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The mechanisms promoting scalar dissipation through scalar gradient production are scru-
tinized in terms of vorticity alignment with respect to strain principal axes. For that purpose,
a stochastic Lagrangian model for the velocity gradient tensor and the scalar gradient vector
is used. The model results show that the major part of scalar dissipation occurs for stretched
vorticity, namely when the vorticity vector aligns with the extensional and intermediate strain
eigenvectors. More specifically, it appears that the mean scalar dissipation is well represented
by the sample defined by alignment with the extensional strain, while the most intense scalar
dissipation is promoted by the set of events for which vorticity aligns with the intermedi-
ate strain. This difference is explained by rather subtle mechanisms involving the statistics
of both the strain intensities and the scalar gradient alignment resulting from these special
alignments of vorticity. The analysis allowing for the local flow structure confirms the latter
scenario for both the strain- and rotation-dominated events. However, despite the prevailing
role of strain in promoting scalar dissipation, the difference in the level of scalar dissipation
when vorticity aligns with either the extensional or the intermediate strain mostly arises from
rotation-dominated events.
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1. Introduction

The finest level at which micromixing in fluid flows can be investigated is de-
termined by the local gradient of a scalar. The gradient indeed rules molecular
diffusion, but also gives a precise insight into the small-scale structure of scalar
fields and mixing patterns. Actually, it is the mean dissipation rate of the en-
ergy of scalar fluctuations, D〈G2〉, the so-called scalar dissipation – with D the
molecular diffusivity and G the scalar gradient –, which reveals the efficiency of mi-
cromixing. Modelling small-scale mixing in process and chemical engineering [1] or
in combustion flow computation [2] thus needs to understand the very mechanisms
of scalar gradient production. On the basic level, the study of the scalar gradient
is relevant to the general problem of vector transport in fluid flows [3] including
the kinematics of vectors defining material lines or surfaces [4], the vorticity vector
properties [5, 6], the dynamics of the vorticity gradient in two-dimensional flows
[7] as well as the production of the magnetic field by the motion of a conducting
fluid [8].
A number of studies have tackled the connection of the detailed features of

the scalar gradient and of the scalar dissipation with the properties of the flow
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field determined by the local velocity gradients [9–20]. Clearly, in scalar gradient
production, strain – through its intensity, persistence and the respective alignments
of scalar gradient and principal axes – is the chief mechanism, while vorticity,
at least its magnitude, is immaterial. Because of the tight interaction between
strain and vorticity [5, 21], however, vorticity properties are likely to be indirectly
involved. In fact, the role of strain in the vicinity of vorticity structures has early
been established [9–11]. Models based on stretched vortices [22] have also been
shown to reproduce the physics of scalar transport and mixing in turbulent flows.
More recently the influence of vortical structures on mixing has been clearly shown
[23].
The present work, too, has to do with the relationship between mixing properties

and the local features of the flow field. The production of scalar dissipation, and
thus the mechanisms of micromixing, are probed through the kinematic features
of the scalar gradient in terms of vorticity geometry. Since vorticity alignments
arise from the dynamics of the velocity field and are closely connected to the inner,
detailed structure of turbulent flows [5, 6, 24], alignment of vorticity with respect
to strain principal axes is especially considered.
This article reports an extension of the findings presented in reference [25]. The

stochastic Lagrangian model used in the study is described in Section 2 and its
ability to predict statistics conditioned on vorticity alignments is checked in Section
3. Making use of the model results, the scrutiny of scalar dissipation in terms of
vorticity geometry, including the analysis based on local flow structure, is achieved
in Section 4. Conclusion is drawn in Section 5.

2. Stochastic Lagrangian model for the velocity and scalar gradients

2.1. Modelled equations

The model for the velocity gradient tensor has been derived by Chevillard and
Meneveau [26] and has been shown to predict the essential geometric properties and
anomalous scalings of incompressible, isotropic turbulence [26, 27]. Starting from an
Eulerian-Lagrangian change of variables and using the Recent Fluid Deformation
Approximation the modelled equation for the velocity gradient tensor, A, is derived
as

dA =

(

−A2 +
Tr(A2)

Tr(C−1
τη )

C−1
τη −

Tr(C−1
τη )

3T
A

)

dt+

(

2

T

)1/2

dW (1)

in which T is the integral time scale and Cτη is a model for the Cauchy-Green

tensor, Cτη = exp(τηA) exp(τηA
T ), where τη is the Kolmogorov time scale. Forcing

is ensured by the increment of a tensorial Wiener process, dW = dt1/2ζ, where
ζ is a tensorial, Gaussian delta-correlated noise with 〈ζij〉 = 0 and 〈ζijζkl〉 =
2δikδjl − 1/2δijδkl − 1/2δilδjk.
This model has been extended to the gradient of a passive scalar [28]. The mod-

elled equation for the scalar gradient is written

dG = −

(

ATG+
Tr(C−1

τη )

3Tθ
G

)

dt+

(

2

Tθ

)1/2

dWG (2)

where Tθ is the scalar integral time scale and dWG = dt1/2ξ is the increment of
a Wiener process where ξ is a vectorial, Gaussian noise such that 〈ξi〉 = 0 and
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〈ξiξj〉 = δij.
In the model represented by Eqs. (1) and (2) stretching is exactly taken into

account, while models are devised for the pressure Hessian – second term of Eq.
(1) –, viscous effects – third term of Eq. (1) – and molecular diffusion – second
term of Eq. (2). Meneveau has given a detailed discussion on this class of stochastic
Lagrangian models [29].

2.2. Numerical solution

Time scales are normalised by the integral time scale (T = 1). As in reference [28]
the Kolmogorov time scale and the scalar integral time scale are respectively pre-
scribed as τη = 0.1 – which corresponds to a Taylor microscale Reynolds number,
Reλ, close to 150 [27] – and Tθ = 0.4.
Equations (1) and (2) are solved using a second-order predictor-corrector scheme

[30]. The calculation is run for 2 × 105T with time step 10−2 and the statistics of
the velocity and scalar gradients are derived from their respective stationary time
signals.

3. Predictions of statistical features conditioned on vorticity properties

The model retrieves the main features of the scalar gradient statistics and kinemat-
ics [28], namely the non-gaussian properties of the scalar gradient components, the
probability density functions (p.d.f.’s) of the production of scalar gradient norm,
the statistical alignments with respect to strain principal axes and vorticity as
well as more subtle features already underlined in two-dimensional turbulence [31]
such as the existence of special preferential alignments. It has also been shown
to reproduce the statistics of the scalar gradient in rotating turbulence [32]. This
Lagrangian approach has been used to model the evolution of the turbulent mag-
netic field as well [33]. Additional assessment of the model in connection with the
present study relates to statistics conditioned on vorticity alignments. The latter
are taken from the direct numerical simulations (DNS) by Tsinober et al. [34] and
comparisons with the model predictions are made in Figs. 1 - 3.
The strain eigenvalues are denoted by λi and the corresponding eigenvectors

by ei; the λi’s are such that λ3 < λ2 < λ1 with λ1 + λ2 + λ3 = 0 and e1, e2

and e3 define, respectively, the extensional, intermediate and compressional strain
principal axes. Figure 1 displays the normalised average of the intermediate strain
eigenvalue conditioned on the alignment of vorticity, ω, with respect to the inter-
mediate strain eigenvector and shows that the increase of λ2 with | cos(ω,e2)| is
reasonably predicted by the model for the whole field as well as for small vorticity.
Figure 2 relates to enstrophy production. The model overpredicts the production

rate of enstrophy for the strongest alignments between vorticity and the interme-
diate eigenvector, but displays the right trend for both the whole field and small
vorticity, namely the rise of the enstrophy production rate as the alignment gets
tighter.
The differences between model predictions and DNS data shown in Figs. 1 and 2

are not explained by a Reynolds number dependence. In fact, Tsinober et al. [34]
suggest that their DNS results – although they were derived at Reλ ≃ 85 – are
likely to be almost Reynolds-number independent. The model results, displayed for
Reλ ≃ 150 and 75, are consistent with this surmise.
In agreement with the numerical simulations of Tsinober et al. [34] – see their Fig.

11 –, the model also correctly predicts the normalised mean enstrophy production
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Figure 1. Normalised mean intermediate strain eigenvalue conditioned on the alignment of vorticity with
the intermediate strain eigenvector; solid lines: DNS of Tsinober et al. [34]; symbols: model results; (1)
and squares: whole field; (2) and diamonds: ω2 < 〈ω2〉; full symbols: Reλ ≃ 150; open symbols: Reλ ≃ 75.

terms conditioned on the alignment between vorticty and the extensional strain
eigenvector (Fig. 3).

Figure 2. Mean production rate of enstrophy conditioned on strong alignment of vorticity with the inter-
mediate strain eigenvector; σ = ω2[λ1 cos2(ω,e1) + λ2 cos2(ω,e2) + λ3 cos2(ω,e3)]; solid lines: DNS of
Tsinober et al. [34]; symbols: model results; (1) and squares: whole field; (2) and diamonds: ω2 < 〈ω2〉;
full symbols: Reλ ≃ 150; open symbols: Reλ ≃ 75.

4. Analysis of scalar dissipation conditioned on vorticity geometry

4.1. Production of scalar gradient vs. vorticity alignments

As scalar dissipation is in direct proportion to the square of the scalar gradient
norm, production mechanisms of scalar gradient reveal the way in which it is pro-
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Figure 3. Normalised mean enstrophy production terms conditioned on the alignment of vorticity with the
extensional strain eigenvector; (1): average of σ1 = ω2λ1 cos2(ω,e1); (2): average of σ2 = ω2λ2 cos2(ω, e2);
(3): average σ3 = ω

2λ3 cos2(ω,e3); (4): average of σ = σ1 + σ2 + σ3; the figure compares well with Fig.
11 of Tsinober et al. [34].

moted by the flow field. Using the model, we specifically focus on the case of
significant alignment of vorticity with the strain principal axes. The latter is de-
fined by | cos(ω,ei)| ≥ c where c is a threshold spanning the range 0.7 to 0.99
and alignment of vorticity with a strain eigenvector, ei, is denoted by ω//ei. The
major part – 92% – of the results corresponds to vorticity making an angle smaller
than 46◦ (| cos(ω,ei)| ≥ 0.7) with one of the strain eigenvectors; more precisely,
22% for i = 1, 55% for i = 2 and 15% for i = 3. Vorticity aligning with e2 is
mostly stretched; the intermediate eigenvalue, λ2, is positive in more than 80% of
the ω//e2-events – 83% for c = 0.7, 86% for c = 0.99.
Figure 4 clearly shows the dependence of scalar gradient production on vorticity

alignments. The averages of the scalar gradient norm, G2, and of its production
term, −GαSαβGβ (where S is the strain tensor), conditioned on | cos(ω,ei)| ≥ c
display the same trend: their largest values correspond to strong alignment of
vorticity with e2, while mean values conditioned on alignment with e1 are closer to
the unconditioned averaged values. Alignment of vorticity with the compressional
eigenvector, e3, corresponds to the smallest production. These results thus suggest
that the most intense scalar dissipation occurs for ω//e2, while the mean scalar
dissipation is rather well represented by the set of events for which ω//e1.
As shown in Fig. 5, when vorticity aligns with a strain eigenvector the intermedi-

ate strain causes destruction of the scalar gradient, and the compressional and the
extensional strains, as expected, essentially cause production and destruction, re-
spectively. In addition, the differences in scalar gradient production resulting from
the vorticity alignments stem from rather subtle mechanisms. From Fig. 5 it is
clear that both the weakest production and destruction occur for ω//e3. Produc-
tion by the compressional strain as well as destruction by the extensional strain
are the largest for ω//e2, while in this latter case destruction by the intermedi-
ate strain coincides with its unconditioned value. For ω//e1, production by the
compressional strain is close to the unconditioned mean value, destruction by the
extensional strain is weak and destruction by the intermediate strain is the largest.
These results are supported by the p.d.f’s of G2 and of the production term
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Figure 4. Mean square of scalar gradient norm (a) and production term (b) conditioned on vorticity align-
ments with respect to the strain eigenvectors, ei; i = 1: extensional, i = 2: intermediate, i = 3: compressional;
dash-dotted line: unconditioned average.

−GαSαβGβ (Fig. 6) conditioned on vorticity alignments. In particular, it is clear
that extreme values of G2 are the most probable when ω//e2. It also appears that
both the largest destruction and production of the scalar gradient occur in this
case.

4.2. Analysis of the production mechanisms

The above picture is explained by both the respective intensities of the strain
components and the alignments of the scalar gradient with respect to the strain
principal axes (Figs. 7 and 8).
When ω//e3 the scalar gradient alignment with both e1 and e2 is rather good,

but the weak values of the intensities of the extensional and the intermediate
strain result in a weak destruction. However, a small compressional strain intensity
together with a poor alignment of the scalar gradient with e3 also bring about a
weak production.
With regard to the difference in scalar gradient production when ω//e1 or ω//e2:

the extensional strain eigenvalue is the largest and alignment of the scalar gradi-
ent with e1 is the best for ω//e2 which explains the largest destruction in this
case; however, for ω//e2, the compressional strain eigenvalue is the largest and
alignment of G with e3 is slightly better which makes production larger when
ω//e2 than when ω//e1; furthermore, because the difference in the statistics of
the intermediate strain eigenvalue between cases ω//e1 and ω//e2 is small and G

aligns better with e2 for ω//e1, destruction by the intermediate strain is larger
when ω//e1. Better alignment of G with e1 for ω//e2 – and with e2 for ω//e1

– results from the trend of the scalar gradient and vorticity to be normal to each
other [18, 19] which is predicted by the model [28]. In addition, greater absolute
values of the 〈λi〉’s for ω//e2 are consistent with the fact that moderate and strong
production of strain occurs when vorticity strongly aligns with the intermediate
strain eigenvector and is rather misaligned with respect to the extensional strain
[21]. It has also been shown [6, 35] that strong alignment of vorticity with e2 is
correlated with large strain intensity. The model reproduces the latter property as
shown in Fig. 9 which compares rather well with Fig. 9(d) of reference [6].
To summarize, this analysis suggests that the budget of scalar gradient pro-
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Figure 5. Individual production terms of the mean square of scalar gradient norm conditioned on vorticity
alignments with respect to the strain eigenvectors, ei; (a) production by the extensional strain; (b) by the
intermediate strain; (c) by the compressional strain; dash-dotted line: unconditioned average.

duction resulting in a more intense scalar dissipation for ω//e2 than for ω//e1 is
explained by the following mechanisms: both extensional strain intensity and scalar
gradient alignment explain the difference in the destruction of scalar gradient by
the extensional strain, while alignment of the scalar gradient is the main mecha-
nism resulting in a difference in destruction by the intermediate strain; and the
difference in the production by compressional strain is to be essentially put down
to the compressional strain intensity.

4.3. Analysis in terms of local flow structure

Strain persistence was originally defined in two-dimensional flows [31, 36]. It can be
extended to the three-dimensional case [28, 37] when vorticity is closely aligned with
a strain eigenvector and used to check whether the flow is locally strain- or rotation-
dominated. The strain persistence parameters are computed for | cos(ω,ei)| ≥ 0.99
(i = 1, 2, 3) and are respectively given by: r1 = −ω′

1/(λ2−λ3), r2 = ω′
2/(λ1−λ3) and

r3 = ω′
3/(λ1−λ2) with ω′

i = ω̂i−Ωi; the Ωi’s are the components of the rotation rate

of strain principal axes computed as: Ω1 = −2Π̂23/(λ2 − λ3), Ω2 = 2Π̂13/(λ1 − λ3)
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Figure 6. P.d.f’s of (a): G2 and (b): production term, −GαSαβGβ , conditioned on vorticity alignments
defined as | cos(ω,ei)| ≥ 0.8; (1): ω//e1; (2): ω//e2; (3): ω//e3.

and Ω3 = −2Π̂12/(λ1 − λ2) where the Πij ’s are the components of the pressure
Hessian tensor, Πij = (1/ρ)∂2p/∂xi∂xj – with ρ and p standing for density and
pressure, respectively – modelled as shown in Section 2.1. Hatted quantities indicate
components in the strain basis. Prevailing strain is defined by r2

i < 1, while r2
i > 1

indicates prevailing rotation. By including the rotation rate of strain principal axes
in addition to vorticity, strain persistence considers the effective rotation rate and
was shown to give a better estimate of local stirring properties than criteria just
allowing for vorticity [31].
The mechanisms of scalar gradient production can be analysed in terms of pre-

vailing strain vs. prevailing rotation from Table 1. Within the text conditioned
mean values such as 〈G2|ω//ei; ri〉 are denoted by 〈G2〉c.

Table 1. Averaged quantities relevant to scalar gradient production conditioned on vorticity alignment

(| cos(ω, ei)| ≥ 0.99) and strain persistence parameters, ri; r
2

i < 1: prevailing strain; r
2

i > 1: prevailing ro-

tation; bold numbers represent the unconditioned mean values.

strain persistence r2
1
< 1 r2

1
> 1 r2

2
< 1 r2

2
> 1 r2

3
< 1 r2

3
> 1

% in each ω//ei-sample 38% 62% 49% 51% 9.0% 91%

〈G2|ω//ei; ri〉 7.95 5.39 8.22 6.85 4.89 4.27 5.15

〈λ1|ω//ei; ri〉 1.87 1.55 2.58 2.52 1.94 1.67 1.98

〈λ2|ω//ei; ri〉 0.979 0.424 0.822 0.523 0.00269 0.278 0.534
〈λ3|ω//ei; ri〉 −2.86 −1.98 −3.40 −3.04 −1.94 −1.95 −2.52

〈cos2(G, e1)|ω//ei; ri〉 0.186 0.220 0.236 0.281 0.225 0.253 0.239

〈cos2(G, e2)|ω//ei; ri〉 0.229 0.296 0.201 0.215 0.295 0.307 0.252

〈cos2(G, e3)|ω//ei; ri〉 0.585 0.485 0.563 0.505 0.480 0.440 0.509

〈−λ1G
2 cos2(G,e1)|ω//ei; ri〉 −1.22 −1.07 −4.08 −4.70 −1.35 −1.33 −2.21

〈−λ2G
2 cos2(G,e2)|ω//ei; ri〉 −1.06 −0.608 −0.555 −0.337 0.103 −0.174 −0.444

〈−λ3G
2 cos2(G,e3)|ω//ei; ri〉 19.7 8.04 22.0 14.7 7.01 5.38 12.0

net production 17.4 6.36 17.4 9.66 5.76 3.88 9.35

In the ω//e2-sample strain is as frequent as rotation, while the ω//e1-sample is
slightly rotation-dominated which is consistent with a larger scalar dissipation for
ω//e2 than for ω//e1. This result also suggests that strain is statistically more
persistent when vorticity aligns with the intermediate strain eigenvector and may
explain the slightly better alignment with the compressional strain direction in
this case (Fig. 8). The ω//e3 sample, by contrast, is found to be strongly rotation-
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Figure 7. Mean strain eigenvalues conditioned on vorticity alignments with respect to the strain eigen-
vectors, ei; (a) extensional strain eigenvalue; (b) intermediate strain eigenvalue; (c) compressional strain
eigenvalue; dash-dotted line: unconditioned average.

dominated; in these compressed-vorticity events small compressional strain inten-
sity together with a poor alignment of the scalar gradient with e3 result in low
levels of production for both prevailing strain and rotation.
As expected, the largest values of 〈G2〉c as well as the largest production are

found for ω//e1 and ω//e2. In agreement with previous studies [18, 19], pro-
duction mainly results from prevailing-strain events. However, 〈G2〉c is significant
for prevailing rotation as it takes values greater than the unconditioned average
for both ω//e1 and ω//e2. In addition, the difference between ω//e1 and ω//e2

clearly arises from the rotation-dominated events; the difference in 〈G2〉c is indeed
3.4% for r2

1 < 1 and r2
2 < 1 – respectively, 7.95 and 8.22 –, while it reaches 27% for

r2
1 > 1 and r2

2 > 1 – respectively, 5.39 and 6.85. For ω//e3, 〈G
2〉c is smaller than

its unconditioned value for both prevailing strain and rotation.
The net production confirms the role of rotation events in the difference between

cases ω//e1 and ω//e2: the same amount, 17.4, is found for prevailing strain, while
for prevailing rotation the net production is equal to 6.36 and 9.66, respectively,
namely a difference as large as 52%. As the differences in total destruction by the
extensional and the intermediate strains are of the same order for both prevailing
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Figure 8. Mean square of director cosines of scalar gradient conditioned on vorticity alignments with respect
to the strain eigenvectors, ei; angle with respect to (a) the extensional strain eigenvector, (b) the intermediate
strain eigenvector and (c) the compressional strain eigenvector; dash-dotted line: unconditioned average.

strain and prevailing rotation, the large difference in net production for prevailing
rotation is mainly explained by production resulting from the compressional strain:
12% for prevailing strain – 19.7 and 22.0 for ω//e1 and ω//e2, respectively – and
83% for prevailing rotation – 8.04 and 14.7, respectively. It is also worth noting
that production for prevailing rotation when ω//e2 is not insignificant since both
production by the compressional strain – 14.7 – and the net production – 9.66 – are
greater than the corresponding unconditioned values, 12.0 and 9.35, respectively.
The mechanisms put forward in Section 4.1 to explain the difference in scalar

gradient production between ω//e1 and ω//e2 are emphasized by prevailing ro-
tation. The mean values of the extensional and compressional strains, λ1 and λ2,
are greater when ω//e2 than when ω//e1 for both prevailing strain and rotation,
but the difference is larger for prevailing rotation: for 〈λ1〉c the difference is 38%
for prevailing strain – respectively, 1.87 and 2.58 – and 63% for prevailing rotation
– respectively 1.55 and 2.52; for 〈λ3〉c these differences are respectively 19% and
54%. Although the difference in the alignment of G with respect to e1 is almost the
same for prevailing strain and prevailing rotation – 27% and 28% –, the difference
in the alignment with e2 is larger for prevailing rotation – 14% and 38%.
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Figure 9. P.d.f’s of vorticity alignments conditioned on strain intensity, S = (SαβSβα)1/2; lines are for

S2 < 〈S2〉; dotted: i = 1, dashed: i = 2, solid: i = 3; symbols are for S2 > 〈S2〉; circles: i = 1, gradients:
i = 2, squares: i = 3; the figure compares well with Fig. 9(d) of reference [6].

5. Conclusion

Scalar dissipation has been analysed through scalar gradient production using a
stochastic Lagrangian model for the velocity and the scalar gradients which repro-
duces the essential dynamic and kinematic properties of isotropic turbulence. The
study was specifically focused on the connection between vorticity geometry and
scalar dissipation, and thus small-scale mixing.
The model results show that scalar dissipation is mainly found when vorticity is

stretched. More precisely, for vorticity aligning with the extensional strain, scalar
dissipation is close to its unconditioned mean value, while the most intense scalar
dissipation – and therefore the most efficient small-scale mixing – occurs for vor-
ticity aligning with the intermediate strain. Scalar dissipation is significantly lower
when vorticity is compressed.
The difference in scalar dissipation when vorticity aligns with either the exten-

sional – ω//e1 – or the intermediate strain – ω//e2 – is to be put down to the
interplay of mechanisms involving the strain intensities and the alignment of the
scalar gradient with respect to the strain principal axes. In brief, for ω//e2 both a
larger extensional strain intensity and a better alignment of the the scalar gradi-
ent with the extensional strain result in a larger destruction of the scalar gradient
norm than when ω//e1; however, this effect is exceeded by production caused by
compression, essentially through a larger compressional strain intensity; in addi-
tion, when ω//e2 it is mainly the misalignment of the scalar gradient with e2 that
causes a lesser destruction by the intermediate strain. For vorticity aligning with
the compressional strain direction – ω//e3 –, weak production of scalar gradient
results from both small intensity of the compressional strain and misalignment
between the scalar gradient and e3.
Finally, the latter mechanisms, and especially those explaining the difference in

scalar gradient production between ω//e1 and ω//e2, are retrieved in the anal-
ysis in terms of local flow structure. Although scalar gradient production mostly
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stems from prevailing-strain events, it appears that this difference is the largest in
rotation-dominated events, especially with regard to the extensional and compres-
sional strain intensities.
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