,µ) be a Riemannian manifold and
Γ an A-diffusion in M where

A = 1
2
∆ + 1

2
b (3.17)

with ∆ the Laplace-Beltrami operator and b a vector field. Let p(t, x, y) denote the tran-
sition probability density of Γ (the minimal fundamental solution – see [29]). If volµ is
the Riemannian volume form on M then, for (t, x, S) ∈ R+ ×M ×B(M), the transition
probability of Γ is

P (t, x, S) =

∫
S

p(t, x, y)volµ(y).

This quantifies the probability that a diffusion path starting at x is in S after time t. The
diffusion Γ is said to be symmetrizable if there is a smooth function φ > 0 such that

p(t, x, y)φ(x) = p(t, y, x)φ(y) for all t, x, y ∈ R+ ×M ×M (3.18)

in which case Γ is called φ-symmetric.
A probability measure ν on M is an equilibrium measure if

∫
M
ν = 1 and

P (t, x, S) −→ ν(S) as t −→∞

for all (x, S) ∈M ×B(M). Equilibrium measures, if they exist, are unique. If ν = φvolµ
is an equilibrium measure then we refer to φ as the equilibrium distribution.

The diffusion Γ is called time-reversible if its law coincides with that of the time-
reversed process; this means that for each T > 0 the law P[0,T ] of [0, T ] × Ω → M ,
(t, ω) 7→ Γt(ω) is the same as the law P−[0,T ] of [0, T ]× Ω→M , (t, ω) 7→ ΓT−t(ω).

The adjoint operator A∗ associated to A is given by

A∗f = 1
2
∆f − 1

2
divµ(fb)

where f ∈ C∞(M). Here, the adjoint is with respect to the L2 inner product 〈f, g〉 =∫
M
fg volµ. The following result is essentially due to Kolmogorov.

Theorem 3.4 ([31, 29, 26]). With notation as above the following are true.
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(1) The A-diffusion Γ is symmetric if and only if b is a gradient. Moreover, if b =

grad(log φ) then Γ is φ-symmetric and A∗φ = 0.

(2) Γ is time reversible if and only if it is symmetric and has an equilibrium distribution
φ, in which case Γ is φ-symmetric.

(3) If M is compact then an equilibrium distribution always exists.

(4) If M is compact then the unique equilibrium distribution φ is characterized by the
equations

∫
M
φvolµ = 1 and A∗φ = 0.

Compactness of M is satisfied in important examples such the Chaplygin ball or the
two-wheeled carriage studied in Section 5.

Assuming that M is compact, [27, Chapter 5] give various equivalent conditions for a
diffusion of the form (3.17) to be time-reversible. One such condition is that the diffusion
have vanishing entropy production rate

lim
T→0

1
T
H(P[0,T ], P

−
[0,T ]). (3.19)

The relative entropyH(µ, ν) of two probability measures µ, ν on a measure space (W ,B)

is defined as (see [27, Definition 1.4.3])

H(µ, ν) :=

{∫
Ω

log dµ
dν
µ(dω) if µ << ν and log dµ

dν
∈ L1(dµ);

+∞ otherwise.

4 Non-holonomic diffusions

Consider a non-holonomic system (Q,D,L) as in Section 2. This section is concerned
with the study of non-holonomic diffusions onD which should be given by a Stratonovich
equation of the form

δΓ = XCHδt+ SC(Γ,W )δW. (4.1)

Here XCH describes the dynamics of the deterministic system, W is Brownian motion
in Rd, d = dimQ, and SC(Γ,W )δW should be interpreted as a noise term that stems
from constrained Brownian motion. This is in analogy to [32, Section 3.1] and [5] where
Hamiltonian diffusions are introduced. However, equation (4.1) does not make sense, in
general, unless the configuration space is parallelizable. The problem to be considered
below is to make this equation precise and to study the notion of constrained Brownian
motion on manifolds.
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4.A Constrained Brownian motion

Let (Q,D,L) be a non-holonomic system with symmetry group G as in Section 2.
Let ρ : F → Q be the orthonormal frame bundle over (Q, µ) and denote its structure

group by K := O(d) and its Lie algebra by k := so(d). The Levi-Civita connection ∇µ

on TQ gives rise to a uniquely determined principal connection ω ∈ Ω1 (F; k) on the
principal bundle ρ : F → Q; denote by Horω = kerω ⊂ TF its horizontal subbundle.
Equip F with a K-invariant metric ν such that ρ becomes a Riemannian submersion and
Horω and Ver(ρ) := kerTρ are perpendicular. Since G acts by isometries on (Q, µ), it
lifts to an action on F and we may assume ν to be G-invariant; e.g., we could take ν
to be the Sasaki-Mok metric (see the survey [40]). We can use the connection to lift the
constraints to a subbundle DF ⊂ TF defined via the natural ω-dependent vector bundle
isomorphism

DF ∼=ω (F×Q D)⊕ Ver(ρ).

To understand this definition and the isomorphism consider the bundle morphism over F
defined by

F×Q D ⊕ Ver(ρ) ↪→ Horω ⊕ Ver(ρ) ∼=ω TF,

(uq, Xq; ηuq) 7−→ hlωuq(Xq) + η(uq).

As before, hlω : F ×Q TQ → Horω is the horizontal lift mapping associated to ω. Now
the subbundle DF is defined as the image of this morphism.

Thus (F,DF, 1
2
|| · ||ν) is a new G-invariant non-holonomic system covering (Q,D,L)

in the following sense: TheG-action lifts to an action onDF and there is an induced space
CF defined by

CF := {ξ ∈ T (DF) | TτF(ξ) ∈ DF},

where τF : TF → F is the tangent bundle projection. Again, we split T (TF)|(DF) =

CF⊕(CF)ΩF , where ΩF is now the canonical symplectic form on TF ∼=ν T
∗F (the tangent

and cotangent bundles of F are identified via the Riemannian metric ν on Q), and PF :

CF⊕ (CF)ΩF → CF denotes the associated projection. The situation is summarized in the
following commutative diagram:

T (TF)|(DF)

TTρ

��

CF⊕ (CF)ΩF
PF
//

��

CF

��

TTQ|D C ⊕ CΩ P // C.

(4.2)

Indeed, this diagram is commutative since TTρ(CF) = C and we may regard (TQ,Ω) as
the symplectic reduction of (TF,ΩF) with respect to the K-action at 0. In particular,

TTρ (PF (Xρ∗f )) = P (TTρ (Xρ∗f )) = XCf ∈ X(D)
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for any f ∈ C∞(TQ).
According to Section 3 we can construct Brownian motion on (Q, µ) by fixing Brow-

nian motion W = (Wi) in Rd, d = dimQ, and the Hamiltonian

H : TF −→ Rd, (u, η) 7−→
(
ν(η, Li(u))

)
=
(
H i(u, η)

)
, (4.3)

where the Li are defined by (3.9). This gives rise to the Stratonovich operator

SH : TF× TRd −→ TTF, (u, η, x, w) 7−→
∑

XHi(u, η)〈ei, w〉,

where {e1, . . . , ed} is the standard basis in Rd. If ΓH solves δΓH = SH(W,ΓH)δW then
τF ◦ ΓH solves (3.10) and ρ ◦ τF ◦ ΓH is Brownian motion in (Q, µ).

Definition 4.1. We define constrained Brownian motion to be the process

Γnh := ρ ◦ τF ◦ ΓCF

in Q, where ΓCF is a process in DF solving the Stratonovich equation

δΓCF = PF(ΓCF)SH(W,ΓCF)δW =
∑

XCF
Hi(Γ

CF)δW i. (4.4)

Let (DF)⊥ be the ν-orthogonal of DF and ΠF : TF = DF ⊕ (DF)⊥ → DF be the
orthogonal projection. Similarly, we define Π : TQ = D ⊕D⊥ → D and we note that

Π ◦ Tρ = Tρ ◦ ΠF. (4.5)

Equation (2.13) implies that τF ◦ ΓCF is a diffusion in F generated by the Stratonovich
equation

δ(τF ◦ ΓCF) =
∑

ΠF(τF ◦ ΓCF)Li(τF ◦ ΓCF)δW i.

The associated Stratonovich operator will be denoted by SDF. It is explicitly given by

SDF : F× TRd −→ DF, (u;w,w′) 7−→
∑

ΠF(u)Li(u)〈ei, w′〉 (4.6)

where {e1, . . . , ed} is the standard basis in Rd.
Henceforth, local orthonormal frames on (Q, µ) and local sections of ρ : F → Q will

be identified.

Theorem 4.2. The process Γnh is a diffusion in Q (in the sense of Section 3) and its
generator A has the form

A = 1
2

∑
(Πui)(Πui)− 1

2

∑
Π∇µ

Πui
ui

in a local orthonormal frame u = (ui) on (Q, µ).
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Proof. By Proposition 3.2, to see that Γnh is a diffusion we need to show that

SDF(u · k, w, w′) = SDF(u, kw, kw′) · k (4.7)

for all k ∈ K. Here, u · k denotes the principal right action of k ∈ K on u ∈ F and
condition (4.7) is equivalent to (3.11) since one can invert a right action to obtain a left
action. Indeed,DF ∼=ω (F×QD)⊕Ver(ρ) and the definition of ν imply ΠF◦hlω = hlω ◦Π

and therefore

SDF(u · k, w, w′) =
d∑
i=1

ΠF(u · k)hlωu·k(u(kei))〈ei, w′〉

=

(
d∑
i=1

hlωu(Π(ρ(u))u(ei))〈ei, kw′〉

)
· k

which proves (4.7).
In order to calculate the generator A, let f ∈ C∞(Q)0 and u ∈ F. Then

A(ρ∗f)(u) = 1
2

d∑
i=1

(ΠFLi)(ΠFLi)(ρ
∗f)(u)

= 1
2

d∑
i=1

(Πui,−ω(Πui))(Πui,−ω(Πui))ρ
∗f

= 1
2

d∑
i=1

(Πui,−ω(Πui))(Πuif)

= 1
2

d∑
i=1

Πui(x 7→ (Πuif)(x))− 1
2

d∑
i=1

ω(Πui)(v 7→ (Πv(ei)f))|v=u

= 1
2

d∑
i=1

(Πui)(Πui)f − 1
2

d∑
i=1

(
Π

∂

∂t

∣∣∣∣
t=0

(
etω(Πui)u

)
ei

)
f

= 1
2

d∑
i=1

(Πui)(Πui)f − 1
2

d∑
i=1

(Πω(Πui)ui)f

= 1
2

d∑
i=1

(Πui)(Πui)f − 1
2

d∑
i=1

(Π∇µ
Πui
ui)f,

where we have frequently dropped the base points to simplify the notation.
Alternatively, the above calculation can be done in local coordinates u = (xi, eij) on

F. Then, using the summation convention, ur = emr ∂m and Π∂m = Πn
m∂n with ∂m =

∂
∂xm

. The Christoffel symbols are given as usual by ∇µ
∂k
∂j = Γikj∂i. Using now the local

coordinate description (3.7) of Horω it follows that

ΠFLr(u) = hlω(Πur) = hlωΠn
me

m
r ∂n = Πn

me
m
r

(
∂n − Γinle

l
j
∂
∂eij

)
.
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This yields

(ΠFLr)(ΠFLr)f = (Πur)(Πur)f − Πn
me

m
r Γinle

l
j
∂
∂eij

(Πb
ae
a
r∂bf)

= (Πur)(Πur)f − Πn
me

m
r Γanle

l
rΠ

b
a∂bf

= (Πur)(Πur)f − Π∇µ
Πnme

m
r ∂n

elr∂lf = (Πur)(Πur)f − Π∇µ
Πur

urf

which immediately yields the formula for A in the statement of the theorem.

The second term in the above formula for A is reminiscent of the non-holonomic
connection∇nh. This is defined as the linear connection

∇nh : X(Q)× X(Q) −→ X(Q), (X, Y ) 7−→ ∇µ
XY − (∇µ

XΠ)Y. (4.8)

If Y is a section of D, one obtains the useful identity ∇nh
XY = Π∇µ

XY . Let Hessnh be the
Hessian of∇nh.

Corollary 4.3. The non-holonomic diffusion Γnh is a martingale in Q with respect to the
non-holonomic connection∇nh.

Proof. Since A(ρ∗f)(u) depends only on ρ(u) (this follows from Theorem 3.2 but can
also be checked directly), we may take a local frame u = (ui) = (ua, uα) which is
adapted to the decomposition D ⊕ D⊥ such that ua are local sections of D and uα are
local sections of D⊥. Then A = 1

2

∑
(uaua − ∇nh

uaua) = 1
2

∑
Hessnh(·)(ua, ua) which is

purely second order, by definition.

4.B G-Chaplygin diffusions and stochastic non-holonomic reduction

Continue to assume that the non-holonomic system (Q,D,L) is invariant with respect to
a free and proper action of a Lie group G. Denote the projection by π : Q� Q/G = M .

The G- and K-action on F commute. Thus, we may form the product action of G×K
on F. Since the H i from (4.3) are G-invariant, it follows that the Stratonovich operator
(4.6) satisfies condition (3.11) with respect to the trivial G-representation on Rd. There-
fore, ΓCF induces a diffusion

π ◦ ρ ◦ τF ◦ ΓCF = π ◦ Γnh =: ΓM

on M := F/(G×K).
Now we make the additional assumption that the constraints are of Chaplygin type,

i.e.,D is the kernel of a principal connection one-formA ∈ Ω1(Q; g). The non-holonomic
connection (4.8) on Q induces a connection on M which will be referred to as the non-
holonomic connection∇M on M ; it is given by

∇M : X(M)× X(M) −→ X(M), (X, Y ) 7−→ Tπ
(
Π∇µ

hlAX
(hlAY )

)



36 Simon Hochgerner, Tudor S. Ratiu

where hlA : X(M) → X(Q,D) (the space of vector fields on Q with values in the vector
subbundleD ⊂ TQ) is the horizontal lift map ofA. Recall from §2.B that the Riemannian
metric µ on Q naturally induces a Riemannian metric µ0 on the quotient M := Q/G.
To calculate the generator AM of ΓM , take a local orthonormal frame u = (ua) on M .
Similarly as in the proof of Corollary 4.3, the generator becomes

AM = 1
2

∑
(uaua −∇µ0

uaua) + 1
2

∑
(∇µ0

uaua −∇
M
uaua) = 1

2
∆µ0 + 1

2
b (4.9)

where b =
∑

(∇µ0
uaua −∇

M
uaua).

Lemma 4.4. b = µ−1
0 β where β is defined by (2.24).

Proof. Essentially this formula is a special case of [30, Proposition 8.5]. For convenience
we provide a proof by using a local orthonormal frame (ua) on M . Let K = ζ ◦CurvA ∈
Ω2(Q, TQ) be the curvature of ζ ◦ A ∈ Ω1(Q, TQ) where ζ : g 3 ξ 7→ ξQ ∈ X(Q) is the
fundamental vector field mapping of the G-action. Then

µ0(∇µ0
uaua, ub) = −µ0([ua, ub], ua) = −µ(hlA[ua, ub], hlAua)

= µ(K(hlAua, hlAub), hlAua)− µ([hlAua, hlAub], hlAua)

= −µ(ζCurvA(hlAua,hlAub), hlAua) + µ(Π∇µ

hlAua
hlAua, hlAub)

= −〈J(hlAua),CurvA(hlAua, hlAub)〉+ µ0(∇M
uaua, ub).

Therefore,

µ̌0(∇µ0
uaua −∇

M
uaua) = 〈J(hlAua),CurvA(hlAub, hlAua)〉µ0(ub, )

= Ξ(ua)
(
Xnh
Hc
, uha

)
= β

where uha is the horizontal lift of the local vector field ua ∈ Xloc(M) to uha ∈ Xloc(TM)

with respect to the Levi-Civita connection ∇µ0 . (We have identified linear functions on
TM and one-forms on M as we did in the definition (2.24).)

Theorem 4.5. The G-Chaplygin system (Q,D,L) has a preserved measure if and only
if the associated diffusion ΓM is symmetric. Moreover, if b = gradµ0(logN ) then the
diffusion is N -symmetric and N is the density of the preserved measure of Xnh

Hc
with

respect to the Liouville volume.

Proof. Using (4.9) and Lemma 4.4 this is a direct consequence of Proposition 2.5 and
Theorem 3.4.

When M is compact, then we infer from Section 3.D that measure preservation of
the deterministic system is equivalent to time-reversibility of ΓM which in turn is equiv-
alent to the vanishing of the entropy production rate (3.19) of ΓM . Moreover, if b =

gradµ0(logN ) then (∫
M

Nvolµ0

)−1

Nvolµ0



Geometry of non-holonomic diffusion 37

is the (unique) equilibrium distribution of ΓM . For most systems of practical interest,
such as the Chaplygin ball, the two-wheeled robot, or the snakeboard, the manifold M is
compact.

5 Examples

5.A The two-wheeled robot

The configuration space of the two-wheeled robot is

Q = S1 × S1 × SE(2) = {(ψ1, ψ2, x, y, θ)}.

Here (ψ1, ψ2) measure the positions of the wheels with the orientation such that the robot
goes forward when the wheels go backward, and (x, y, θ) give the overall configuration
of the robot in the plane. Let G = SE(2) and M := S1 × S1 = Q/G. We use almost
exactly the same notation as [11, Section 5.2.2]. It is assumed that the two wheels can
be controlled independently and roll without slipping and without lateral sliding on the
plane. The Lagrangian L of the system is the kinetic energy corresponding to the metric

µ = Jw(dψ1 ⊗ dψ1 + dψ2 ⊗ dψ2) +m(dx⊗ dx+ dy ⊗ dy)

+m0l cos θ(dy ⊗ dθ + dθ ⊗ dy)−m0l sin θ(dx⊗ dθ + dθ ⊗ dx) + J0dθ ⊗ dθ.

Here m = m0 + 2mw, m0 is the mass of the robot without the wheels, mw is the mass of
each wheel, Jw is the moment of inertia of each wheel, J0 is the moment of inertia of the
robot about the vertical axis, and l is the distance from the vehicle’s center of mass to the
midpoint of the axis which connects the two wheels. Let 2c denote the distance between
the contact points of the two wheels with the ground, and R the radius of the wheels. The
constraints are given by the kernel of the g ∼= R3-valued one-form

A =

dx+ ydθ + R
2

cos θ(dψ1 + dψ2) + y R
2c

(dψ1 − dψ2)

dy − xdθ + R
2

sin θ(dψ1 + dψ2)− x R
2c

(dψ1 − dψ2)

dθ + R
2c

(dψ1 − dψ2)

 .

Thus the constraint distribution is D = A−1(0) = span{ξ1, ξ2} where

ξ1 := ∂ψ1 − R
2

(cos θ∂x + sin θ∂y + 1
c
∂θ) and ξ2 := ∂ψ2 − R

2
(cos θ∂x + sin θ∂y − 1

c
∂θ).

(5.1)

Symmetry reduction

Since A is a connection one-form for the principal bundle π : Q � M = Q/G, the
system (Q,D,L) is of G-Chaplygin type. Let J : TQ → g∗ be the momentum map of
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the G-action. Then a calculation shows that

〈J(q, v1ξ1 + v2ξ2),CurvA(∂ψ1 , ∂ψ2)〉 = m0l
R3

4c2
(v2 − v1).

Note that this vanishes if l = 0. Let us apply the Gram-Schmidt orthonormalization
scheme with respect to the reduced metric µ0 to ∂ψ1 , ∂ψ2 and denote the result by u1, u2.
Thus,

u1 =
(
Jw +mR2

4
+ J0

R2

4c2

)− 1
2
∂ψ1 (5.2)

and

u2 =

(
Jw

(
Jw+m

R2

2
+J0

R2

2c2

)
+mJ0

R4

4c2

Jw+m
R2

4
+J0

R2

4c2

)− 1
2
(
∂ψ2 − m

R2

4
−J0

R2

4c2

Jw+m
R2

4
+J0

R2

4c2

∂ψ1

)
. (5.2a)

Using the relation

µ0(b) = β = µ0

(∑
i,j

〈J(ui),CurvA(uj, ui)〉uj,

)

and expanding everything in terms of ∂ψ1 , ∂ψ2 , one finds that the drift vector b equals

b = lm0R
3
(
Jw(4c2Jw +m2c2R2 + 2J0R

2) +mJ0R
4
)−1

(∂ψ1 + ∂ψ2) . (5.3)

Since M is compact, this b cannot be the gradient of a function for l 6= 0. Thus, we can
conclude that the deterministic two-wheeled robot does not have a preserved volume for
l 6= 0 and that the associated stochastic system is not time-reversible.

Kinematics of the noisy cart

Formula (5.3) seems to imply that the stochastic cart (with zero initial velocity) acquires
a tendency to go backwards when the center of mass is displaced towards the rear. To
see that this is indeed the case we should check that the horizontally lifted mean curve
coincides with the expected motion of the cart.

Since TQ ∼=µ T
∗Q (vector bundle isomorphism induced by the Riemannian metric µ

on Q) and TTQ are trivial, we may view TQ ⊂ TTQ as a vector subbundle, so that bh =

hlA(b) and uha become vector fields on TTQ. Then the stochastic dynamics ΓD = (qt, pt)

on D are generated by the operator

AD = XCH + 1
2
bh +

∑
a

uhau
h
a

or by the Stratonovich equation

δΓD = XCH(ΓD)δt+ 1
2
bh(qt) +

∑
a

uha(qt)δW
a.
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Here XCH was defined in Section 2. Now in local coordinates (qi, pi) on TQ the stochastic
equations of motion are

δ(pi ◦ ΓDt ) = dpi (PXH(qt, pt)) δt,

δ(qi ◦ ΓDt ) = (pt)iδt+ 1
2
dqi
(
bh(qt)

)
δt+ dqi

(∑
a

uha(qt)

)
δW a.

If the initial conditions are (q0, 0) then the solution is given by (qt, 0) where qt satisfies

δqt = 1
2
bh(qt)δt+

∑
a

uha(qt)δW
a.

Let qt = (ψ1
t , ψ

2
t , xt, yt, θt) = (qit). By [37, Lemma 7.3.2] we have

E
[
qit
]

= qt0 + E

[∫ t

0

(
1
2

(∑
a

uhau
h
aq
i

)
(qs) + 1

2
(bhqi)(qs)

)
ds

]
.

Rewriting ∑
a

uhau
h
a = A(ξ1ξ1 + ξ2ξ2) +B(ξ1ξ2 + ξ2ξ1),

with

A :=
µ(ξ1, ξ1)

µ(ξ1, ξ1)2 − µ(ξ1, ξ2)2
, B :=

µ(ξ1, ξ2)

µ(ξ1, ξ1)2 − µ(ξ1, ξ2)2
,

and noting that µ(ξ1, ξ2) and µ(ξ1, ξ1) = µ(ξ2, ξ2) are constants, implies that
∑

a u
h
au

h
aq
i =

0 for (qi) = (ψ1, ψ2, x, y, θ). Thus

∂
∂t
E [qt] = 1

2
bh (E[qt]) ,

i.e., E[qt] is the horizontal lift of the integral curve of 1
2
b ∈ X(M).

Therefore, constraints and noise couple to produce a backwards drift of the robot.
We emphasize that this is a stochastic non-holonomic effect which does not appear in a
Hamiltonian setting. Indeed, the Hamiltonian reduction of Brownian motion at the zero-
momentum level yields Brownian motion and this is consistent with the fact that the
reduced two-wheeled robot system is actually Hamiltonian when l = 0.

Trajectory planning for noisy wheels

Generally speaking, consider a non-holonomic system (such as the cart) and assume that
it is controlled so as to follow a predefined smooth curve c(t) ∈ Q, t ∈ [0, T ] when no
noise is present. When the system is stochastically perturbed we may ask whether c(t) is
also the expected motion of the perturbed system.

Suppose we want to steer the robot so that it follows a predefined curve in the plane.
As a curve we consider the circle C of radius ρ ≥ 0 centered at the origin. The initial
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configuration of the robot should be (x0, y0, θ0) = (ρ, 0, π/2) and the vehicle should
go around the circle in the positive sense. It is assumed that the wheel speeds can be
individually controlled.

In this section we consider the example of [42]. Here the wheels are subject to a
Gaussian white noise which is modeled by the Stratonovich equation

δΓM =
√
D1∂ψ1δW 1 +

√
D2∂ψ2δW 2 (5.4)

in TM where (W i) is Brownian motion in R2 and Di > 0 are constants. In this setup
one assumes that the controlled vehicle is not affected by the kinematics of the prob-
lem, thus effectively forgetting the metric µ. The generator of ΓM is 1

2
(D1∂

2
ψ1 + D2∂

2
ψ2).

Equation (5.4) lifts to a Stratonovich equation

δΓQ =
√
D1ξ1δW

1 +
√
D2ξ2δW

2

in TQ. This is in accordance with the general theory of [16, 17]; the generator of ΓQ is
AQ = 1

2
(D1ξ

2
1 + D2ξ

2
2) which can be regarded as the horizontal lift of AM . Consider the

deterministic input vector field

u(t) := −λ(t)
(
ρ+c
R
∂ψ1 + ρ−c

R
∂ψ2

)
on M where the control

λ(t) =

{
2t, 0 ≤ t <

√
π
2

=: t1
2 t−T
t1−T , t1 ≤ t ≤ T := 3π

2
+ t1

is chosen such that the unperturbed robot traverses the nominal curve C exactly once and
initial and final speed are 0. The equation for the controlled noisy robot is thus

δΓu = −λ(t)(ρ+c
R
ξ1(Γu) + ρ−c

R
ξ2(Γu))δt+

√
D1ξ1(Γu)δW 1 +

√
D2ξ2(Γu)δW 2

and the corresponding (time-dependent) generator is Au = AQ + hlA(u) whence by [37,
Lemma 7.3.2]

E [f(Γut )] = f(Γu0)− E
[∫ t

0

(AQ + hlA(u))(f)(Γus ) ds

]
(5.5)

for f ∈ C∞(Q). (The expectation is taken with respect to the underlying probability.) Let

Γ0 = (0, 0, ρ, 0, π
2
), Γut =: (ψ1

t , ψ
2
t , xt, yt, θt), κ := (D2−D1)R2

8c
.
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Using (5.5) we find

E[xt] = κ

∫ t

0

E[cos(θs)] ds+ ρ

∫ t

0

λ(s)E[sin(θs)] ds

= κ

∫ t

0

eκt cos(θ(s)) ds+ ρ

∫ t

0

λ(s)eκt sin(θ(s)) ds

E[yt] = −κ
∫ t

0

E[sin(θs)] ds+ ρ

∫ t

0

λ(s)E[cos(θs)] ds

= −κ
∫ t

0

eκt sin(θ(s)) ds+ ρ

∫ t

0

λ(s)eκt cos(θ(s)) ds

where θ(t) differs from θt and is defined by

θ(t) =

{
t2 + π

2
, 0 ≤ t <

√
π
2

=: t1;
(t−T )2

t1−T + 5π
2
, t1 ≤ t ≤ T := 3π

2
+ t1.

This determines the orientation of the vehicle.
We have solved for (E[xt], E[yt]) using Maxima and its built in Runge-Kutta scheme.

Here is a plot:

The data are ρ = 1, D1 = 1.2, D2 = 0.8, R = 0.3, c = 0.1. we have
plotted the accelerating and braking parts of (E[xt], E[yt]) as blue and
red, and the accelerating and braking parts of the unperturbed controlled
robot (x(t), y(t)) as green and magenta, respectively.

The discrepancy between the deterministic trajectory and the mean curve of the perturbed
system is quite obvious. This phenomenon has also been observed in [42] by means of
numerical simulations, and [42] have also proposed a trajectory planning algorithm which
takes the perturbation into account. When comparing the above picture to that of [42], it
should be noted that we have chosen a different convention for the orientation of the
wheels.
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5.B Microscopic snakeboard under molecular bombardment

This is not a G-Chaplygin system but does fit the set-up of Section 4.A.
In describing the snakeboard we follow mostly the presentation of [9]. There is, how-

ever, one difference: the metric which we use to define the kinetic energy is that of [7].
This considerably simplifies some of the formulas. We further assume that the angle of the
front axis equals minus that of the back axis. Thus the configuration space of this system
is

Q = S1 × S1 × SE(3) = {q = (φ, ψ, x, y, θ)}.

The constraint distribution is the kernel of the R2-valued one-form ω = (ω1, ω2) given by

ω1(q) = − sin(θ + φ)dx+ cos(θ + φ)dy − r cos(φ)dθ,

ω2(q) = − sin(θ − φ)dx+ cos(θ − φ)dy − r cos(φ)dθ

where 2r is the distance between the axes measured from their respective midpoints. Thus

D = span {∂φ, ∂ψ, s := a∂x + b∂y + c∂θ}

where the functions a, b, c are given by

a = −r
(

cos(φ) cos(θ − φ) + cos(φ) cos(θ + φ)
)
,

b = −r
(

cos(φ) sin(θ − φ) + cos(φ) sin(θ + φ)
)
,

c = sin(2φ).

Let m be the mass of the board, J0 its moment of inertia, and Jφ, Jψ, Jθ the moments
of inertia corresponding to rotation about the angle φ, ψ, and θ respectively. Then the
Lagrangian of the system is the kinetic energy of the metric

µ = m(dx⊗dx+dy⊗dy)+Kdθ⊗dθ+Jφdφ⊗dφ+Jψdψ⊗dψ+Jψ(dψ⊗dθ+dθ⊗dψ)

where K := Jθ + Jψ + Jφ.
Let us assume that the snakeboard is perturbed by white noise. Using the left trivial-

ization of TQ this can be modeled by a Stratonovich operator of the form

S : Q× TR6 −→ TQ,

(q, w, w′) 7−→ σ
∑
〈ei, w′〉uiδW i

where (ui) is a left invariant orthonormal frame on Q and σ ≥ 0 is a parameter specifying
the field strength. According to the results of Section 4, constrained Brownian motion is
a diffusion Γnh with generator

A = σ2

2

∑
(uaua − Π∇µ

Πua
ua).
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Here (ua) is an orthonormal frame of D and Π : TQ = D ⊕D⊥ → D. We fix this frame
to be

u1 = J
− 1

2
φ ∂φ, u2 = η−

1
2 (∂ψ − Jψ cεs), u3 = ε−

1
2 s

where

ε = m(a2 + b2) +Kc2, η = Jψ(1− Jψc
2

ε
).

Note that η and ε are functions of φ only. A calculation now shows that we have, for the
(trivial) connection∇ associated to µ,

∇u1u1 = 0,

∇u2u2 =
J2
ψc

3

ηε2

(
(∂θa)∂x + (∂θb)∂y

)
∈ D⊥,

∇u3u3 = c
ε

(
(∂θa)∂x + (∂θb)∂y

)
∈ D⊥.

Thus Π∇µ
Πua

ua = 0 for this frame and Γnh is given by the Stratonovich equation

δΓnh = σ
∑

ua(Γ
nh)δW a. (5.6)

As in the theory of [9], we fix the horizontal space of the principal bundle π : Q �

Q/G = T 2 = M associated to the distribution D to be given by the span of {u1, u2}. The
corresponding connection form is denoted by A. Consider the control vector fields

Uφ(t) = u′φ(t)∂φ, uφ(t) = aφ sin(ωφt),

Uψ(t) = u′ψ(t)∂ψ, uψ(t) = aψ sin(ωψt)

in the control space TM . Their horizontal lifts are hlA(Uφ) = u′φ(t)∂φ and hlA(Uψ) =

u′ψ(t)(∂ψ − Jψ cεs). Combining this with (5.6) yields

δΓu = hlAΓu(Uφ + Uψ)δt+ σua(Γ
u)δW a (5.7)

which describes the stochastic perturbation of the controlled snakeboard with determinis-
tic gait input (φ, ψ) = (uφ(t), uψ(t)).

Since the variables (φ, ψ) are also the ones which can be controlled, we are interested
in estimating Γu given that the projected process Xt = π ◦ Γut satisfies the projected
equation

δX = (Uφ(t) + Uψ(t))δt+ J
− 1

2
ψ δW 1∂φ + η(X)−

1
2 δW 2∂ψ . (5.8)

This is the filtering problem E[Γut |π ◦ Γut = Xt] =: Zt and the solution is provided by
[16, 17]: The process Γu can be decomposed as

Γut = gXt ·Xh
t
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where Xh
t is the horizontal lift of Xt = π ◦Γut and gX is the reconstruction process. These

satisfy the Stratonovich equations

δXh = hlAXu(Uφ + Uψ)δt+ σ(u1(Xh)δW 1 + u2(Xh)δW 2), Xh
0 = Γu0 = q0 ∈ Q

and
δgXt = σTeLgXt .AXh

t
u3(Xh

t )δW 3, gX0 = e ∈ G.

(See also Section 3.C.) By [17] we have that

Zt = E[gXt ] ·Xh
t . (5.9)

Let Xh
t = (φt, ψt, xt, yt, θt) and E[gXt ] = (at, bt, γt) ∈ G. It follows from Proposition 3.3

that the mean reconstruction curveE[gXt ] is determined by the time- and ω ∈ Ω-dependent
ODE

∂
∂t
E[gXt ] = ∂

∂t

atbt
γt

 (5.10)

= σ2c(φt)

2
√
ε(φt)

−(a(φt, θt) + ytc(φt)
)

sin(γt)−
(
b(φt, θt)− xtc(φt)

)
cos(γt)(

a(φt, θt) + yc(φt)
)

cos(γt)−
(
b(φt, ψt)− xtc(φt)

)
sin(γt)

0

 .

Using the rule for transforming Stratonovich equations to Itô type, we can characterize
Xh
t by the Itô equation

dXh
t =



u′φ(t)

u′ψ(t)

−Jψ a(φt,θt)c(φt)
ε(φt)

u′ψ(t) + σ2 c(φt)3

2η(φt)ε(φt)2
(∂θa)(φt, θt)

−Jψ b(φt,θt)c(φt)ε(φt)
u′ψ(t) + σ2 c(φt)3

2η(φt)ε(φt)2
(∂θb)(φt, θt)

−Jψ c(φt)
2

ε(φt)
u′ψ(t)


dt

+ σu1(Xh)dW 1 + σu2(Xh)dW 2. (5.11)

Equation (5.11) involves an iterated dependence on trigonometric functions, and hence
numerical simulation is not straightforward. A naive approach would involve to run an
Euler-Maruyama and an Euler simulation for (5.11) and (5.10) respectively, and to mul-
tiply the results together according to (5.9) which is the action of G on Q. This yields
Zt. Running the simulation sufficiently many times and computing the average yields the
mean E[Zt]. We have implemented this scheme and the results seem reasonably stable up
to time 1, according to a first order test. Beyond that time, the trajectories blow up very
quickly, which is a strong indication that the method is unstable and a more detailed anal-
ysis of the numerical implementation is necessary. Our preliminary results are contained
in the plot below.
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The blue line is the center of mass motion of the unperturbed snake-
board and and the dotted magenta line is the mean motion of the
stochastic snakeboard with the same deterministic input. Additionally 3
sample plots have been included. The data are as indicated above: T is
the runtime, 1/N the step size,M the number of experiments, rad = 180

π

and σ the parameter specifying the strength of the white noise. The ini-
tial conditions are q0 = (0, 0, 0, 0, 0.5).
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