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Abstract

This paper describes a method for the identi�cation and the tracking of
poles of a weakly nonlinear structure from its free responses. This method
is based on a model of multi-channel damped sines whose parameters evolve
over time. Their variations are approximated in discrete time by a nonlinear
state space model. States are recursively estimated by a new method which
couples a two-pass Bayesian estimator with an Expectation-Maximization
(EM) algorithm. An iterative procedure between them allows an accurate
and robust tracking of poles. As a result, equivalent modal parameters such
as frequency and damping are obtained as a function of amplitudes. The
method is applied on numerical and experimental cases and show promising
results.
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Kalman Filter, Expectation-Maximization algorithm

1. Introduction1

According to the linear framework in experimental modal analysis, for2

a given frequency range a structure has a �nite set of invariant poles and3

corresponding shapes. They can be used to model its whole dynamics in4

this frequency range, taking also into account residual e�ects due to out-of-5

frequency-band modes [1].6
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In reality, invariant poles are unlikely to be observed on experimental re-7

sults. Most of structural dynamics show a certain degree of nonlinearity, due8

to materials nature, geometries, joints, friction, impacts, etc. In severe forms9

of nonlinearities, typical phenomena such as internal resonances, unstable10

modes may occur and lead the relevancy of modal analysis to questioning.11

Hence the detection and the identi�cation of nonlinearity is more and more12

considered as a main step by test engineers [2, 3].13

As a general rule, the success of an identi�cation method highly depends14

on a chosen model and on a specialized algorithm for parameter estimation15

[4, 5]. Since usual tools of modal analysis aim to get linear modal models,16

testing the linearity assumption is essential to study their appropriateness on17

experimental data. Any deviation from expected results that cannot be ex-18

plained with measurement errors (such as signal noise, reduced observation,19

...) is attributed to a lack of good linear behaviour, and then to non-linear20

dynamics in�uence. For instance, identifying Frequency Response Functions21

(FRFs) at di�erent force levels is a simple and e�cient way to test the ho-22

mogeneity (a weak form of linearity) [6]. Another indicator is the coherence23

function, which gives a scaled degree of linearity over frequency, although it24

might be misled by some kinds of nonlinearities [2].25

However, for many structures, nonlinear forces are often weak compared26

to linear ones (predominantly mass and sti�ness). As a consequence, the27

linear theory remains relevant for most of industrial structures, since the be-28

haviour of a structure submitted to an external force is close to an equivalent29

linear one, as long as no bifurcation occurs and nonlinear forces are smooth30

[7].31

Equivalency means here that dynamics analysis can still be reduced to32

the identi�cation of modes, but these ones are no longer invariant. They33

depend on the nature of external force and on the structure movement. More34

speci�cally, only poles are mainly a�ected by nonlinearities; except in the35

case of high energy level, mode shapes barely change and can be regarded as36

invariant [8].37

In the �eld of signal processing, the problem of identifying variations of38

poles has often been addressed. Many techniques have been proposed, start-39

ing from the Teager energy operator [9, 10]. Feldman proposed the FREEVIB40

method that uses a Hilbert transform on the free decay and hence obtains41

the instantaneous characteristics of a mechanical system[11, 12]. When iden-42

tifying signals coming from free decay, the modulations have to be slower43

than the carrier as demonstrated by Bedrosian [13], Nuttall [14] and more44
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recently by Brown[15]. The Empirical Mode Decomposition has been de-45

signed by Huang et al. [16, 17, 18] to extract signal components satisfying46

this requirement before applying the Hilbert transform.47

The free decay could also be processed by time-frequency analysis like48

wavelets [19, 20, 21]. Their high frequency resolution allows an accurate49

characterization of poles evolution, even though the �rst periods of free decay50

are often a�ected by edge e�ects. Moreover, when considering a set of several51

sensors, each signal is processed independently, without using the redundancy52

of information shared by all sensors. Despite these drawbacks, wavelets were53

successfully used to extend normal mode appropriation testing to nonlinear54

systems [7, 22].55

This paper is devoted to the analysis of free decay time histories of weakly56

nonlinear structures. A new method for processing data from multiple sensors57

will be presented. The response is modelled by multi-channel damped sines58

whose parameters are recursively estimated over time by a two-pass Bayesian59

smoothing algorithm based on a Kalman �lter. As accurate values are wished60

from the beginning of signals, an iterative algorithm based on maximization-61

expectation technique is proposed for obtaining relevant inputs to Kalman62

�lter.63

The outline of this paper is as follows. First, a state space in discrete time64

is introduced for modelling damped waves in section 2. Then instantaneous65

values of state vector are estimated by a nonlinear version of Kalman �lter66

and an iterative algorithm is proposed in section 3. In section 4, the pro-67

posed method is �rst applied on numerical simulations to assess its e�ciency.68

Finally, an experimental case is studied in section 5.69

2. Development of state space model70

This part is devoted to the development of a state space model for mod-71

elling the temporal evolution and the observation of damped sines. The tran-72

sition function will be developed in section 2.1 and the observation function73

in section 2.2.74

2.1. Transition function75

The free response of a structure, generally produced by a hammer hit or76

a stepped sine excitation, can be modelled by the sum of S damped sines:77

x(t) =
S∑
s=1

Ars exp(σst) cos(ωst+ φs) (1)
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with, for each sine s, Ars its corresponding maximum amplitude, φs its initial78

phase, ωs its damped angular frequency and σs its damping. For practical79

reasons, the corresponding analytical signal is more used:80

x(t) =
S∑
s=1

As exp ((σs + jωs) t) (2)

with each complex amplitude As composed of Ars and φs. Equivalent eigen-81

frequencies and eigendampings are computed by:82

ω2
es = σ2

s + ω2
s (3)

ξes = −σs/ωes (4)

In discrete time, the response is given by:83

x(n∆t) =
S∑
s=1

As exp ((σs + jωs)n∆t) =
S∑
s=1

cs,n (5)

with ∆t the time sampling. One can express xn = x(n∆t) as a function of84

the previous step:85

xn =
S∑
s=1

As exp ((σs + jωs) (n− 1)∆t) exp ((σs + jωs) ∆t) (6)

The transition between two consecutive amplitudes is given by:86

cs,n = cs,n−1 exp ((σs + jωs) ∆t) (7)

Each complex amplitude is made of real and imaginary parts as cs,n = as,n +87

jbs,n. Then the previous relation can be written as:88 [
as,n
bs,n

]
= Ts

[
as,n−1
bs,n−1

]
(8)

with Ts the transition matrix of damped sine s:89

Ts = exp (σs∆t)

[
cos (ωs∆t) − sin (ωs∆t)
sin (ωs∆t) cos (ωs∆t)

]
(9)

It is simply obtained by expanding and combining all terms of equations90

7 and 8. This transition matrix Ts expresses that a wave is damped and91

rotated between two consecutive time samples [23].92

4



For the general case ofM responses, the vector of the complex amplitudes93

of a damped sine s is:94

xas,n = [as,1,n bs,1,n as,2,n bs,2,n . . . as,M,n bs,M,n]T (10)

where [as,i,n bs,i,n]T is the complex amplitude of a damped sine s at time95

sample n and observation point i. Here the superscript a of xan,s denotes the96

amplitude. Then the function transition for M observations is given by:97

xas,n = (IM ⊗Ts) xas,n−1 (11)

since they share the same transition matrix Ts. Here the symbol ⊗ denotes98

the Kronecker product and IM is the identity matrix of size M .99

As a free response of a structure generally shows several modes, a vector100

of S damped sine amplitudes should be considered:101

xan =


xa1,n
xa2,n
...

xaS,n

 (12)

In fact, it only concatenates the 2M previous xas,n amplitude terms per102

damped sine.103

By combining equations 11 and 12, a relation between two consecutive104

amplitude vectors is given by:105

xan = Γxan−1 (13)

with the transition matrix of complex amplitudes:106

Γ =


IM ⊗T1 02M . . . 02M

02M IM ⊗T2
. . .

...
...

. . . . . . 02M

02M . . . 02M I2M ⊗TS

 (14)

This transition matrix Γ is made of parameters (angular frequencies {ωs}107

and dampings {σs}) which are unknown and have also to be identi�ed. The108

vector of amplitudes xan is concatenated to a vector of parameters which109

assembles itself all the pulsations and dampings:110

xn =

[
xpn
xan

]
with xpn = [ω1,n σ1,n ω2,n σ2,n . . . ωS,n σS,n]T ×∆t (15)
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Parameters are assumed to be almost constant between two samples. As111

there is no deterministic law for their temporal evolution, here a stochastic112

framework is chosen to model their variations:113

xpn = xpn−1 + wp
n−1 (16)

with wp
n a random noise which allows parameters to evolve slowly over time.114

In conclusion, the dynamical evolution in discrete time is given by115

xn = f (xn−1) + wn−1 (17)

with the deterministic part given by:116

f

([
xpn−1
xan−1

])
=

[
I2S 02MS

02S Γn−1

] [
xpn−1
xan−1

]
(18)

where I2S is the identity matrix of size 2S. This transition function is nonlin-117

ear since, as parameters are allowed to evolve from sample to sample thanks118

to wp
n, the matrix Γn−1 depends now on values of parameters given by xpn−1.119

Finally, the random part120

wn =

[
wp
n

wa
n

]
(19)

is modelled by a Gaussian law of zero mean and variance Q. Practical rules121

for determining relevant value of Q will be provided in paragraph 3.2.122

2.2. Observation function123

Let yn be the measurement vector of M sensors at sample time n:124

yn = [y1,n y2,n . . . yM,n]T (20)

Three types of observation function can be enumerated, depending on the125

nature of measured quantities : displacement, speed or acceleration. In the126

simplest case, each sensor gives a displacement at an observation point, with127

an unavoidable random noise vi of measurement. Here they are given by the128

real parts of the complex sines:129

yi,n =
S∑
s=1

as,i,n + vi,n (21)
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or in a matrix form130

yn = Hxn + vn (22)

The matrix H is only composed of 0 and 1 necessary to capture all the131

as,i,n. The observation noise vector vn is assumed to be a zero-mean random132

process of variance R. It could be noticed that, for a displacement sensor,133

this observation function is linear.134

If speed sensors are used, thus the observation function depends on dis-135

crete values of ẋ (t). For a damped sine in continuous time,136

ẋ (t) =
S∑
s=1

(σs + jωs)As exp ((σs + jωs) t) (23)

Then in discrete time,137

ẋi,n =
S∑
s=1

(σs,n + jωs,n) cs,i,n (24)

ẋi,n =
S∑
s=1

(σs,nas,i,n − ωs,nbs,i,n) + j (σs,nbs,i,n + ωs,nas,i,n) (25)

Hence the observation function of a speed sensor is given by138

yi,n = Re (ẋi,n) + vi,n (26)

yi,n =
S∑
s=1

(σs,nas,i,n − ωs,nbs,i,n) + vi,n (27)

The last case deals with acceleration. Following the same reasoning as139

for speed sensor, discrete values of ẍ (t) are given by:140

ẍi,n =
S∑
s=1

(σs,n + jωs,n)2 cs,i,n (28)

and, skipping all the intermediate steps, for an accelerometer the observation141

function is:142

yi,n =
(
σ2
s,n − ω2

s,n

)
as,i,n − 2σs,nωs,nbs,i,n + vi,n (29)

It is also possible to combine these three kinds of observation function if143

heterogeneous sensors are used.144
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3. Tracking of poles by identi�cation of a state space model145

This part is devoted to the use of Kalman �lter for the tracking of damped146

sines based on the state model presented in section 2. The choice of the Un-147

scented Kalman Filter and its corresponding Unscented Rauch-Tung-Striebel148

Smoother (URTSS) will be presented in section 3.1. Ad-hoc rules of param-149

eterization for the initialization of �ltering will be given in section 3.2. Since150

the �rst state values and noise covariance matrices have a strong impact on151

Kalman �ltering, a technique for improving their estimation will be proposed152

in section 3.3. Finally, an iterative algorithm resulting from the previous153

ideas will be introduced in section 3.4.154

3.1. Unscented Kalman Filtering and URTSS155

Kalman �ltering refers to a family of algorithms which are devoted to the156

tracking and the estimation of �rst-order dynamical systems [24]. For known157

system matrices {A,B,C,D}, measured observations {yn} and inputs {un},158

it estimates a series of state {xn} which are governed by:159

xn = Axn−1 + Bun−1 + wn−1 (30)

yn = Cxn + Dun + vn (31)

where wn−1 is the process noise and vn is the measurement noise. It can160

be proved that the series thus obtained {x̂n} is the best approximate in the161

least-squares sense [25].162

Although the �rst version only handles linear system of equations, non-163

linear ones were also developed to generalize the range of applications [25].164

One of the latest versions, named Unscented Kalman Filtering (UKF), is165

particularly promising since it can provide satisfying estimates of solutions166

for an acceptable algorithmic cost. The UKF is basically the combination167

of the Unscented Transform (UT) with the Kalman �ltering [26, 27]. For a168

system of equations such as:169

xn = f (xn−1,un−1,wn−1) (32)

yn = g (xn,un,vn) (33)

the UT allows estimating the �rst and second moments of a stochastic vari-170

able, even if it is transformed by a nonlinear transition function f(.) or a171

nonlinear observation function g(.) (see appendix 7.1 for details of compu-172

tation). Contrary to the linear version, the estimated series {x̂n} is only173

optimal at the �rst order of approximation.174
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As Kalman �ltering was originally used for real-time applications, it only175

uses past observations. It recursively computes an estimate at time sample176

n based on the previous estimate x̂n−1 and the new observation yn. Hence177

for each time sample, Kalman �ltering computes the likeliest distribution,178

assumed here to be Gaussian, based on current and past observations up to179

time sample n:180

p (xn|y1→n) ≈ N
(
xn|x̂n, P̂n

)
(34)

where y1→n denotes the reduced set of observations and N
(
xn|x̂n, P̂n

)
is the181

Gaussian law of mean x̂n and variance P̂n.182

Although it can already provide good approximations, better results could183

be obtained by considering future observations too, since they are available184

in post-processing analysis. An algorithm named Unscented Rauch-Tung-185

Striebel Smoother (URTSS) was selected for this task [28]. It involves a186

separate backward smoothing pass that computes corrections to the �rst187

forward �ltered data. Therefore the smoothed distribution of states depends,188

for each time sample, on the whole observations set:189

p (xn|y1→T ) ≈ N
(
xn|x̂\n, P̂\

n

)
(35)

where T is the number of time samples and y1→T denotes all measured data.190

x̂\n and P̂\
n are the smoothed mean vector and covariance matrix at time191

sample n. In practice, the URTSS needs the estimated series {x̂n, P̂n} of192

the �rst pass and recursively computes {x̂\n, P̂\
n} from n = T to n = 0 in a193

backward manner. For the sake of conciseness, all steps of computation are194

postponed in appendix 7.2.195

In conclusion, the identi�cation of states {xn} is performed with two196

successive steps:197

1. the UKF computes a �rst series of estimate {x̂n} based on past obser-198

vations y1→n,199

2. the URTSS computes a corrected series of estimate {x̂\n} based on the200

whole set of observations y1→T .201

Both steps form the two-pass Bayesian smoothing algorithm.202

3.2. Initialization of parameters203

The recursive computation starts with the initial estimation of {x̂0, P̂0}.204

As previously detailed in paragraph 2.1, the state vector x combines both205

parameter values and real-imaginary amplitudes x =
[
(xp)T (xa)T

]T
.206
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First of all, the number of damped sines should be equal to the number207

of major peaks in the Power Spectral Densities (PSDs) of signals. It gives208

the model size directly.209

Each damped sine has two terms in the parameter vector:210

xp =

[
ωd∆t
σ∆t

]
, with

{
ωd = 2πfe

√
1− ξ2e

σ = −2πfeξe
(36)

Here the case of a single damped sine has been chosen for the sake of clarity.211

A �rst estimation of fe is given by picking the major peak in the PSDs.212

Moreover, an arbitrary value of 1% is used to initialize ξe. Although they213

could seem to be rough estimates for fe,0 and ξe, they are quite good enough214

as �rst values.215

Amplitudes stored in vector xa are initialized by taking for each measured216

signal at each selected frequency the corresponding square root amplitudes217

in the PSDs.218

The state covariance matrix P can be initialized by the expected lack of219

knowledge on states. As for the state vector x, parameters and amplitudes220

are considered separately:221

P̂0 =

[
P̂p

0 0

0 P̂a
0

]
(37)

Uncertainties on the initial frequency δf and the initial damping δξ are in-222

troduced in the state covariance matrix by:223

P̂p
0 =

 (2πδf∆t)
2 0

0
(
2πf̂e,0δξ∆t

)2
 (38)

where f̂e,0 is an initial value of frequency. Typical values of uncertainties are224

δf = 1Hz and δξ = 1%.225

The sub-matrix P̂a
0 contains initial uncertainties on amplitudes. It could226

be approximated by a fraction of x0
a.227

Pa
0 = diag

[(
xa0
δx

)2
]

(39)

where δx = 10 for instance means an initial uncertainty of 10% on amplitudes.228
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Kalman �ltering also relies on two covariance matrices whose values can-229

not be directly measured : Q and R. As for the state covariance matrix P,230

the noise covariance matrix Q separates parameters and amplitudes compo-231

nents:232

Q =

[
Qp 0
0 Qa

]
(40)

The matrix Qp is a diagonal matrix whose terms are variances of angular233

frequencies and dampings. A relevant Qp is extremely important for the234

success of Kalman �ltering. If the value is too low, the �lter is not able to235

adapt to observations and cannot converge to relevant states. But in the236

other side, if the value is too high, identi�ed parameters may evolve too237

fast and are not representative of an expected evolution. Then �nding good238

values for Qp is often one of the main points of Kalman �ltering [25].239

It will always be assumed that a diagonal matrix form is suitable for Qp
240

without lack of generality. For instance, for S = 1, i.e. one damped sine241

Qp =

[
qω 0
0 qσ

]
(41)

The �rst state, namely the angular frequency ωn times the time step ∆t, is242

able to evolve by a random walk:243

ωn∆t = ωn−1∆t+ εn (42)

where εn = N (0, qω) allows for a slight evolution of ωn over a time step.244

During the whole response, the �nal value ωN is given by N successive steps:245

ωN = ω̂0 +
1

∆t

N∑
n=1

εn (43)

As a relevant value for qω could be obtained by assuming a regular evolution246

over N steps with the same standard deviation
√
qω, then:247

ωN = ω̂0 +
1

∆t

N∑
n=1

√
qω (44)

ωN = ω̂0 (1 + Vf ) (45)

where Vf is the frequency variation of a structure response during a free248

decay. Hence249

qω =

(
Vf ω̂e,0∆t

N

)2

(46)
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For most structures which have nonlinear joints, frequency variations such250

as Vf = 5% are common.251

By analogy, a similar expression is given for σ:252

qσ =

(
Vξ ξ̂0ω̂e,0∆t

N

)2

(47)

Contrary to frequency, a damping ratio ξ is known to experience signi�cant253

variations in function of amplitude. As typical eigendamping ranges in value254

from 1 to 5%, Vξ = 5 enables the Kalman �ltering to start at 1% and �nishes255

at 5%.256

In the case of a free response, Qa should be a null matrix as there is257

no external excitation. But giving a non-zero value to Qa, even very small,258

ensures �exibility and stability in Kalman �ltering. Hence a diagonal matrix259

Qa = Iε is chosen for this purpose, with ε is a small value which depends on260

the accuracy of the used computer.261

The matrix of observation noise variances R can be estimated by knowing262

the characteristics of used sensors. If they are not available, rough estimates263

can be given by a percentage of signals variances. For instance, if R =264

(0.01)2 ∗ var(y) for a single sensor, then it is assumed that the Signal on265

Noise Ratio is 1%.266

3.3. Expectation-Maximization algorithm for noise covariances estimation267

Although formulae introduced in paragraph 3.2 often give satisfying val-268

ues for {Q,R,x0,P0}, it is advisable to improve their estimation as well as269

possible. Indeed they are directly used as inputs for the two-pass Bayesian270

smoothing algorithm, and therefore states estimates strongly depend on271

them. In this work their values are optimized thanks to the Expectation-272

Maximization (EM) algorithm [29]. This technique was initially designed for273

the linear Kalman �lter, and then adapted to the Extended Kalman �lter274

[30]; here it is proposed to extend it to the Unscented Kalman Filter.275

Let Θ = {x0,P0,Q,R} be the set of parameters that are unknown and276

{XN ,YN} = (x1, . . . ,xN ,y1, . . . ,yN) contain the true states and observa-277

tions set of the system. The set of parameters Θ will be estimated under the278

maximum likelihood framework by maximising the log-likelihood function:279

max
Θ

logL (Θ|XN ,YN) = log p (XN ,YN |Θ) (48)
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where p (XN ,YN |Θ) is the joint probability density function:280

p (XN ,YN |Θ) =
1

2π|P0|1/2
exp

(
−(x0 − µ0)

T P−10 (x0 − µ0)

2

)

×
N∏
n=1

1

(2π)S(M+1) |Q|1/2
exp

(
−eTnQ−1en

2

)

×
N∏
n=0

1

(2π)M/2 |R|1/2
exp

(
−vTnR−1vn

2

)
(49)

where |.| is the determinant of a matrix. As the true set {XN ,YN} is not281

available, Shumway and Sto�er proposed an iterative approach based on an282

EM technique which works on the conditional expectation of logL (Θ|XN ,YN)283

(see [29]). Although this method was initially designed for the linear Kalman284

�lter, its nonlinear version is derived here thanks to the Unscented Trans-285

form.286

Given the current value of Θ(j) = {x(j)
0 ,P

(j)
0 ,Q(j),R(j)} and the obser-287

vation set YN , a data set X̂
(j)
N =

(
x̂
(j)
0|N , . . . , x̂

(j)
N |N

)
is generated by the two-288

pass Bayesian smoothing algorithm. At the j th iteration, the expectation of289

logL (Θ|XN ,YN) conditioned to YN and Θ(j) is given as:290

E [logL (Θ|XN ,YN)] = − log |P0| −N log |Q|

−tr
[
P−10

(
P

(j−1)
0|N −

(
x
(j)
0|N − x0

) (
x
(j)
0|N − x0

)T)]
−tr

[
Q−1

(
B

(j)
1 −B

(j)
2 −

(
B

(j)
2

)T
+ B

(j)
3

)]
−tr

[
R−1

(
B

(j)
4 −B

(j)
5 −

(
B

(j)
5

)T
+ B

(j)
6

)]
(50)

where matrices {Bi}, i = 1..6 are given in appendix 7.4.291

Secondly, the likelihood E [logL (Θ|XN ,YN)] is maximized by taking the292

partial derivatives with respect to Q and R and setting them to zero:293

Q(j+1) =
1

N

(
B

(j)
1 −B

(j)
2 −

(
B

(j)
2

)T
+ B

(j)
3

)
(51)

In part 3.2, a splitting in two diagonal parts has been assumed for the noise294

covariance matrix Q:295

Q =

[
Qp 0
0 Qa

]
(52)
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In practice, it is better to update the diagonal terms of the sub-matrix Qp
296

only and to keep the sub-matrix Qa to a constant value. If we denote with297

a superscript p the corresponding left-upper sub-matrices of B1,B2 and B3,298

the update of Q can be restricted to:299

Qp,(j+1) =
1

N
diag

[(
B
p,(j)
1 −B

p,(j)
2 −

(
B
p,(j)
2

)T
+ B

p,(j)
3

)]
(53)

and the matrix Qa is unchanged. The update of the noise measurement300

matrix R is performed with:301

R(j+1) =
1

N

(
B

(j)
4 −B

(j)
5 −

(
B

(j)
5

)T
+ B

(j)
6

)
(54)

Contrary to the noise covariance matrix Q, extra-diagonal terms may ap-302

pear in R, allowing then the potential cross-terms of noise between di�erent303

sensors.304

Since it is not possible to isolate the initial mean x0 and covariance ma-305

trice P0 in equation 50, the updates are simply made by taking their last306

estimated values provided by the URTSS at the previous iteration:307

x
(j+1)
0 = x̂

(j)
0|N and P

(j+1)
0 = P̂

(j)
0|N (55)

3.4. Final algorithm308

The resulting method is an iterative process which alternates between the309

two-pass Bayesian algorithm and the maximum likelihood estimator with the310

EM technique as follows.311

1. Initialize the set of parameters Θ(0) = {x0,P0,Q,R} by using formulae312

of paragraph 3.2.313

2. Using the set Θ(j), compute a set of states X̂N by applying the UKF.314

3. Improve the results by applying the URTSS.315

4. Expectation step : the smoothed state values are used to compute the316

matrices of maximum likelihood thanks to the UT {B(j)
1 , . . . ,B

(j)
6 }.317

5. Maximization step : the estimates of the parameters {x0,P0,Q,R} are318

updated to get Θ(j+1).319

6. Repeat Steps 2-4 until convergence.320

The iterations are ended if a maximum number of iterations is reached or if321

the following criterion is satis�ed322

‖p(j) − p(j−1)‖
‖p(j−1)‖

< ε (56)
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where p denotes a poles series ({−ξω+ iω
√

1− ξ2}) and ε is a small positive323

number.324

4. Simulation results325

4.1. Numerical model326

The numerical case is an one-degree-of-freedom system327

mẍ+ cẋ+ kx+ r (t) = fe (t) (57)

where m = 1, c = 2mξ0ω0, k = mω∞ and r (t) is the restoring force due to328

an Iwan model (see �gure 1). The Iwan model is a parallel association of NJ329

Jenkins elements, each of them being a series association of a linear spring330

of sti�ness σ/NJ and a Coulomb slider of breaking force Fj. The restoring331

force of each Jenkins element is simulated by a modi�ed Dahl formulation332

(see [31])333

ṙj =
σ

NJ

∣∣∣∣∣1− rj
Fj
sgn (ẋ)

∣∣∣∣∣
α

sgn

(
1− rj

Fj
sgn (ẋ)

)
ẋ (58)

where α is a small exponent.334

The system is assumed to be observed with four accelerometers335

ÿ = Φẍ+ v, Φ =
[

3 2 8 6
]

(59)

where v is the noise observation vector such as 1% of random noise is added336

to signals.337

The values of {rm, σ, ξ0, ω0, ω∞} are chosen in order to have an evolution338

of equivalent modal parameters as a function of accelerometer 1 amplitude339

such as presented on �gure 2.340

4.2. Application of the methodology341

The system is excited by a Morlet wavelet whose central frequency is 15342

Hz. The accelerations generated by this excitation force are simulated on 10343

seconds and depicted on �gure 3. A white noise is added to signals in order344

to obtain realistic measured signals. The ratio of standard deviation between345

the added noise and the free-noise signals is about 1%.346

A clari�cation should be made on the transient part due to the wavelet347

(see �gure 4). In fact, a wavelet has a short but not negligible time of fading348

down. Although signals used for identi�cation may begin at the maximum349
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of amplitude, the free response starts approximately one period later, when350

the excitation force is close to nil. Then there is one period of signals which351

could be used for post-processing, but irrelevant for �nal results presentation352

since the system is not exactly free during this period.353

Results of the proposed algorithm are depicted on �gure 5. Equivalent354

modal parameters are identi�ed as a function of time for the whole system,355

and amplitudes are computed for each sensor. It can be �rstly noticed that356

strong variations occur in a short temporal frame (one second in this example)357

compared to the whole range of time. It emphasizes the need to identify the358

�rst periods as well as possible.359

The speed of convergence is studied by depicting the �rst and last results360

on �gure 6. Two curves show the results of the �rst iteration : the �rst pass361

(UKF) and the second pass (URTSS). The third curve gives the results of362

the 7th iteration (last two-pass Bayesian smoothing). Intermediate results363

are not shown since most signi�cant variations are observed during the �rst364

pass of Kalman �ltering and the second pass of Bayesian smoothing.365

By representing the equivalent modal parameters as a function of an366

accelerometer amplitude (numbered 1 here), a comparison with the reference367

curves is plotted on �gure 7. These reference curves were obtained by using368

the harmonic balance method on the system [32]. Very accurate matching369

is obtained for both frequency and damping variations. Maximum error370

deviations are about 0.01 Hz on frequency and 0.1% on damping.371

4.3. Discussion372

Three main reasons could be enumerated to explain the small deviations.373

Firstly, the reference curves are not the theoretical evolutions for this exci-374

tation since no closed form solutions are known. Instead we use evolutions375

obtained for a harmonic evolution, and equivalent modal parameters calcu-376

lated for a sine excitation are not exactly equal to the ones of a free response.377

Secondly, although the Runge-Kutta solver is very accurate, a trade-o�378

between instantaneous frequency and damping is made at each time step and379

resulting numerical errors are unavoidable during simulation.380

Finally, the identi�cation algorithm has also its own limitations and ac-381

curacy. Nevertheless, such deviations are very low and could be considered382

as acceptable.383

An additional check of performance is given by synthesizing the accelera-384

tions based on identi�ed states (from the �nal iteration) and comparing them385

to noise-free and noisy accelerations signals. For example, on �gure 8 these386
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three cases are plotted for the accelerometer 1. At the beginning (left part),387

all amplitudes match well, since the amplitude on noise ratio is high and the388

�rst states have been correctly estimated by the algorithm. Furthermore,389

even if noise amplitude is more signi�cant at low amplitude (right part of390

the �gure), the method still provides accurate states since the synthesized391

acceleration matches the noise-free acceleration well.392

5. Experimental application393

5.1. H Bench394

The experimental rig consists of two beams linked by a lap-joint and two395

seismic masses (see �gure 9). All of them are made of steel. The seismic396

masses and the beam are glued together and tightened with one M10 bolt397

on each side. The glue associated with a strong clamping of the M10 bolts398

ensures a very weak damping. The joint itself is assembled with two M6399

bolts in the center of the overlap and four M4 bolts close to the edges.400

This bench is designed to load the joint either on a torsional or on a401

bending motion thanks to the two �rst modes. A FE model gives these two402

modes in free boundary conditions at 50 and 90 Hz (see �gure 10). The third403

mode, namely the second bending mode, has a natural frequency above 200404

Hz.405

According to the FE model, the torsion and bending modes have two com-406

mon nodes where their nodal lines intersect. The free boundary conditions407

are obtained by hanging the structure with nylon cables at these points.408

The torsion and bending modes have very low amplitude at joints between409

the lap-joint and the masses (around the M10 bolts). So it is expected that410

the M10 bolts have very low in�uence on the vibratory dissipation of these411

modes. On the other hand, the M6 and M4 bolts located on the lap-joint412

should have a signi�cant impact on the poles.413

For each mode, the hit position is at the intersection of the maximum414

amplitude of the studied mode and of the nodal line of the other mode415

(named H1 and H2 points on �gure 10). The hammer mass and its �exibility416

tip are chosen to have a cutting frequency just over the second mode (> 100417

Hz). Then hitting the structure at these two points enabled us to highlight418

as well as possible the bending and torsion modes separately.419

Accelerations are measured at six points along the beam (Acc1 to Acc6)420

and at one point on the seismic mass (Acc7). Residual participations of low421
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dynamic rigid motions and higher-order modes are removed from signals by422

applying a FIR band-pass �lter.423

5.2. Results424

A hammer hit is applied on the H2 point of the structure to excite the425

bending mode and measured signals are processed by the proposed methodol-426

ogy. Then equivalent modal parameters values are obtained per time sample,427

together with amplitude level per damped sine and per signal (see �gure 11).428

As for the numerical case in section 4, most variations occur during a short429

period of time at the beginning of the decay. In fact, the most useful in-430

formation is located in the �rst 0.5 s. Then the fast convergence of the431

UKF and the corrections due to the URTSS allow identifying the parameters432

accurately, even in a short time frame.433

As a better presentation, the previous equivalent modal parameters are434

plotted as a function of Acc1 displacement amplitude on �gure 12. The fre-435

quency lowers as a function of amplitude level, while damping ratio grows.436

Such variations are typical of the in�uence of dry friction on modal parame-437

ters.438

Four hits of hammer were applied on the H1 point and all sets of measured439

signals were processed according to the same methodology (see �gure 13).440

Curves match very well, which shows the good repeatability of the tests,441

even if the force level is not constant. It can be noticed that the level of442

hammer hit impulse has a slight e�ect on the equivalent modal parameters.443

For example, the hit 4, which is the strongest one since it gives the maximum444

amplitude of displacement, has always lower frequency and higher damping445

values compared to the three other cases. Anyway these deviations are very446

low and can be considered as acceptable.447

The in�uence of the M4 bolts torque is studied by estimating the equiv-448

alent parameters of the torsion mode for three tightening cases of the four449

M10 bolts: 0.5, 1 and 2 Nm. For each case, several hits were performed450

for evaluating the repeatability of tests (see �gure 14). For each tightening451

case, all curves of equivalent parameters match very well, since the deviations452

are about 0.3 Hz for frequency and 0.5% for damping, considering that they453

evolve strongly in the range 39-45 Hz for the frequency and 0.5-5.7 % for the454

damping ratio. As a result, the in�uence of tightening is easily identi�ed.455

At 0.5Nm, the friction due to lap-joint movement has a maximum impact456

at 0.25 mm of Acc7 displacement. At 1 and 2 Nm, the frequency lowers457

and the damping ratio grows continuously as a function of amplitude. As a458
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rule, the stronger the torque is, the less in�uential it is on equivalent modal459

parameters. In the extreme case of tightening, these ones should be constant460

and the structure dynamics should be linear, as if the whole structure was461

only one block of steel.462

6. Conclusion463

The aim of this study was to present a new method for the identi�cation464

of equivalent modal parameters from free responses of structures. A state465

space model was expressed in order to model the discrete time evolution of466

damped sines. Frequency and damping were integrated in the state vector,467

so that their instantaneous values can be identi�ed. Di�erent observation468

functions were proposed depending on the type of used sensors. The track-469

ing of state vector was performed by an Unscented Kalman Filter followed its470

corresponding Unscented Rauch-Tung-Striebel Smoother. As accurate iden-471

ti�ed states are required from the beginning of signals decay, an iterative472

algorithm was proposed for estimating �rst values of state vector and noise473

covariances matrices.474

The proposed method was applied and assessed on numerical and experi-475

mental cases. Results showed that equivalent modal parameters as a function476

of amplitude level can be obtained accurately. More speci�cally, satisfying477

states are estimated since the beginning of signals, thus providing equivalent478

modal parameters even at high level amplitude.479

7. Appendixes480

7.1. The Unscented Transform481

The Unscented Transform (UT) is a deterministic sampling technique482

which computes a minimal set of sigma points {x(i)} around a density prob-483

ability function of mean x and covariance P :484

{x(i)} =
[
x x + γ (P)1/2 x− γ (P)1/2

]
i = 0 . . . 2L (60)

where (P)1/2 denotes the Cholesky decomposition of P. Rules for obtaining485

a relevant value of γ are given in [27]. It can be easily proved that the mean486

and covariance of this computed set of samples match the initial mean x and487

covariance P. The UT is extensively used in the Unscented Kalman Filter488

and its related Unscented Rauch-Tung-Striebel smoother.489
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7.2. Unscented Kalman �lter490

The Kalman �lter estimates the dynamic evolution of a probability den-491

sity function (mean x̂n and covariance P̂n) at step n based on previous step492

n− 1. Knowing a �rst couple {x̂0, P̂0}, it is applied from n = 1 up to n = T493

in two major phases : prediction and update.494

495

Prediction phase496

1. Creation of a sigma points set {x(i)
n−1} from x̂n−1 and P̂n−1 by formula497

60498

2. Each point is propagated through the transition function :499

x
(i)
n|n−1 = f

(
x
(i)
n−1

)
, i = 0 . . . 2L (61)

3. The predicted state estimate is computed as :500

x̂−n =
2L∑
i=0

W
(m)
i x

(i)
n|n−1 (62)

4. The predicted covariance estimate is given by :501

P̂−n =
2L∑
i=0

W
(c)
i

(
x
(i)
n|n−1 − x̂−n

) (
x
(i)
n|n−1 − x̂−n

)T
+ Q (63)

502

Update phase503

504

5. Creation of a new set of sigma points {x(i)
n−1} from x̂−n−1 and P̂−n−1 by505

formula 60506

507

6. Application of the observation function on each point :508

y
(i)
n|n−1 = g

(
x
(i)
n|n−1

)
, i = 0 . . . 2L (64)

7. The predicted observation is computed as :509

ŷ−n =
2L∑
i=0

W
(m)
i y

(i)
n|n−1 (65)
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8. The innovation covariance is calculated by :510

P̂yy,n =
2L∑
i=0

W
(c)
i

[
y
(i)
n|n−1 − ŷ−n

] [
y
(i)
n|n−1 − ŷ−n

]T
+ R (66)

9. The cross covariance matrix is given by :511

P̂xy,n =
2L∑
i=0

W
(c)
i

[
x
(i)
n|n−1 − x̂−n

] [
y
(i)
n|n−1 − ŷ−n

]T
(67)

10. The Kalman gain is computed as :512

Kn = P̂xy,nP̂−1
yy,n (68)

11. The updated state estimate is calculated by :513

x̂n = x̂−n + Kn

(
yn − ŷ−n

)
(69)

12. The updated covariance matrix is computed as :514

P̂n = P̂−n −KnP̂yy,nKT
n (70)

Rules for computing W
(c)
i and W

(m)
i are given in [27].515

7.3. Rauch-Tung-Striebel smoother516

Contrary to Kalman �lter, the Rauch-Tung-Striebel smoother processes517

data in a recursive manner. The followings steps are performed on {x̂n, P̂n},518

starting at n = T − 1 and ending at n = 0.519

1. Creation of a set of sigma points {x(i)
n } from x̂n and P̂n by formula 60520

2. Propagate the sigma points through the transition function :521

x̂
(i)
n+1|n = f

(
x̂(i)

n

)
, i = 0 . . . 2L (71)

3. The predicted mean is computed as :522

x̂\n+1|n =
2L∑
i=0

W
(m)
i x̂

(i)
n+1|n (72)

4. The predicted covariance matrix is calculated by :523

P̂\
n+1|n =

2L∑
i=0

W
(c)
i

(
x̂
(i)
n+1|n − x̂\n+1|n

) (
x̂
(i)
n+1|n − x̂\n+1|n

)T
(73)

21



5. The cross covariance matrix is computed as :524

Ŝ\n+1|n =
2L∑
i=0

W
(c)
i

(
x̂
(i)
n+1|n − x̂n

) (
x̂
(i)
n+1|n − x̂\n+1|n

)T
(74)

6. The smoother gain is given by :525

K\
n = Ŝ\n+1|n

(
P̂\

n+1|n

)−1
(75)

7. The smoothed mean is computed as :526

x̂\n = x̂n + K\
n

(
x̂\n+1 − x̂\n+1|n

)
(76)

8. The smoothed covariance matrix is calculated by :527

P̂\
n = P̂n + K\

n

(
P̂\

n+1 − P̂\
n+1|n

) (
K\

n

)T
(77)

7.4. Unscented EM-algorithm528

The derivation of matrices {Bi}, i = 1..6 follows the same reasoning as529

for the Extended Kalman Filter (see [30] for details), apart from the UT that530

handles the nonlinear functions f(.) and g().531

Creation of a sigma points set {x(i)
n−1} from x̂n−1 and P̂n−1 by formula 60532

B1 =
N∑
n=1

(
x̂nx̂

T
n + P̂n

)
(78)

533

B2 =
N∑
n=1

2L∑
i=0

W
(c)
i x̂(i)

n f
(
x̂(i)
n

)T
(79)

534

B3 =
N∑
n=1

2L∑
i=0

W
(c)
i f

(
x̂
(i)
n−1

)
f
(
x̂
(i)
n−1

)T
(80)

535

B4 =
N∑
n=1

yny
T
n (81)

536

B5 =
N∑
n=1

2L∑
i=0

W
(c)
i yng

(
x̂(i)
n

)
(82)

537

B6 =
N∑
n=1

2L∑
i=0

W
(c)
i g

(
x̂(i)
n

)
g
(
x̂(i)
n

)T
(83)
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Figure 1: Iwan model
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Figure 2: Equivalent modal parameters for the model example
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Figure 3: Response due to a wavelet excitation

Figure 4: Zoom on the transient part due to excitation
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Figure 5: Equivalent modal parameters and amplitudes as a function of time

Figure 6: Equivalent modal parameters and amplitudes as a function of time : frequency,
damping and amplitude of accelerometer 1
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Figure 7: Equivalent modal parameters as a function of accelerometer 1 amplitude

Figure 8: Measured, theoretical and synthesized acceleration signals : accurate matching
of theoretical and synthesized accelerations, at beginning and end
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Figure 9: H Testbench
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Figure 10: Torsion and bending modes

Figure 11: Equivalent modal parameters and amplitudes of the bending mode as a function
of time (torque of 2 Nm)
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Figure 12: Equivalent modal parameters of the bending mode as a function of Acc1 dis-
placement (torque of 2Nm)

Figure 13: Repeatability of tests
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Figure 14: Equivalent modal parameters of the torsion mode as a function of Acc7 dis-
placement
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