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A quantum anomaly is the violation of symmetry
(see [4]) with respect to some transformations under
quantization. At that, the quantization of a classical
Hamiltonian system invariant with respect to some
transformations yields a quantum system noninvariant
with respect to the same transformations (see [2]).

The situation in related literature is fairly unusual.
The points of view presented in monographs [1, 2],
whose authors are well�known experts, contradict
each other. On page 352 of the book [1], it is written
that the description of reasons why quantum anoma�
lies occur which is given in [2] is incorrect. This refers
to the first, 2004, edition of [2]; however, in 2013, the
second edition of [2] appeared, which did not differ
from the first; in the new edition, the authors did not
cited book [1] containing criticism of their book. In
this paper, we show that the correct description of the
reasons for the emergence of quantum anomaly is that
given in [2].

We use the fact that the transformations of a func�
tional Feynman integral (i.e., an integral with respect
to a Feynman pseudomeasure; its definition is given
below) are determined by transformations of two
objects. One of them is the product of a Feynman
pseudomeasure and a function integrable with respect
to this pseudomeasure, which is, in turn, the product
of the exponential of a part of the classical action and
the initial condition. The exponential of the other part
of the action determines the Feynman pseudomea�

sure. If the action and the initial condition are invari�
ant with respect to some transformation, then this
object is invariant with respect to this transformation
as well.

The second object is a determinant, which plays the
role of a Jacobian; this determinant may differ from 1
even in the case where the action and the initial condi�
tion are invariant with respect to phase transforma�
tions; of course, in this case, the Feynman integral is
noninvariant as well. What is said above virtually coin�
cides with what is said in [2]. At the same time, in [1],
it was proposed to compensate this determinant by
multiplying the measure with respect to which the
integration is performed (that is, the counterpart of
the classical Lebesgue measure, which does not exist
in the infinite�dimensional case according to a well�
known theorem of Weil) by an additional factor,
which, of course, is equivalent to multiplying the inte�
grand by the same factor.

In this paper, we consider families of transforma�
tions of the domain of a (pseudo)measure depending
on a real parameter and show that such a compensa�
tion is impossible; for this purpose, we use differentia�
tion with respect to this parameter.

The paper is organized as follows. First, we recall
two basic definitions of the differentiability of a mea�
sure and, more generally, a pseudomeasure (distribu�
tion); then, we give explicit expressions for the loga�
rithmic derivatives of measures and pseudo�measures
with respect to transformations of the space on which
they are defined. The application of these expressions1

makes it possible to obtain a mathematically correct
version of results of [2] concerning quantum anoma�
lies. After this, we discuss the approach to explaining
the same anomalies proposed in [1]. We also discuss
mathematical objects related to the notion of the vol�

1 Among other things, these formulas lead to infinite�dimensional
versions of both theorems of Emmy Noether.
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ume element in an infinite�dimensional space consid�
ered in physics literature (including [1]). We concen�
trate on the algebraic structure of problems, leaving
aside most assumptions of analytical character.

1. DIFFERENTIATION OF MEASURES
AND DISTRIBUTIONS

This section contains results (in fact, known) about
differentiable measures and distributions on infinite�
dimensional spaces in a form convenient for our pur�
poses.

Given a locally convex space (LCS) Е, by �E we
denote the σ�algebra of Borel subsets of Е and by �E,
the vector space of countably additive (complex) mea�
sures on Е. We say that the vector space С of bounded
Borel functions on Е determines a norm if, whatever a
measure �E, its total variation μ ∈ �E satisfies the

condition ||μ||1 = sup{ dμ: u ∈ C, ||u||
∞

 ≤ 1}, where

||u||
∞

 = sup{|u(x)|: x ∈ E}.

A Hilbert subspace of an LCS Е is defined as a vec�
tor subspace Н of Е endowed with the structure of a
Hilbert space such that the topology induced on Н by
the topology of Е is weaker than the topology gener�
ated by the Hilbert norm.

A mapping F of an LCS Е to an LCS G is said to be
smooth along a Hilbert subspace Н of Е (or Н�
smooth) if it is infinitely differentiable over Н and both
the mapping F and all of its derivatives are continuous
on Е, provided that the spaces in which the derivatives
take values are endowed with the topologies of uni�
form convergence on compact subsets of Н. A vector
field on an LCS Е is a mapping h: E → E; we denote the
set of vector fields on Е by Vect(E). The derivative
along a vector field h ∈ Vect(E) of a function f defined
on Е is the function on E denoted by f 'h and defined
by (f 'h)(x) := f '(x)h(x) for х ∈ Е, where f '(x) is the
Gâteaux derivative of f at the point х.

Let ε > 0, and let S be a mapping of the interval
(–ε, ε) to the set of �E�measurable self�mappings of Е
for which S(0) = id; suppose that τ is a topology on �E

compatible with the vector space structure. A measure
ν ∈ �E is said to be τ�differentiable along S if the
function f: (–ε, ε) � t  � S(t)∗ν := ν(S(t)–1) ∈ (�E, τ)

is differentiable at t = 0 (the symbol S(t)∗ν denotes the

image of ν under the mapping S(t)); in this case, we
denote f '(0) by  and call it the derivative of the mea�
sure ν along S. If, in addition, f '(0) � f(0) (the mea�
sure f '(0) is absolutely continuous with respect to
f(0)), then its density with respect to the measure f(0)
is called the τ�logarithmic derivative of the measure ν

along S and denoted by .

If k ∈ Е and S(t)(x) := х – tk, then a measure ν τ�
differentiable along S is said to be τ�differentiable

u∫

νS'

βS
ν

along k, and ν'k is defined by ν'k = ; the τ�logarith�
mic derivative of the measure ν along S is called the τ�
logarithmic derivative of ν along k and denoted by
βν(k, ·). The τ�differentiability of a measure along a
vector field h and its τ�logarithmic derivative along h

(denoted by ) are defined in a similar way: we set
S(t)(x) := x – tanh(x).

If a measure ν is τ�differentiable along each k ∈ Н,
then it can be shown that the mapping Н � k � ν'k is
linear; the corresponding vector�valued measure ν' :
�E � A � [k � (ν'k)(A)] is called the τ�derivative of
ν over the subspace Н. If, for any k ∈ Н, there exists a
τ�logarithmic derivative measure ν along k, then the
mapping Н � k � βν(k, ·) is linear; it is called the τ�
logarithmic derivative of ν over Н and denoted by βν.

Remark 1. If the measure ν has a logarithmic deriv�
ative over a subspace Н and h(x) ∈ Н for all х ∈ Е,

then, against expectation, (х) ≠ βν(h(x), x) in the
general case (see below).

Remark 2. If τ is the topology of convergence on all
sets, then any measure τ�differentiable along S has a
logarithmic derivative along τ (see [12]); for weaker
topologies, this may be not the case. An example is as
follows. Given an LCS Е being a Radon space,2 let S
be the space of bounded continuous functions on E,
and let τC be the weak topology on �E determined by
the duality between С and �E. Then a measure τC�dif�
ferentiable along S may have no logarithmic derivative
along S (even in the case Е = �1).

Let С be a norm�defining vector space of Н�smooth
functions on Е bounded together with all derivatives.
A measure ν is said to be С�differentiable along a vec�
tor field h ∈ Vect(E) if there exists a measure 

such that, for any ϕ ∈ С, we have (x)h(x)ν(dx) =

– (x)( )(dx). The Radon–Nikodym density of

 with respect to ν (if it exists) is called the C�loga�
rithmic derivative of the measure ν along h; if h(x) =
h0 ∈ Е for all х ∈ Е, then, as above, the C�logarithmic
derivative of ν along h is called the C�logarithmic
derivative of ν along h0 (С�logarithmic derivatives are
denoted by the same symbols as τ�logarithmic deriva�
tives introduced above).

Suppose that a vector field hS is determined by
hS(x) := S '(0)x. Then the following proposition is
valid.

Proposition 1. A measure ν is τC�differentiable along
S if and only if it is C�differentiable along hS. In this case,

2 A topological space E is called a Radon space if any countably
additive Borel measure ν on E is Radon; this means that, for any
Borel subset A of E and any ε > 0, there exists a compact set K ⊂ A
such that ν(A\K) < ε. If E is a completely regular Radon space,
then the space of all bounded continuous functions on E is in
natural duality with �E.

νS'

βh
ν

βS
ν

νh'

ϕ'∫
ϕ∫ νh'

νh'



    

 = , where  is the C�logarithmic derivative of ν

along hS and  is the τC�logarithmic derivative of ν
along S.

Proof. This follows from the change of variable for�
mula. Suppose that ϕ ∈ С and, as above, f(t) :=
(S(t))∗ν. Then

which implies the required assertion.
Corollary 1. Let S1 be another mapping of the inter�

val (–ε, ε) to �E with the same properties as S. If
hS = , then the measure ν is τC�differentiable along S

if and only if it is τC�differentiable along S1.
Remark 2. It is natural to say that the measure ν is

invariant with respect to S if  = 0.

Theorem 1. Suppose that a measure ν ∈ �E has a
τC�logarithmic derivative over a subspace H, and let h be

a vector field on E taking values in H. Then (х) =

βν(h(x), x) + tr h'(x), where h' is the derivative of the
mapping h over the subspace H.

Proof. Suppose that ϕ ∈ С and h is a vector field on
Е, and let μ be the Е�valued measure defined by μ :=
h(·)ϕ(·)ν. Applying Leibniz’ rule to the derivative of μ
over the subspace Н, we obtain μ' = h'(·)ϕ(·)ν + ϕ(·)ν' ⊗
h(·) + ϕ'(·) ⊗ h(·)ν. Each summand in this relation is a
measure whose values are operators on Н; calculating
the traces of these operators, we obtain trμ' =
(ϕ(·)trh'(·))ν + ϕ(·)βν(h(·), ·)ν + ϕ'(·)h(·)ν. Since

(dx) = 0 and, therefore, trμ')(dx) = 0, it follows

that (x)h(x)ν(dx) = – (x)[βν(h(x), x) +

trh'(x)]ν(dx). This means that the required relation
holds.

Both the definitions given above and the algebraic
parts of proofs can be extended to distributions (in the
Sobolev–Schwartz sense) defined as continuous lin�
ear functionals on appropriate spaces of test functions.
The difference is that the integrals of functions with
respect to measures should be replaced by values of
these linear functionals at functions, and instead of the
change of variables formula for integrals, the defini�
tion of the transformation of a distribution generated

βhS

ν βS
ν βhS

ν

βS
ν

t 1– ϕ x( ) f t( )( ) dx( )

E

∫t 0→
lim ϕ x( ) f 0( )( ) dx( )

E

∫–

=  t 1– ϕ x( ) S t( )( )*ν( ) dx( )

E

∫t 0→
lim ϕ x( )ν dx( )

E

∫–

=  t 1– ϕ S t( )( ) ϕ x( )–( )ν dx( )

E

∫t 0→
lim  = ϕ' x( )S ' 0( ) x( )ν dx( ),

E

∫

hS1

βS
ν

βh
ν

μ'

E

∫ (

E

∫

ϕ'

E

∫ ϕ

E

∫

by a transformation of the space on which the test
functions are defined should be used.

2. QUANTUM ANOMALIES

In fact, quantum anomalies arise because the sec�
ond term in the relation of Theorem 1 proved above is
the same for all measures. Indeed, by virtue of Leibniz’
rule, the logarithmic derivative (both over a subspace
and along a vector field) of the product of a function
and a measure is the sum of the logarithmic derivatives
of the factors; therefore, a measure ν whose logarith�
mic derivative along a vector field is given by the
expression in Theorem 1 can formally be taken for the
product of a function ψ

ν
 whose logarithmic derivative

over the subspace Н coincides with the logarithmic
derivative over the measure ν over this subspace and a
measure η whose logarithmic derivative over the same
subspace vanishes. If Е is finite�dimensional and Н
coincides with E, then such a function and a measure
indeed exist; moreover, η turns out to be the Lebesgue
measure, and ψ

ν
 is the density of ν with respect to it.

But in the infinite�dimensional case, there exist no
exact counterpart of the Lebesgue measure; neverthe�
less, an analogue of density, called the generalized
density of a measure, does exist [3, 10, 12], although
its properties are far from those of usual density, and
the corresponding distribution can be regarded as an
analogue of the Lebesgue measure. It is this distribu�
tion that should be considered as a formalization of the
term “volume element” used in [1, p. 362]. We how�
ever emphasize that the contents of this paper depends
on the properties of neither this distribution nor the
generalized density.

Let Q be a finite�dimensional vector space being
the configuration space of a Lagrangian system with
Lagrange function L: Q × Q → � defined by L(q1, q2) :=
η(q1, q2) + b(q2), where b is a quadratic functional (the
kinetic energy of the system). We assume that the
Lagrange function L is nondegenerate (hyperregular),
i.e., the corresponding Legendre transform is a diffeo�
morphism, so that it determines a Hamiltonian system
with Hamiltonian function �: Q × P → �, where Р = Q*.

For t > 0, by Et we denote the set of continuous
functions on [0, t] taking values in Q and vanishing at
zero and by Ht, the Hilbert subspace of Et consisting of
absolutely continuous functions on [0, t] with square
integrable derivative; the Hilbert norm  on Et is

defined by

 := dτ, 

where f ∈ Et and  is the Euclidean norm on Q.

Finally, by �(t) we denote the classical action defined

· Ht

f Ht

2 f' τ( ) Q
2

0

t

∫

· Qt



    

as the functional on Ht determined by the Lagrange

function L via �(t)(f) := (f(τ), (τ))dτ.

The Schrödinger quantization of the Hamiltonian
system generated by the Lagrangian system described

above yields the Schrödinger equation i (t) = ψ(t),

where  is a self�adjoint extension of a pseudodiffer�
ential operator on �2(Q) with symbol equal to the
Hamiltonian function Н generated by the Lagrange
function L. The solution of the Cauchy problem for
this equation with initial condition f0 is

(1)

where φt is the Feynman pseudomeasure on Et (the
exponential under the integral sign is well defined on
the space Ht).

Let Wt be the pseudomeasure on Et being the prod�
uct of the exponential in the above integral and the
function φt. The following theorem is valid.

Theorem 2. The logarithmic derivative of the
pseudomeasure Wt along Ht exists and is determined by

here, k ∈ Ht, ψ ∈ Et, and  and  are the partial
derivatives of L with respect to the first and the second
argument.

Corollary 2. If h is a vector field on Et taking values
in Ht, then the logarithmic derivative of the pseudomea�
sure Wt along h is determined by

A similar assertion is valid for the logarithmic
derivative along a family S(α) of transformations of
the space Et depending on a parameter α ∈ (–ε, ε).

It follows from Corollary 1 that if the classical
action �(t) is invariant with respect to a family S(α),
α ∈ (–ε, ε) of transformations of the space Q, then the

logarithmic derivative (ψ) does not necessarily
vanish. In turn, this means that if a Lagrange function
is invariant with respect to transformations S(α) of the
configuration space, then the solution of the corre�

L

0

t

∫ f·

ψ· �̂

�̂

ψ t( ) q( )

=  i η ψ τ( ) q+ ψ· τ( ),( ) τd

0

t

∫⎝ ⎠
⎜ ⎟
⎛ ⎞

f0 ψ t( ) q+( )φt ψd( ),exp

Et

∫

β
Wt k ψ,( ) i L1' ψ τ( ) q+ ψ· τ( ),( )k τ( )[

0

t

∫=

+ L2' ψ τ( ) q+ ψ· τ( ),( )k· τ( ) ]dτ;

L1' L2'

βh

Wt ψ( ) i L1' h ψ( ) τ( ) q+ dh ψ( )
dτ

������������ τ( ),⎝ ⎠
⎛ ⎞ h ψ( ) τ( )

0

t

∫=

+ L2' h ψ( ) τ( ) q+ dh ψ( )
dτ

������������ τ( ),⎝ ⎠
⎛ ⎞ dh ψ( )

dτ
������������ τ( ) dτ tr h' ψ( ).+

βS
W

sponding Schrödinger equation is not necessarily
invariant with respect to the same transformations.

Remark 3. For each family S(α) of transformations
of the space Et, we can obtain an explicit expression for
the transformations of the pseudomeasure Wt gener�
ated by the transformations S(α) by solving the equa�

tion (α) = g(α) (see [10]). It follows [10] that if
tr(hS(α))'(ψ) > 0 for α ∈ [0, α0], then det(S(α))' ≠ 1;
this fact does not depend on the classical action.

Remark 4. Using the notion of the generalized den�
sity of a pseudomeasure (cf. [3, 10, 11], where only
generalized densities of usual measures were consid�
ered), we can say that the pseudomeasure Wt is deter�
mined by its generalized density being the exponential
in the Feynman integral (1). Moreover, as mentioned
above, the expression for the transformations of the
pseudomeasure contain determinants, and the expres�
sions for the corresponding logarithmic derivatives
contain traces, which do not depend on the general�
ized densities. This can be interpreted by treating the
Feynman pseudomeasure as the product of its general�
ized density and distribution whose transformations
are described by the corresponding determinants and
traces, and the logarithmic derivatives of this distribu�
tion along constant vectors vanish. In turn, this allows
us to say that the distribution mentioned above corre�
sponds to the volume element considered in [1].

Remark 5. Thus, the determinants and traces men�
tioned above cannot be eliminated by any choice of
the integrand and the Feynman pseudomeasure if the
corresponding Feynman integrals are required to rep�
resent the solutions of the corresponding Schrödinger
equation. Clearly, this contradicts [1, p. 362].

Remark 6. If E is a this superspace, then, instead of
traces and determinants, we should use supertraces
and superdeterminants.
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