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This paper describes a method for the identication and the tracking of poles of a weakly nonlinear structure from its free responses. This method is based on a model of multi-channel damped sines whose parameters evolve over time. Their variations are approximated in discrete time by a nonlinear state space model. States are recursively estimated by a new method which couples a two-pass Bayesian estimator with an Expectation-Maximization (EM) algorithm. An iterative procedure between them allows an accurate and robust tracking of poles. As a result, equivalent modal parameters such as frequency and damping are obtained as a function of amplitudes. The method is applied on numerical and experimental cases and show promising results.

Introduction

According to the linear framework in experimental modal analysis, for a given frequency range a structure has a nite set of invariant poles and corresponding shapes. They can be used to model its whole dynamics in this frequency range, taking also into account residual eects due to out-offrequency-band modes [START_REF] Preumont | Vibration Control of Active Structures, An Introduction[END_REF].

In reality, invariant poles are unlikely to be observed on experimental results. Most of structural dynamics show a certain degree of nonlinearity, due to materials nature, geometries, joints, friction, impacts, etc. In severe forms of nonlinearities, typical phenomena such as internal resonances, unstable modes may occur and lead the relevancy of modal analysis to questioning.

Hence the detection and the identication of nonlinearity is more and more considered as a main step by test engineers [START_REF] Worden | Nonlinearity in Structural Dynamics Detection, Identication and Modelling[END_REF][START_REF] Kerschen | Past, present and future of nonlinear system identication in structural dynamics[END_REF].

As a general rule, the success of an identication method highly depends on a chosen model and on a specialized algorithm for parameter estimation [START_REF] Ljung | System identication Theory for the User[END_REF][START_REF] Söderström | System identication[END_REF]. Since usual tools of modal analysis aim to get linear modal models, testing the linearity assumption is essential to study their appropriateness on experimental data. Any deviation from expected results that cannot be explained with measurement errors (such as signal noise, reduced observation, ...) is attributed to a lack of good linear behaviour, and then to non-linear dynamics inuence. For instance, identifying Frequency Response Functions (FRFs) at dierent force levels is a simple and ecient way to test the homogeneity (a weak form of linearity) [START_REF] Ewins | Modal Testing : Theory and Practice[END_REF]. Another indicator is the coherence function, which gives a scaled degree of linearity over frequency, although it might be misled by some kinds of nonlinearities [START_REF] Worden | Nonlinearity in Structural Dynamics Detection, Identication and Modelling[END_REF].

However, for many structures, nonlinear forces are often weak compared to linear ones (predominantly mass and stiness). As a consequence, the linear theory remains relevant for most of industrial structures, since the behaviour of a structure submitted to an external force is close to an equivalent linear one, as long as no bifurcation occurs and nonlinear forces are smooth [START_REF] Vakakis | Nonlinear Targeted Energy Transfer in Mechanical and Structural Systems[END_REF].

Equivalency means here that dynamics analysis can still be reduced to the identication of modes, but these ones are no longer invariant. They depend on the nature of external force and on the structure movement. More specically, only poles are mainly aected by nonlinearities; except in the case of high energy level, mode shapes barely change and can be regarded as invariant [START_REF] Kerschen | Nonlinear normal modes, part I: A useful framework for the structural dynamicist[END_REF].

In the eld of signal processing, the problem of identifying variations of poles has often been addressed. Many techniques have been proposed, starting from the Teager energy operator [START_REF] Maragos | On separating amplitude from frequency modulations using energy operators[END_REF][START_REF] Maragos | Energy separation in signal modulations with application to speech analysis[END_REF]. Feldman proposed the FREEVIB method that uses a Hilbert transform on the free decay and hence obtains the instantaneous characteristics of a mechanical system [START_REF] Feldman | Non-linear free vibration identication via the Hilbert transform[END_REF][START_REF] Feldman | Hilbert transform in vibration analysis[END_REF]. When identifying signals coming from free decay, the modulations have to be slower than the carrier as demonstrated by Bedrosian [START_REF] Bedrosian | A product theorem for Hilbert transforms[END_REF], Nuttall [START_REF] Nuttall | On the quadrature approximation to the Hilbert transform of modulated signals[END_REF] and more recently by Brown [START_REF] Brown | A Hilbert transform product theorem[END_REF]. The Empirical Mode Decomposition has been designed by Huang et al. [START_REF] Huang | The Empirical Mode Decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis[END_REF][START_REF] Huang | A new view of nonlinear water waves: the Hilbert spectrum[END_REF][START_REF] Huang | A review on Hilbert-Huang transform: method and its applications to geophysical studies[END_REF] to extract signal components satisfying this requirement before applying the Hilbert transform.

The free decay could also be processed by time-frequency analysis like wavelets [START_REF] Lardies | Identication of modal parameters using the wavelet transform[END_REF][START_REF] Argoul | Instantaneous indicator of structural behaviour based on the continuous Cauchy wavelet analysis[END_REF][START_REF] Heller | Experimental identication of nonlinear dynamic properties of built-up structures[END_REF]. Their high frequency resolution allows an accurate characterization of poles evolution, even though the rst periods of free decay are often aected by edge eects. Moreover, when considering a set of several sensors, each signal is processed independently, without using the redundancy of information shared by all sensors. Despite these drawbacks, wavelets were successfully used to extend normal mode appropriation testing to nonlinear systems [START_REF] Vakakis | Nonlinear Targeted Energy Transfer in Mechanical and Structural Systems[END_REF][START_REF] Peeters | Modal testing of nonlinear vibrating structures based on nonlinear normal modes : experimental demonstration[END_REF]. This paper is devoted to the analysis of free decay time histories of weakly nonlinear structures. A new method for processing data from multiple sensors will be presented. The outline of this paper is as follows. First, a state space in discrete time is introduced for modelling damped waves in section 2. Then instantaneous values of state vector are estimated by a nonlinear version of Kalman lter and an iterative algorithm is proposed in section 3. In section 4, the proposed method is rst applied on numerical simulations to assess its eciency.

Finally, an experimental case is studied in section 5.

Development of state space model

This part is devoted to the development of a state space model for modelling the temporal evolution and the observation of damped sines. The transition function will be developed in section 2.1 and the observation function in section 2.2.

Transition function

The free response of a structure, generally produced by a hammer hit or a stepped sine excitation, can be modelled by the sum of S damped sines:

x(t) = S s=1 A r s exp(σ s t) cos(ω s t + φ s ) (1) 
with, for each sine s, A r s its corresponding maximum amplitude, φ s its initial phase, ω s its damped angular frequency and σ s its damping. For practical reasons, the corresponding analytical signal is more used:

x(t) = S s=1 A s exp ((σ s + jω s ) t) (2) 
with each complex amplitude A s composed of A r s and φ s . Equivalent eigenfrequencies and eigendampings are computed by:

ω 2 es = σ 2 s + ω 2 s ( 3 
)
ξ es = -σ s /ω es (4) 
In discrete time, the response is given by:

x(n∆t) = S s=1 A s exp ((σ s + jω s ) n∆t) = S s=1 c s,n (5) 
with ∆t the time sampling. One can express x n = x(n∆t) as a function of the previous step:

x n = S s=1 A s exp ((σ s + jω s ) (n -1)∆t) exp ((σ s + jω s ) ∆t) (6) 
The transition between two consecutive amplitudes is given by:

c s,n = c s,n-1 exp ((σ s + jω s ) ∆t) (7) 
Each complex amplitude is made of real and imaginary parts as c s,n = a s,n + jb s,n . Then the previous relation can be written as:

a s,n b s,n = T s a s,n-1 b s,n-1 (8) 
with T s the transition matrix of damped sine s:

T s = exp (σ s ∆t) cos (ω s ∆t) -sin (ω s ∆t) sin (ω s ∆t) cos (ω s ∆t) (9) 
It is simply obtained by expanding and combining all terms of equations 7 and 8. This transition matrix T s expresses that a wave is damped and rotated between two consecutive time samples [START_REF] Dion | Tracking and removing modulated sinusoidal components; a solution based on the kurtosis and the extended Kalman lter[END_REF].

For the general case of M responses, the vector of the complex amplitudes of a damped sine s is:

x a s,n = [a s,1,n b s,1,n a s,2,n b s,2,n . . . a s,M,n b s,M,n ] T (10) 
where [a s,i,n b s,i,n ] T is the complex amplitude of a damped sine s at time sample n and observation point i. Here the superscript a of x a n,s denotes the amplitude. Then the function transition for M observations is given by:

x a s,n = (I M ⊗ T s ) x a s,n-1 (11) 
since they share the same transition matrix T s . Here the symbol ⊗ denotes the Kronecker product and I M is the identity matrix of size M .

As a free response of a structure generally shows several modes, a vector of S damped sine amplitudes should be considered:

x a n =       x a 1,n x a 2,n . . . x a S,n       (12) 
In fact, it only concatenates the 2M previous x a s,n amplitude terms per damped sine.

By combining equations 11 and 12, a relation between two consecutive amplitude vectors is given by:

x a n = Γx a n-1 (13) 
with the transition matrix of complex amplitudes:

Γ =        I M ⊗ T 1 0 2M . . . 0 2M 0 2M I M ⊗ T 2 . . . . . . . . . . . . . . . 0 2M 0 2M . . . 0 2M I 2M ⊗ T S        (14) 
This transition matrix Γ is made of parameters (angular frequencies {ω s } and dampings {σ s }) which are unknown and have also to be identied. The vector of amplitudes x a n is concatenated to a vector of parameters which assembles itself all the pulsations and dampings:

x n = x p n x a n with x p n = [ω 1,n σ 1,n ω 2,n σ 2,n . . . ω S,n σ S,n ] T × ∆t (15)
Parameters are assumed to be almost constant between two samples. As there is no deterministic law for their temporal evolution, here a stochastic framework is chosen to model their variations:

x p n = x p n-1 + w p n-1 (16) 
with w p n a random noise which allows parameters to evolve slowly over time.

In conclusion, the dynamical evolution in discrete time is given by

x n = f (x n-1 ) + w n-1 (17) 
with the deterministic part given by:

f x p n-1 x a n-1 = I 2S 0 2M S 0 2S Γ n-1 x p n-1 x a n-1 (18) 
where I 2S is the identity matrix of size 2S. This transition function is nonlinear since, as parameters are allowed to evolve from sample to sample thanks to w p n , the matrix Γ n-1 depends now on values of parameters given by x p n-1 .

Finally, the random part

w n = w p n w a n ( 19 
)
is modelled by a Gaussian law of zero mean and variance Q. Practical rules for determining relevant value of Q will be provided in paragraph 3.2.

Observation function

Let y n be the measurement vector of M sensors at sample time n:

y n = [y 1,n y 2,n . . . y M,n ] T (20) 
Three types of observation function can be enumerated, depending on the nature of measured quantities : displacement, speed or acceleration. In the simplest case, each sensor gives a displacement at an observation point, with an unavoidable random noise v i of measurement. Here they are given by the real parts of the complex sines:

y i,n = S s=1 a s,i,n + v i,n (21) 
or in a matrix form

y n = Hx n + v n (22) 
The matrix H is only composed of 0 and 1 necessary to capture all the a s,i,n . The observation noise vector v n is assumed to be a zero-mean random process of variance R. It could be noticed that, for a displacement sensor, this observation function is linear.

If speed sensors are used, thus the observation function depends on discrete values of ẋ (t). For a damped sine in continuous time,

ẋ (t) = S s=1 (σ s + jω s ) A s exp ((σ s + jω s ) t) (23) 
Then in discrete time,

ẋi,n = S s=1 (σ s,n + jω s,n ) c s,i,n (24) ẋi,n = 
S s=1 (σ s,n a s,i,n -ω s,n b s,i,n ) + j (σ s,n b s,i,n + ω s,n a s,i,n ) (25) 
Hence the observation function of a speed sensor is given by

y i,n = Re ( ẋi,n ) + v i,n (26) 
y i,n = S s=1 (σ s,n a s,i,n -ω s,n b s,i,n ) + v i,n (27) 
The last case deals with acceleration. Following the same reasoning as for speed sensor, discrete values of ẍ (t) are given by:

ẍi,n = S s=1 (σ s,n + jω s,n ) 2 c s,i,n (28) 
and, skipping all the intermediate steps, for an accelerometer the observation function is:

y i,n = σ 2 s,n -ω 2 s,n a s,i,n -2σ s,n ω s,n b s,i,n + v i,n (29) 
It is also possible to combine these three kinds of observation function if heterogeneous sensors are used.

Tracking of poles by identication of a state space model

This part is devoted to the use of Kalman lter for the tracking of damped sines based on the state model presented in section 2. The choice of the Unscented Kalman Filter and its corresponding Unscented Rauch-Tung-Striebel Smoother (URTSS) will be presented in section 3.1. Ad-hoc rules of parameterization for the initialization of ltering will be given in section 3.2. Since the rst state values and noise covariance matrices have a strong impact on Kalman ltering, a technique for improving their estimation will be proposed in section 3.3. Finally, an iterative algorithm resulting from the previous ideas will be introduced in section 3.4.

Unscented Kalman Filtering and URTSS

Kalman ltering refers to a family of algorithms which are devoted to the tracking and the estimation of rst-order dynamical systems [START_REF] Kalman | A new approach to linear ltering and prediction problems[END_REF]. For known system matrices {A, B, C, D}, measured observations {y n } and inputs {u n }, it estimates a series of state {x n } which are governed by:

x n = Ax n-1 + Bu n-1 + w n-1 (30) 
y n = Cx n + Du n + v n (31) 
where w n-1 is the process noise and v n is the measurement noise. It can be proved that the series thus obtained {x n } is the best approximate in the least-squares sense [START_REF] Grewal | Kalman Filtering Theory and Practice Using MATLAB[END_REF].

Although the rst version only handles linear system of equations, nonlinear ones were also developed to generalize the range of applications [START_REF] Grewal | Kalman Filtering Theory and Practice Using MATLAB[END_REF].

One of the latest versions, named Unscented Kalman Filtering (UKF), is particularly promising since it can provide satisfying estimates of solutions for an acceptable algorithmic cost. The UKF is basically the combination of the Unscented Transform (UT) with the Kalman ltering [START_REF] Julier | The scaled unscented transformation[END_REF][START_REF] Julier | Unscented ltering and nonlinear estimation[END_REF]. For a system of equations such as:

x n = f (x n-1 , u n-1 , w n-1 ) (32) 
y n = g (x n , u n , v n ) ( 33 
)
the UT allows estimating the rst and second moments of a stochastic variable, even if it is transformed by a nonlinear transition function f (.) or a nonlinear observation function g(.) (see appendix 7.1 for details of computation). Contrary to the linear version, the estimated series {x n } is only optimal at the rst order of approximation.

As Kalman ltering was originally used for real-time applications, it only uses past observations. It recursively computes an estimate at time sample n based on the previous estimate xn-1 and the new observation y n . Hence for each time sample, Kalman ltering computes the likeliest distribution, assumed here to be Gaussian, based on current and past observations up to time sample n:

p (x n |y 1→n ) ≈ N x n |x n , Pn (34) 
where y 1→n denotes the reduced set of observations and N x n |x n , Pn is the Gaussian law of mean xn and variance Pn .

Although it can already provide good approximations, better results could be obtained by considering future observations too, since they are available in post-processing analysis. An algorithm named Unscented Rauch-Tung-Striebel Smoother (URTSS) was selected for this task [START_REF] Sarrka | Unscented Rauch-Tung-Striebel smoother[END_REF]. It involves a separate backward smoothing pass that computes corrections to the rst forward ltered data. Therefore the smoothed distribution of states depends, for each time sample, on the whole observations set:

p (x n |y 1→T ) ≈ N x n |x n , P n ( 35 
)
where T is the number of time samples and y 1→T denotes all measured data.

x n and P n are the smoothed mean vector and covariance matrix at time sample n. In practice, the URTSS needs the estimated series {x n , Pn } of the rst pass and recursively computes {x n , P n } from n = T to n = 0 in a backward manner. For the sake of conciseness, all steps of computation are postponed in appendix 7.2.

In conclusion, the identication of states {x n } is performed with two successive steps:

1. the UKF computes a rst series of estimate {x n } based on past observations y 1→n , 2. the URTSS computes a corrected series of estimate {x n } based on the whole set of observations y 1→T .

Both steps form the two-pass Bayesian smoothing algorithm.

Initialization of parameters

The recursive computation starts with the initial estimation of {x 0 , P0 }.

As previously detailed in paragraph 2.1, the state vector x combines both parameter values and real-imaginary amplitudes x = (x p ) T (x a ) T T .

First of all, the number of damped sines should be equal to the number of major peaks in the Power Spectral Densities (PSDs) of signals. It gives the model size directly.

Each damped sine has two terms in the parameter vector:

x p = ω d ∆t σ∆t , with ω d = 2πf e 1 -ξ 2 e σ = -2πf e ξ e (36) 
Here the case of a single damped sine has been chosen for the sake of clarity.

A rst estimation of f e is given by picking the major peak in the PSDs.

Moreover, an arbitrary value of 1% is used to initialize ξ e . Although they could seem to be rough estimates for f e,0 and ξ e , they are quite good enough as rst values.

Amplitudes stored in vector x a are initialized by taking for each measured signal at each selected frequency the corresponding square root amplitudes in the PSDs.

The state covariance matrix P can be initialized by the expected lack of knowledge on states. As for the state vector x, parameters and amplitudes are considered separately:

P0 = Pp 0 0 0 Pa 0 (37)
Uncertainties on the initial frequency δ f and the initial damping δ ξ are introduced in the state covariance matrix by:

Pp 0 =   (2πδ f ∆t) 2 0 0 2π fe,0 δ ξ ∆t 2   (38)
where fe,0 is an initial value of frequency. Typical values of uncertainties are δ f = 1Hz and δ ξ = 1%.

The sub-matrix Pa 0 contains initial uncertainties on amplitudes. It could be approximated by a fraction of x 0 a .

P a 0 = diag x a 0 δ x 2 (39) 
where δ x = 10 for instance means an initial uncertainty of 10% on amplitudes.

Kalman ltering also relies on two covariance matrices whose values cannot be directly measured : Q and R. As for the state covariance matrix P, the noise covariance matrix Q separates parameters and amplitudes components:

Q = Q p 0 0 Q a (40)
The matrix Q p is a diagonal matrix whose terms are variances of angular frequencies and dampings. A relevant Q p is extremely important for the success of Kalman ltering. If the value is too low, the lter is not able to adapt to observations and cannot converge to relevant states. But in the other side, if the value is too high, identied parameters may evolve too fast and are not representative of an expected evolution. Then nding good values for Q p is often one of the main points of Kalman ltering [START_REF] Grewal | Kalman Filtering Theory and Practice Using MATLAB[END_REF].

It will always be assumed that a diagonal matrix form is suitable for Q p without lack of generality. For instance, for S = 1, i.e. one damped sine

Q p = q ω 0 0 q σ (41) 
The rst state, namely the angular frequency ω n times the time step ∆t, is able to evolve by a random walk:

ω n ∆t = ω n-1 ∆t + n ( 42 
)
where n = N (0, q ω ) allows for a slight evolution of ω n over a time step.

During the whole response, the nal value ω N is given by N successive steps:

ω N = ω0 + 1 ∆t N n=1 n (43) 
As a relevant value for q ω could be obtained by assuming a regular evolution over N steps with the same standard deviation √ q ω , then:

ω N = ω0 + 1 ∆t N n=1 √ q ω ( 44 
)
ω N = ω0 (1 + V f ) (45) 
where V f is the frequency variation of a structure response during a free decay. Hence

q ω = V f ωe,0 ∆t N 2 (46) 
For most structures which have nonlinear joints, frequency variations such as V f = 5% are common.

By analogy, a similar expression is given for σ:

q σ = V ξ ξ0 ωe,0 ∆t N 2 (47) 
Contrary to frequency, a damping ratio ξ is known to experience signicant variations in function of amplitude. As typical eigendamping ranges in value from 1 to 5%, V ξ = 5 enables the Kalman ltering to start at 1% and nishes at 5%.

In the case of a free response, Q a should be a null matrix as there is no external excitation. But giving a non-zero value to Q a , even very small, ensures exibility and stability in Kalman ltering. Hence a diagonal matrix Q a = I is chosen for this purpose, with is a small value which depends on the accuracy of the used computer.

The matrix of observation noise variances R can be estimated by knowing the characteristics of used sensors. If they are not available, rough estimates can be given by a percentage of signals variances. For instance, if R = (0.01) 2 * var(y) for a single sensor, then it is assumed that the Signal on Noise Ratio is 1%.

Expectation-Maximization algorithm for noise covariances estimation

Although formulae introduced in paragraph 3.2 often give satisfying values for {Q, R, x 0 , P 0 }, it is advisable to improve their estimation as well as possible. Indeed they are directly used as inputs for the two-pass Bayesian smoothing algorithm, and therefore states estimates strongly depend on them. In this work their values are optimized thanks to the Expectation-Maximization (EM) algorithm [START_REF] Shumway | Time Series Analysis and Its Applications[END_REF]. This technique was initially designed for the linear Kalman lter, and then adapted to the Extended Kalman lter [START_REF] Bavdekar | Identication of process and measurement noise covariance for state and parameter estimation using extended Kalman lter[END_REF]; here it is proposed to extend it to the Unscented Kalman Filter.

Let Θ = {x 0 , P 0 , Q, R} be the set of parameters that are unknown and {X N , Y N } = (x 1 , . . . , x N , y 1 , . . . , y N ) contain the true states and observations set of the system. The set of parameters Θ will be estimated under the maximum likelihood framework by maximising the log-likelihood function:

max Θ log L (Θ|X N , Y N ) = log p (X N , Y N |Θ) (48) 
where p (X N , Y N |Θ) is the joint probability density function:

p (X N , Y N |Θ) = 1 2π|P 0 | 1/2 exp - (x 0 -µ 0 ) T P -1 0 (x 0 -µ 0 ) 2 × N n=1 1 (2π) S(M +1) |Q| 1/2 exp - e T n Q -1 e n 2 × N n=0 1 (2π) M/2 |R| 1/2 exp - v T n R -1 v n 2 (49) 
where |.| is the determinant of a matrix. As the true set {X N , Y N } is not available, Shumway and Stoer proposed an iterative approach based on an EM technique which works on the conditional expectation of log L (Θ|X N , Y N )

(see [START_REF] Shumway | Time Series Analysis and Its Applications[END_REF]). Although this method was initially designed for the linear Kalman lter, its nonlinear version is derived here thanks to the Unscented Transform.

Given the current value of Θ (j) = {x (j) 0 , P

0 , Q (j) , R (j) } and the obser-

vation set Y N , a data set X(j) N = x(j) 0|N , . . . , x (j) 
N |N is generated by the twopass Bayesian smoothing algorithm. At the j th iteration, the expectation of log L (Θ|X N , Y N ) conditioned to Y N and Θ (j) is given as:

E [log L (Θ|X N , Y N )] = -log |P 0 | -N log |Q| -tr P -1 0 P (j-1) 0|N -x (j) 0|N -x 0 x (j) 0|N -x 0 T -tr Q -1 B (j) 1 -B (j) 2 -B (j) 2 T + B (j) 3 -tr R -1 B (j) 4 -B (j) 5 -B (j) 5 T + B (j) 6 (50) 
where matrices {B i }, i = 1..6 are given in appendix 7.4.

Secondly, the likelihood E [log L (Θ|X N , Y N )] is maximized by taking the partial derivatives with respect to Q and R and setting them to zero:

Q (j+1) = 1 N B (j) 1 -B (j) 2 -B (j) 2 T + B (j) 3 (51) 
In part 3.2, a splitting in two diagonal parts has been assumed for the noise covariance matrix Q:

Q = Q p 0 0 Q a (52)
In practice, it is better to update the diagonal terms of the sub-matrix Q p only and to keep the sub-matrix Q a to a constant value. If we denote with a superscript p the corresponding left-upper sub-matrices of B 1 ,B 2 and B 3 , the update of Q can be restricted to:

Q p,(j+1) = 1 N diag B p,(j) 1 -B p,(j) 2 -B p,(j) 2 T + B p,(j) 3 (53) 
and the matrix Q a is unchanged. The update of the noise measurement matrix R is performed with:

R (j+1) = 1 N B (j) 4 -B (j) 5 -B (j) 5 T + B (j) 6 (54) 
Contrary to the noise covariance matrix Q, extra-diagonal terms may appear in R, allowing then the potential cross-terms of noise between dierent sensors.

Since it is not possible to isolate the initial mean x 0 and covariance matrice P 0 in equation 50, the updates are simply made by taking their last estimated values provided by the URTSS at the previous iteration:

x (j+1) 0 = x(j) 0|N and P (j+1) 0 = P(j) 0|N (55) 

Final algorithm

The resulting method is an iterative process which alternates between the two-pass Bayesian algorithm and the maximum likelihood estimator with the EM technique as follows.

1. Initialize the set of parameters Θ (0) = {x 0 , P 0 , Q, R} by using formulae of paragraph 3.2.

2. Using the set Θ (j) , compute a set of states XN by applying the UKF.

3. Improve the results by applying the URTSS. The iterations are ended if a maximum number of iterations is reached or if the following criterion is satised

p (j) -p (j-1) p (j-1) < ( 56 
)
where p denotes a poles series ({-ξω + iω √ 1 -ξ 2 }) and is a small positive number.

Simulation results

Numerical model

The numerical case is an one-degree-of-freedom system

mẍ + c ẋ + kx + r (t) = f e (t) (57) 
where m = 1, c = 2mξ 0 ω 0 , k = mω ∞ and r (t) is the restoring force due to an Iwan model (see gure 1). The Iwan model is a parallel association of N J Jenkins elements, each of them being a series association of a linear spring of stiness σ/N J and a Coulomb slider of breaking force F j . The restoring force of each Jenkins element is simulated by a modied Dahl formulation (see [START_REF] Dahl | Solid friction damping of mechanical vibrations[END_REF])

ṙj = σ N J 1 - r j F j sgn ( ẋ) α sgn 1 - r j F j sgn ( ẋ) ẋ ( 58 
)
where α is a small exponent.

The system is assumed to be observed with four accelerometers

ÿ = Φẍ + v, Φ = 3 2 8 6 ( 59 
)
where v is the noise observation vector such as 1% of random noise is added to signals.

The values of {r m , σ, ξ 0 , ω 0 , ω ∞ } are chosen in order to have an evolution of equivalent modal parameters as a function of accelerometer 1 amplitude such as presented on gure 2. By representing the equivalent modal parameters as a function of an accelerometer amplitude (numbered 1 here), a comparison with the reference curves is plotted on gure 7. These reference curves were obtained by using the harmonic balance method on the system [START_REF] Wagg | Nonlinear vibration with control for exible and adaptive structures[END_REF]. Very accurate matching is obtained for both frequency and damping variations. Maximum error deviations are about 0.01 Hz on frequency and 0.1% on damping.

Application of the methodology

Discussion

Three main reasons could be enumerated to explain the small deviations.

Firstly, the reference curves are not the theoretical evolutions for this excitation since no closed form solutions are known. Instead we use evolutions obtained for a harmonic evolution, and equivalent modal parameters calculated for a sine excitation are not exactly equal to the ones of a free response.

Secondly, although the Runge-Kutta solver is very accurate, a trade-o between instantaneous frequency and damping is made at each time step and resulting numerical errors are unavoidable during simulation.

Finally, the identication algorithm has also its own limitations and accuracy. Nevertheless, such deviations are very low and could be considered as acceptable.

An additional check of performance is given by synthesizing the accelerations based on identied states (from the nal iteration) and comparing them to noise-free and noisy accelerations signals. For example, on gure 8 these three cases are plotted for the accelerometer 1. At the beginning (left part), all amplitudes match well, since the amplitude on noise ratio is high and the rst states have been correctly estimated by the algorithm. Furthermore, even if noise amplitude is more signicant at low amplitude (right part of the gure), the method still provides accurate states since the synthesized acceleration matches the noise-free acceleration well.

Experimental application 5.1. H Bench

The experimental rig consists of two beams linked by a lap-joint and two seismic masses (see gure 9). All of them are made of steel. The seismic masses and the beam are glued together and tightened with one M10 bolt on each side. The glue associated with a strong clamping of the M10 bolts ensures a very weak damping. The joint itself is assembled with two M6 bolts in the center of the overlap and four M4 bolts close to the edges.

This bench is designed to load the joint either on a torsional or on a bending motion thanks to the two rst modes. A FE model gives these two modes in free boundary conditions at 50 and 90 Hz (see gure 10). The third mode, namely the second bending mode, has a natural frequency above 200

Hz.

According to the FE model, the torsion and bending modes have two common nodes where their nodal lines intersect. The free boundary conditions are obtained by hanging the structure with nylon cables at these points.

The torsion and bending modes have very low amplitude at joints between the lap-joint and the masses (around the M10 bolts). So it is expected that the M10 bolts have very low inuence on the vibratory dissipation of these modes. On the other hand, the M6 and M4 bolts located on the lap-joint should have a signicant impact on the poles.

For each mode, the hit position is at the intersection of the maximum amplitude of the studied mode and of the nodal line of the other mode (named H1 and H2 points on gure 10). The hammer mass and its exibility tip are chosen to have a cutting frequency just over the second mode (> 100 Hz). Then hitting the structure at these two points enabled us to highlight as well as possible the bending and torsion modes separately.

Accelerations are measured at six points along the beam (Acc1 to Acc6) and at one point on the seismic mass (Acc7). Residual participations of low dynamic rigid motions and higher-order modes are removed from signals by applying a FIR band-pass lter.

Results

A hammer hit is applied on the H2 point of the structure to excite the bending mode and measured signals are processed by the proposed methodology. Then equivalent modal parameters values are obtained per time sample, together with amplitude level per damped sine and per signal (see gure 11).

As for the numerical case in section 4, most variations occur during a short period of time at the beginning of the decay. In fact, the most useful information is located in the rst 0.5 s. Then the fast convergence of the UKF and the corrections due to the URTSS allow identifying the parameters accurately, even in a short time frame.

As a better presentation, the previous equivalent modal parameters are plotted as a function of Acc1 displacement amplitude on gure 12. The frequency lowers as a function of amplitude level, while damping ratio grows.

Such variations are typical of the inuence of dry friction on modal parameters.

Four hits of hammer were applied on the H1 point and all sets of measured signals were processed according to the same methodology (see gure 13).

Curves match very well, which shows the good repeatability of the tests, even if the force level is not constant. It can be noticed that the level of hammer hit impulse has a slight eect on the equivalent modal parameters.

For example, the hit 4, which is the strongest one since it gives the maximum amplitude of displacement, has always lower frequency and higher damping values compared to the three other cases. Anyway these deviations are very low and can be considered as acceptable.

The inuence of the M4 bolts torque is studied by estimating the equivalent parameters of the torsion mode for three tightening cases of the four M10 bolts: 0.5, 1 and 2 Nm. For each case, several hits were performed for evaluating the repeatability of tests (see gure 14). For each tightening case, all curves of equivalent parameters match very well, since the deviations are about 0.3 Hz for frequency and 0.5% for damping, considering that they evolve strongly in the range 39-45 Hz for the frequency and 0.5-5.7 % for the damping ratio. As a result, the inuence of tightening is easily identied.

At 0.5Nm, the friction due to lap-joint movement has a maximum impact at 0.25 mm of Acc7 displacement. At 1 and 2 Nm, the frequency lowers and the damping ratio grows continuously as a function of amplitude. As a rule, the stronger the torque is, the less inuential it is on equivalent modal parameters. In the extreme case of tightening, these ones should be constant and the structure dynamics should be linear, as if the whole structure was only one block of steel.

Conclusion

The 

{x (i) } = x x + γ (P) 1/2 x -γ (P) 1/2 i = 0 . . . 2L (60) 
where (P) 1/2 denotes the Cholesky decomposition of P. Rules for obtaining a relevant value of γ are given in [START_REF] Julier | Unscented ltering and nonlinear estimation[END_REF]. It can be easily proved that the mean and covariance of this computed set of samples match the initial mean x and covariance P. The UT is extensively used in the Unscented Kalman Filter and its related Unscented Rauch-Tung-Striebel smoother.

Unscented Kalman lter

The Kalman lter estimates the dynamic evolution of a probability density function (mean xn and covariance Pn ) at step n based on previous step n -1. Knowing a rst couple {x 0 , P0 }, it is applied from n = 1 up to n = T in two major phases : prediction and update.

Prediction phase

1. Creation of a sigma points set {x

(i)
n-1 } from xn-1 and Pn-1 by formula 60 2. Each point is propagated through the transition function :

x (i) n|n-1 = f x (i) n-1 , i = 0 . . . 2L (61) 
3. The predicted state estimate is computed as :

x- n = 2L i=0 W (m) i x (i) n|n-1 (62) 
4. The predicted covariance estimate is given by : 

P- n = 2L i=0 W (c) i x (i) n|n-1 -x- n x (i) n|n-1 -x- n T + Q ( 
y (i) n|n-1 = g x (i) n|n-1 , i = 0 . . . 2L (64) 
7. The predicted observation is computed as : 

ŷ- n = 2L i=0 W (m) i y (i) n|n-1 ( 
11. The updated state estimate is calculated by :

xn = x- n + K n y n -ŷ- n (69) 
12. The updated covariance matrix is computed as :

Pn = P- n -K n Pyy,n K T n (70) 
Rules for computing W 1. Creation of a set of sigma points {x (i) n } from xn and Pn by formula 60 2. Propagate the sigma points through the transition function :

x(i) n+1|n = f x(i) n , i = 0 . . . 2L (71) 
3. The predicted mean is computed as :

x n+1|n = 2L i=0 W (m) i x(i) n+1|n (72) 
4. The predicted covariance matrix is calculated by :

P n+1|n = 2L i=0 W (c) i x(i) n+1|n -x n+1|n x(i) n+1|n -x n+1|n T (73) 
5. The cross covariance matrix is computed as :

Ŝ n+1|n = 2L i=0 W (c) i
x(i) n+1|n -xn x(i) n+1|n -x n+1|n T (74)

6. The smoother gain is given by :

K n = Ŝ n+1|n P n+1|n -1 (75) 
7. The smoothed mean is computed as :

x n = xn + K n x n+1 -x n+1|n (76) 
8. The smoothed covariance matrix is calculated by :

P n = Pn + K n P n+1 -P n+1|n K n T (77)

Unscented EM-algorithm

The derivation of matrices {B i }, i = 1..6 follows the same reasoning as for the Extended Kalman Filter (see [START_REF] Bavdekar | Identication of process and measurement noise covariance for state and parameter estimation using extended Kalman lter[END_REF] for details), apart from the UT that handles the nonlinear functions f (.) and g().

Creation of a sigma points set {x 

  The response is modelled by multi-channel damped sines whose parameters are recursively estimated over time by a two-pass Bayesian smoothing algorithm based on a Kalman lter. As accurate values are wished from the beginning of signals, an iterative algorithm based on maximizationexpectation technique is proposed for obtaining relevant inputs to Kalman lter.

4 . 5 .

 45 Expectation step : the smoothed state values are used to compute the matrices of maximum likelihood thanks to the UT {B Maximization step : the estimates of the parameters {x 0 , P 0 , Q, R} are updated to get Θ (j+1) . 6. Repeat Steps 2-4 until convergence.

The system is excited by a Morlet wavelet whose central frequency is 15 Hz.

 15 The accelerations generated by this excitation force are simulated on 10 seconds and depicted on gure 3. A white noise is added to signals in order to obtain realistic measured signals. The ratio of standard deviation between the added noise and the free-noise signals is about 1%.A clarication should be made on the transient part due to the wavelet (see gure 4). In fact, a wavelet has a short but not negligible time of fading down. Although signals used for identication may begin at the maximum of amplitude, the free response starts approximately one period later, when the excitation force is close to nil. Then there is one period of signals which could be used for post-processing, but irrelevant for nal results presentation since the system is not exactly free during this period.Results of the proposed algorithm are depicted on gure 5. Equivalent modal parameters are identied as a function of time for the whole system, and amplitudes are computed for each sensor. It can be rstly noticed that strong variations occur in a short temporal frame (one second in this example) compared to the whole range of time. It emphasizes the need to identify the rst periods as well as possible.The speed of convergence is studied by depicting the rst and last results on gure 6. Two curves show the results of the rst iteration : the rst pass (UKF) and the second pass (URTSS). The third curve gives the results of the 7th iteration (last two-pass Bayesian smoothing). Intermediate results are not shown since most signicant variations are observed during the rst pass of Kalman ltering and the second pass of Bayesian smoothing.

63) Update phase 5 . 6 .

 56 Creation of a new set of sigma points {x (i) n-1 } from xn-1 and Pn-1 by formula 60 Application of the observation function on each point :

65) 8 .

 8 The innovation covariance is calculated by : Kalman gain is computed as :K n = Pxy,n P-1 yy,n

3 .

 3 Rauch-Tung-Striebel smoother Contrary to Kalman lter, the Rauch-Tung-Striebel smoother processes data in a recursive manner. The followings steps are performed on {x n , Pn }, starting at n = T -1 and ending at n = 0.

n- 1 }

 1 from xn-1 and Pn-1 by formula 60
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 617 Figure 6: Equivalent modal parameters and amplitudes as a function of time : frequency, damping and amplitude of accelerometer 1
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 8910 Figure 8: Measured, theoretical and synthesized acceleration signals : accurate matching of theoretical and synthesized accelerations, at beginning and end
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 11121314 Figure 11: Equivalent modal parameters and amplitudes of the bending mode as a function of time (torque of 2 Nm)

  

  

  

  aim of this study was to present a new method for the identication of equivalent modal parameters from free responses of structures. A state space model was expressed in order to model the discrete time evolution of damped sines. Frequency and damping were integrated in the state vector, so that their instantaneous values can be identied. Dierent observation functions were proposed depending on the type of used sensors. The tracking of state vector was performed by an Unscented Kalman Filter followed its corresponding Unscented Rauch-Tung-Striebel Smoother. As accurate identied states are required from the beginning of signals decay, an iterative algorithm was proposed for estimating rst values of state vector and noise
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	mental cases. Results showed that equivalent modal parameters as a function
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The Unscented Transform (UT) is a deterministic sampling technique which computes a minimal set of sigma points {x (i) } around a density probability function of mean x and covariance P :
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