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Abstract—Fog/Edge computing infrastructures have been pro-
posed as an alternative of current Cloud Computing facilities to
address the latency issue that prevent the development of several
applications. The main idea is to deploy smaller data-centers at
the edge of the backbone in order to bring cloud computing
resources closer to the end-usages. While couple of works
illustrated the advantages of such infrastructures in particular for
IoT applications, the way of designing elementary services that
can take advantage of such massively distributed infrastructures
has not been yet discussed. In this paper, we propose to deal with
such a question from the storage point of view. First, we propose
a list of properties a storage system should meet in this context.
Second, we evaluate through performance analysis three “off-
the-shelf” object store solutions, namely Rados, Cassandra and
InterPlanetary File System (IPFS). In particular, we focused (i) on
access times to push and get objects under different scenarios and
(ii) on the amount of network traffic that is exchanged between
the different sites during such operations. Experiments have been
conducted using the Yahoo Cloud System Benchmark (YCSB) on
top of the Grid’5000 testbed. We show that among the three tested
solutions IPFS fills most of the criteria expected for a Fog/Edge
computing infrastructure.

I. INTRODUCTION

The advent of smartphones, tablets as well as IoT devices
revolutionized the ways people are consuming IT services.
While lots of applications take the advantage of the Internet
and Cloud Computing solutions to extend devices’ capabilities
in terms of computations as well as storage, reaching data
centers (DCs) operated by giant actors such as Amazon,
Google and Microsoft implies significant penalties in terms
of network latency, preventing a large amount of services to
be deployed [1]. The Fog Computing paradigm [2] has been
proposed to overcome such a limitation: dedicated severs are
deployed in micro/nano DCs geographically spread at the edge
of the network so that it becomes possible to execute latency
dependent applications as close as possible to the end-usages
and keep non sensitive ones in traditional Cloud DCs.

Also known as Edge Computing, the advantages of of such
infrastructures have been described through several scenarios
[3], [4]. However all these studies focused on particular
use-cases and do not investigate whether generic Fog/Edge
services can be envisioned. In this paper, we propose to

address such a question for a cloud storage service. Concretely,
we discuss an empirical analysis of three storage systems with
the ultimate goal of delivering a system such as the Simple
Storage Service (S3) of Amazon. S3 is one of the most used
services offered by Amazon and a building block for hundred
of cloud services. We believe that providing such a storage
service for Fog/Edge Computing infrastructures can pave the
way toward new services as well as IoT applications.

The three storage systems we studied are Rados [5], the ob-
ject storage module of the Ceph project, Cassandra [6], a high
performance key value store and InterPlanetary File System
(IPFS) [7], a storage system which uses the concepts brought
by BitTorrent. We selected these three systems because they
propose software abstractions for the definition of geographi-
cal areas without leveraging on a central server. We claim that
such software-defined areas are important for the Fog/Edge
Computing because it enables the storage system to consider
the topology of the infrastructure (i.e., one software area
corresponds to one particular micro DC, that is one Fog/Edge
site). Considering the topology enables the development of
advanced strategies that can favor local accesses with the goal
of mitigating the traffic that is exchanged between each site as
well as the impact each site may have on the others. Moreover,
each of the selected systems relies on a different software
architecture as well as communication protocols that allow us
to see the pros and cons of the different development choices
in a Fog/Edge Computing context.

The main contribution of our work is a deep performance
evaluation enabling the identification of pros/cons of the
strategies implemented by those three systems. Experiment
have been done on top of Grid’5000 [8] by considering
several data manipulation scenarios leveraging Yahoo Cloud
Service Benchmark (YCSB) [9], a well-known benchmark tool
particularly designed to benchmark object stores [10], [11].

The remaining of the paper is as follows. Section II defines
the Fog/Edge computing model we consider and gives a list of
characteristics a S3-like service should have in such a context.
Section III presents an overview of the three storage systems.
Evaluations are discussed in Section IV. Finally, Section V
concludes this study and highlights some perspectives.



Fig. 1. Overview of a Cloud, Fog and Edge platform.

II. FOG/EDGE COMPUTING MODEL

In this section, we present the Fog/Edge architecture we are
considering and a list of characteristics we claim an object
storage system should have in such a context.

A. Fog/Edge Computing: a hierarchy of resources

Industrials as well as academics argue in favor of a new
model of distributed computing composed of IT resources
spread from the Cloud to the Extreme Edge. Such an in-
frastructure follows a hierarchical topology from the point of
views of distance and power capabilities: Cloud facilities are
the farest elements in terms of network latencies but the ones
that provide the largest computing and storage capabilities.
Edge/Extreme Edge devices can benefit from local computing
and storage resources but those resources are limited in
comparison to the Cloud ones. Finally, Fog sites can be seen
as intermediate facilities that offer a tradeoff between distance
and power capabilities of IT resources [1], [12]. Moreover, Fog
sites can complement each other to satisfy the needs between
user’s devices and Cloud Computing centers [3], [13]. Figure 1
illustrates such a description. The Fog platform is composed
of a significant number of sites that can be geographically
spread over a large area. Each site hosts a limited number
of servers that offer storage and computing capabilities. End-
users devices (smartphones, tablets, laptops) as well as IoT
devices can reach a Fog site with a rather low latency. We
consider that the latency between Fog sites (noted Lcore) is
up to 50 ms (mean latency of a Wide Area Network link) and
the latencies between users and their site (noted Lfog) is less
than 10 ms (latency of a wireless link). The latency to reach a
Cloud platform (noted Lcloud) from the clients is important in
comparison to other durations (about 200 ms) [14], [15] and
unpredictable [1].

B. Storage requirements

Our objective is to study how a storage service such as a S3
object store system should be designed to deal with and take
the advantage of Fog/Edge Computing infrastructure specifics.
In addition to the scalability requirement that is intrinsic to
such a massively distributed infrastucture, we advocate that a
Fog/Edge computing storage service should meet the following
properties:

• low access time (by favoring data locality);
• network containment between sites;
• availability of data in case of service partitionning;
• support for users mobility.
Low access time is the main characteristic behind the

motivation for the Fog paradigm. The idea is to favor local
accesses each time it is possible (i.e., each put into the object
store should be handled by the closest site, assuming that each
fog site delivers the same storage performance).

Network containment is the idea that an action on one site
does not impact the other sites negatively. In other words, if
one site faces a peak of activity, the performance of other
sites should not change. We believe that such a criteria can be
delivered by mitigating data transfers between sites each time
an operation is performed.

The third feature is related to the partitioning of the storage
service that can occur each time one site is disconnected from
the other ones. While replication strategies between sites can
ensure data availability, we claim that a Fog storage service
should be able to run, at least, in a degraded mode in order to
tolerate local accesses and provide appropriate mechanisms to
reconsolidate the service once the disconnection is completed.

Mobility support is the last property we have identified. The
idea is to enable data to transparently follow its usages. To
illustrate such a feature, you can imagine a user moving from
one radio base station to another one. In such a situation, the
storage service should be able to relocate sollicited data in a
transparent manner from the previous site to the new one. Such
a transparent relocation of data will mitigate remote acesses.

Last but not the least, we underline that discussing conis-
tency model of the storage service we target is behind-the-
scope of this first study. For the moment and for the sake of
simplicity, we consider objects like files and documents of one
user with no parallel accesses.

III. “OFF-THE-SHELF” DISTRIBUTED STORAGE SYSTEMS

Distributed file systems such as PVFS [16], Lustre [17],
HDFS [18] and other WANWide-like proposals [19], [20] are
not appropriated to the Fog/Edge Computing infrastructure
we target because they all have been designed around the
concept of an entity in charge of maintaining the storage
namespace in a rather “centralized” manner. Because they



are leveraging P2P mechanisms, object and key/value store
systems are better candidates to cope with the requirements we
defined in the previous section. Among the different solutions
that are available, we selected Rados [5], Cassandra [6] and
IPFS [7] due to the fact that they provide software abstractions
that enable the definition of areas that can be mapped to
geographical sites. We present in the following paragraphs,
an overview of those three systems.

A. Rados

Rados [5] is an object distributed storage solution which
uses the CRUSH algorithm [21] to locate data in the cluster
without requiring any remote communication from the clients.

Rados uses two kinds of nodes: Object Storage Daemons
(OSD) and Monitors. The formers are used to store data
where as the latters maintain a tree (a.k.a. the “clustermap”)
describing the cluster’s topology. Among the monitors, one
is elected as the master and is in charge of maintaining a
consisteny view of the clustermap (the Paxos algorithm is
used to guarantee that there is only one master monitor). The
“clustermap”, that is distributed to each client node is used by
the CRUSH algorithm to locate objects.

Rados allows administrators to organize objects within
pools. Each pool is associated to “placement rules”. In our
context, we use placement rules to constraint objects of a
particular pool to be located on one site. To write or read
an object, clients must provide the name of the pool.

In case of network partitioning, data that is located in
the partition where a master monitor can still be elected, is
available. In other words, clients that belong to this partition
can access the “clustermap” and thus any object that is
reachable. On the other partitions, because clients cannot get
the “clustermap” they cannot locate and thus access any object.

Figure 2 shows the sequence diagram of exchanges we
observe in a Rados deployment, respectively from a client (a),
an OSD (b) and a monitor (c) point of view. In addition to
the exchanges we described, Rados uses a large number of
keepalives messages between the different nodes. This enables
the system to swiftly react in case failures.

It is noteworthy to mention that Rados when no cache is
configured, each time a client wants to accesss to an object,
it is to pull it from the OSD where it is persistenly stored.

In overall, the inter-site overhead is a mixed of Paxos’
messages and usage statistics sent between the monitors, the
amount of inter sites network traffic concerning the report
of OSD status and the size of the “clustermap” each time
a client needs to retrieve it. To mitigate as much as possible
this overhead, it is possible to place one monitor per site. This
minimizes the report of OSD status between sites as well as
the overhead related to the clustermap retrievals.

B. Cassandra

Cassandra is a key value store designed on a one-hop
distributed hash table (DHT) [6]. The keyspace is divided into
ranges that are distributed among the nodes composing the
system. A gossip protocol is used to distribute the topology
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(c) – From a monitor point of view – the monitor on the site 1 is elected

Fig. 2. Sequence diagrams of the network traffics observed in Rados.

of the system, the status of the nodes and the ranges affected
to them. Once gossiped data is received, storage nodes can
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Fig. 3. Sequence diagrams of the network traffics observed in Cassandra.

locate any object without any extra communication.
A quorum, specified by users defines the number of replicas

that has to be read or written for each request to validate
the operation. Depending on the values used in this quo-
rum, Cassandra can provide different levels of consistency.
This quorum provides a trade-off between access time and
consistency. Moreover, Cassandra exposes the same notion of
pools that the one proposed by Rados. Entitled “keyspaces”,
each pool is associated to a placement strategy. The “Net-
workTopologyStrategy” for instance enables administrators to
specify for each datacenter (and in our case, for each site)
how many replicas of an object they want to store. For the
purpose of our analysis, we defined a strategy where there is
only one copy of an object in a particular site throughout the
whole system. Such a strategy enables Cassandra to mitigate
the traffic between sites each time an object is pushed into it.
Having one replicate guarantees strong consistency.

Like Rados, users have to specify the keyspace’s name they
want to use. The major exchanges related to the Cassandra
protocol are illustrated on Figure 3: Clients retrieve the topol-
ogy from the server they connect to. Based on the topology
they retrieved, they contact one of the nodes of the site they
belong to. For performance purposes, requests are balanced in
a round-robin way. That is, a client send requests alternatively
from a server to another on within the same site. The request
is then forwarded to the server, which has to handle it (the
server is determined based on the aforementioned strategy).

Thanks to the “NetworkTopologyStrategy”, the gossip traf-
fic is the only overhead that goes throughout the different sites.

C. InterPlanetary File System

InterPlanetary File System [7] has been built on the BitTor-
rent protocol [22] and the Kademlia DHT [23], both being
well-known protocols for their ability to scale to a large

number of nodes. While the BitTorrent protocol is used to
manipulate objects between the different peers of the system
in an efficient manner, the Kademlia DHT is in charge of
storing the objects’ location. We underline that it is only the
locations and not the content of the objects that are stored
in the DHT. Such a management of the data locations is an
important difference in comparisons to Rados and Cassandra
that have designed dedicated mechanisms to locate objects
without extra communication from the clients viewpoint.

Figure 4 shows the major exchanges of IPFS. When a client
wants to put an object. The client sends the object to a node.
This node saves the object locally and then puts the location
of the object in the kademlia DHT. Reciprocally, when a client
wants to get an object, it has to contact one peer of IPFS that
will use the Kademlia DHT to determine the node in charge
of delivering the object. Based on the Kademlia reply, the
request is forwarded to the correct node. This node will send
the object to the initial IPFS peer that will make a copy before
serving the client. Thanks to such an approach, IPFS supports
the mobility of data in a native fashion. A future read will be
satisfied by this node, closer to the client. Storage nodes send
regurlarly keepalive messages to maintain the DHT.

It is noteworthy that IPFS uses immutable objects. Modify-
ing an existing object creates a new one. Because objects are
immutable, it is easier to maintain the consistency between all
replicas of one object. Moreover, the BitTorrent protocol that
is used to pull the data enables to retrieve the same object
from several sources simultaneously.

Last but not the least, IPFS can work partially in discon-
nected mode as long as both the object location can be found in
the kademlia DHT and the node storing the object is reachable.

Site 1 Site 2

put
location in DHT

put object

get

find
location in DHTget

get

get

get

get

keepalive

client1: storage node1: storage node2: storage node3: client2:

find
location
in DHT

Fig. 4. Sequence diagram of the network traffics observed in IPFS from a
client point of view. The read from “client2” can be performed using “storage
node2” only after “client1” read from “storage node2”.



(a) (b)

Fig. 5. Topology used to deploy Rados (a), Cassandra and IPFS (b) in a Fog environment.

Rados Cassandra IPFS
Data locality Yes Yes Yes
Network containment No Yes No
Disconnected mode No Yes Partially
Mobility support Partially Partially Natively

TABLE I
SUMMARY OF FOG CHARACTERISTICS a priori MET FOR 3 DIFFERENT

OBJECT STORES.

D. Summary

Table I summarizes how do Rados, Cassandra and IPFS fit
the requirements that have been defined in Section II-B.

IV. EXPERIMENTS

In this section, we discuss evaluations we performed on
the three systems. The first experiment (Section IV-B) focuses
on local access times and on the amount of network traffic
exchanged between sites. The second one (Section IV-C)
measures the remote access time, when data is accessed from
a site which does not store it.
A. Material and method

The Fog architecture as well as the way we deployed the
different systems are presented in Figure 5(a).

For Rados, each site hosts one client, two storage servers
(small sites) and one monitor. With Cassandra and IPFS, one
server per site is configured as a seed node, so that other nodes
can join the cluster without inter sites communications. With
Rados each pool is associated to a placement rule to force
data to be stored on a specific site and with Cassandra, the
”NetworkTopologyStrategy” is used as previously described
in Section III-B. With IPFS, locality is natively supported
because data is located on the node the client writes on.

Experiments are performed on the Grid’5000 testbed using
the “paravance” cluster. Latencies between hosts are emu-
lated using the tc program. We use Lfog = 10ms and
Lcore = 50ms (as depicted in Figure 1). The throughput of
the network links is 10 Gbps. Because each system has its own
consistency/replication strategy by default, we modified those
configuration in order to write only one copy of the object. In
addition to inserting new objects as fast as possible, it enabled
us to fairly compare the systems.

The metrics we measure are the time taken to perform
operations on each site and the amount of network traffic sent
between the sites on that period. Flushing operation (sync
operation) is not taken into account in the measurements.

Regarding IPFS and still in order to ensure fair compar-
isons between the three systems, requests have been balanced

between the servers of a same site. This means that one
object could have been written on one server and then a read
request can be sent to the other server of the site ( resulting
with an additional read copy on the server as described
in Section III-C) Moreover, IPFS adds redundancy in the
Kademlia DHT: for each object, the location is stored on 10
different nodes to support failures. we modify IPFS to avoid
this replication of metadata.

The Yahoo Cloud System Benchmark [9] (YCSB) has been
used to emulate data accesses. We use different access patterns
in order to check if the storage systems may be used for
different kinds of applications. Object sizes vary from 1 MB
to 10 MB. Scenarios have been performed using 1, 7 and 11
sites. Each experiment has been performed at least 10 times
(10 trials) to get consistency in results and stored data is erased
between the trials.

Cassandra and Rados modules for YCSB already exist but
we wrote the module for IPFS. The Rados module opens
a connection in each thread, contrary to Cassandra module
in which only the first thread establishes a connection to
the cluster. The measured access times for Cassandra are
high compared to what we measure with our “home-made”
benchmark script. Indeed, the java garbage collector is called
when the connection to the cluster is closed, increasing the
access times very importantly by experience Therefore, we
decided to remove this instruction. Writes are performed
during the load phase of YCSB and reads during the run phase.
The workload used performs only read operations of objects
selected selected according to a uniform distribution.

B. Local read/write evaluation (experiment 1)

Alls clients (one per site) executes the access scenario
simultaneously: all clients write objects on their site and read
them. The goal is to evaluate data locality as well as network
containment properties on each site.

1) Writing and reading times: Table II shows the access
times measured with YCSB. All Standard deviations are less
than 0.6 seconds and thus have not been reported.

The first observation is with Rados, access times do not
increase significantly when sites are added. As an example,
it takes 3.15 seconds to write one object of 10 MB on 1 site
and 3.67 seconds on 11 sites. This comes from the use of the
CRUSH algorithm: read or write on a site does not require any
communication with nodes outside the site (the clustermap
is obtained from the local monitor). Also, access times are
similar for writing and reading. For example it takes 2.78



1 2 3 4 5 6 7 8 9 10
Mean writing time on a site (seconds) Mean reading time on a site (seconds)

Objects 1× 10× 10× 100× 10× 1× 10× 10× 100× 10×
10MB 1MB 1MB 1MB 10MB 10MB 1MB 1MB 1MB 10MB

sequential parallel parallel parallel sequential parallel parallel parallel
1 sites

1 Rados 3.15 4.48 2.28 2.42 3.51 3.17 4.26 2.17 2.40 2.97
2 Cassandra 3.87 9.56 3.56 5.60 7.42 3.91 9.09 3.54 5.36 5.76
3 IPFS 2.30 2.75 1.95 2.77 2.80 1.58 1.94 1.24 2.02 2.06

7 sites
4 Rados 3.27 5.02 2.28 2.46 3.83 3.23 4.92 2.21 2.41 3.84
5 Cassandra 4.97 9.73 4.24 6.65 7.93 4.91 9.64 4.22 6.08 7.05
6 IPFS 2.33 2.55 1.93 2.74 2.87 1.45 1.94 1.11 2.02 2.04

11 sites
7 Rados 3.67 5.70 2.38 2.78 3.68 3.31 5.01 2.26 2.43 3.66
8 Cassandra 6.25 10.45 4.94 7.71 8.25 6.12 10.64 4.90 6.69 7.21
9 IPFS 2.44 2.61 1.92 2.80 2.67 1.47 1.92 1.34 2.02 2.11

TABLE II
MEAN TIMES IN SECONDS TO WRITE AND READ ALL THE OBJECTS ON A SITE WITH 1, 7 AND 11 SITES.
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Fig. 6. Cumulated amount of network traffic exchanged between all the sites while clients write objects on their sites.
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Fig. 7. Cumulated amount of network traffic exchanged between all the sites while clients read objects located on their sites.

seconds to write 100 objects on 11 sites and 2.43 seconds
to read them.

With Cassandra, high access times are due to the latencies
inside the sites (Lfog). It takes 0.94 seconds to write 100
objects of 1 MB one on site without extra latencies (not
presented in the Table II). However, with Lfog = 10ms, it
takes 5.60 seconds (row 2, column 4). The forward mechanism
due to the balance of requests between nodes (see Section III-B
also increases the access times More generally, access times
are increasing linearly with the number of sites. The gossip
traffic between the nodes (described in the next section) has
an influence on the access times. Adding more sites generates
more gossip traffic and longer access times. As explained in
the next part, the gossip traffic is asynchronous but the thread
managing it and the thread executing the clients’ requests need
synchronizations. Therefore, the number of nodes impacts the
access times but it seems only be the consequence of an issue
with the implementation.

We observe performance falls down with big sized objects.
On 11 sites, writing 10×10MB is 1.7 times longer than writing

10×1MB (8.25 s vs 4.94 s ; row 8, columns 5 and 3) although
with Rados and IPFS it is only approximately 1.2 times longer
(3.68 s vs 2.38 s for Rados and 2.67 s vs 1.92 s for IPFS).

With IPFS, access times do not increase a lot when there
are additional sites. For instance, it takes 2.30 seconds to write
one object of 10 MB on 1 site (row 3, column 1) and 2.44 with
11 sites (row 9, column 1). Reading 100 objets of 1 MB, takes
strictly the same time for 1, 7 and 11 sites (2.02 seconds) (rows
3, 6 and 9, column 9).

2) Amount of network traffic sent between sites: Figures 6
and 7 show the amount of network traffic sent between sites.
The first comment is that for each system, the traffic that is
exchanged between sites is relatively small in comparison to
the amount of data stored (less than 2% of the amount of
stored data).

For Rados, this traffic is the most important (7.5 MB both
in writing and in reading for 100 × 1MB on 7 sites) and
increases with the number of monitors (i.e. the number of sites)
with the same order of magnitude for writing and reading. As
previously described, all monitors send usage statistics to the



1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Mean writing time on a local site (seconds) Mean reading time on a remote site (seconds)

First read Second read
Objects 1× 10× 10× 100× 10× 1× 10× 10× 100× 10× 1× 10× 10× 100× 10×

10MB 1MB 1MB 1MB 10MB 10MB 1MB 1MB 1MB 10MB 10MB 1MB 1MB 1MB 10MB

sequential parallel parallel parallel sequential parallel parallel parallel sequential parallel parallel parallel

1 Rados 3.19 4.49 2.24 2.53 3.53 15.36 26.12 6.06 5.11 10.35 14.58 27.48 6.97 5.18 10.19
2 Cassandra 3.37 10.01 3.49 6.27 6.76 13.90 30.92 9.12 20.97 26.88 14.06 30.75 9.11 18.66 26.28
3 IPFS 2.77 3.50 1.92 2.75 2.37 4.40 9.27 2.10 6.27 12.48 1.16 2.60 2.02 2.33 2.33

TABLE III
MEAN TIMES IN SECONDS TO WRITE ALL OBJECTS ON A SITE AND READ THEM TWICE FROM A REMOTE SITE. THERE ARE 7 SITES BUT ONLY ONE SITE

IS USED TO WRITE AND ANOTHER ONE TO READ.

elected monitor which merges and redistributes them. This
strategy becomes very costly when there is a huge number
of monitors. The amount of metadata sent between the sites
increases linearly with the number of objects, no matter their
size. Indeed, this is because usage statistic packets have a size
proportional to the number of accessed objects. This explains
also the fact that we observe more data exchanged between the
sites when 10 objects are written in a sequential way than in a
parallel way. When objects are sent in a sequential way, more
statistics are sent because the test is longer. The difference of
exchanged data comes from the headers of statistics packets
which are more important in this case. These metadata are
sent asynchronously because these traffics do not impact the
access times. As discussed in the section III-A it is possible
to reduce the number of monitors (in our testbed we used
one monitor per site). While such a strategy will decrease
the network overheads related to monitors, it will increase
the traffic related to the OSD status reportings and clustermap
retrievals. We know Paxos is not a scalable algorithm but these
exchanges of usage statistics confirm us that the number of
monitors should be kept low.

With Cassandra, the amount of traffic is increasing in a
linear way with the number of node because each second each
host sends a gossip packet to another host, as explained in
Section III-B.

Finally, the amount of metadata sent between sites with
IPFS is linear to the number of manipulated objects on all the
sites, no matter the size of the objects. While reading, IPFS
does not send as much traffic between sites because there is no
lookup in the DHT for every requested object. Only requests
to a node which does not store the object require to access the
DHT. If we add more storage nodes on the sites, clients will
have a lower probability to request a node storing the data, and
more often, the DHT will be used, generating more network
traffic between sites and higher access times.

3) Summary: For this experiment, the three systems have
their advantages and their drawbacks in a fog context. Thanks
to the CRUSH algorithm, Rados has the same performance
in reading and in writing. But the amount of network traffic
sent between the monitors and the use of the Paxos algorithm
can become a scaling difficulty. Cassandra, is adapted to store
small objects (performance falls down with big sized objects).
But, because its access times depend a lot on the value of
Lfog , Cassandra will behave better in environments where the
value of Lfog is low and does not vary. For IPFS, The main

drawback is the global DHT, which generates more network
traffic between the sites and higher access times when the
number of accessed objects is increased.

C. Remote reading evaluation (experiment 2)

The second experiment aims to evaluate the mobility crite-
ria. Concretely, we want to analyze what are the impacts on
the access times when a client writes data on its local site and
reads it from another one. We use the same topology as in the
previous experiments with 7 sites. Rados, Cassandra and IPFS
are deployed in the same way but only two sites among the
seven are used. Others sites provide nodes to IPFS DHT and
to Rados monitors.

One client creates objects on its site. Then, caches are
dropped and another client located on another site reads the
objects. Read is performed twice in order to analyze the
benefits of having the implicit creation of a copy on the local
site. For a given object, requests for both read operations are
sent to the same storage node. We remind that for Rados and
Cassandra, objects are not explicitly relocated on the site the
user performs read (i.e. data placement constraints are not
modified in Rados and in Cassandra). We just evaluate the
time to perform a read remotely.

Table III shows the access times we get in this scenario.
Standard deviations are all less than 0.8 seconds and thus still
not reported. We observe the writing time is the same as in the
previous experimentation when data are written on only one
site (see row 1 to 3, columns 1 to 5 in Table II and Table III).
We compare the writing time with the version using one site
because here, operations are performed on only one site.

Regarding read accesses, for the first ones (columns 6 to
10), the Rados client contacts directly the OSD storing the
requested object. So the increasing of access time in reading
is only due to the network latency Lcore between the client and
the storage node. It takes 15.36 seconds (row 1 column 6) to
read 1 object of 10 MB remotely. This is roughly five times the
time we measured in the previous experiment (3.17 seconds,
row 1 column 6 in Table II)). With IPFS and Cassandra,
requests are sent to a local storage node that locates the obbject
and retrieves it before forwarding it to the client (as shown in
Figures 3 and 4). This mechanism increases the reading time.
Moreover, only half of the requests (the ones that requested
objects to the node which does not store them) was forwarded.
In this new experiment, because objects are stored remotely,
the forward is performed for all requests.



For Cassandra, a remote read takes 13.90 seconds (row 2,
column 6) whereas it lasted only 3.91 seconds in the previous
experiment (row 2, column 6 in Table II). The metadata
management does not imply an increasing of access time
because with Cassandra, once the gossip propagated, every
node can locate any object without any communication. For
IPFS, a remote read for one object of 10 MB takes 4.40
seconds (row 3, column 6) whereas a local read took 1.58
seconds (row 3, column 6 in Table II). The access time is
also increased by the DHT request which is sometimes not
required for some local read.

The last part of Table III (columns 11 to 15) shows in the
second read, for IPFS, the access time are in the same order
of magnitude than the previous experiment. Namely, IPFS
spends 1.16 seconds to read 1 object of 10 MB (vs 1.58 s in
the previous experiment). Access times are low because the
requested nodes serve a copy of objects they kept in the first
read. Indeed, this second read is a local read.

For Rados and Cassandra, the access time does not evolve
as expected. Indeed, the mobility of data is not explicit and
thus the second access generates a remote read also. It might
be possible to get similar behaviour by expliclty changing the
placement rule of the pool (or the keyspace).

Once again, IPFS delivers the best performance.

V. CONCLUSION AND FUTURE WORK

Fog/Edge Computing infrastructures are coming and Aca-
demics as well as Industrials should revised current cloud ser-
vices to meet the specifics of such massively distributed infras-
tructures. In this work, we presented a list of characteristics for
Fog storage systems and evaluated three “off-the-shelf” object
store solutions (namely Rados, Cassandra and IPFS) using the
Yahoo Cloud System Benchmark (YCSB). The performances
are measured in terms of latency and network traffic. Globally,
Rados (because of the Paxos traffic) and Cassandra (because
the access time is proportional to the nodes number) encounter
some difficulties to scale in the fog context. Among the three
tested solutions, IPFS seems to provide lowest latencies both
for local and remote accesses. The monitored inter site traffic
is moreover relatively contained. However, the Kademlia DHT
used in IPFS to ensure metadata management is not well suited
for local activity expected in a Fog context. A locality-aware
management of the meta-data within IPFS will be proposed
in a future work to address this problem.
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