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A numerical approach of Friedrichs’ systems
under constraints in bounded domains

Clément Mifsud and Bruno Després

Abstract We present here an explicit finite volume scheme on unstructured meshes
adapted to first order hyperbolic systems under constraints in bounded domains.
This scheme is based on the work [3] in the unconstrained case and the splitting
strategy of [4]. We show that this scheme is stable under a Courant-Friedrichs-Lewy
condition (and convergent for problems posed in the whole space) and we illustrate
the solution constructed by this scheme on the example of the simplified model of
perfect plasticity.

From the theoretical point of view, the interaction between the constraint and the
boundary of the domain in the model of perfect plasticity is encoded by a nonlinear
boundary condition. With this numerical approach, we will show that, even if this
scheme uses the underlying linear boundary condition, the results are consistent
with the nonlinear model (and in particular with the nonlinear boundary condition).
Mathematics Subject Classification 2010: 65M08, 65M12, 35L50, 35L60, 74C05

1 Introduction

The aim of this article is to examine the numerical approximation of Friedrichs’
equations under constraints (posed in the whole space or in bounded domains). To
do so, we use a popular method for hyperbolic problems: the method of finite vol-
umes (for a detailed presentation of this method, we refer to [5, 6]). Although there
is an important number of schemes that have been developed, the analysis of the
convergence and its rate of schemes on unstructured meshes for multidimensional
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problems (i.e. the domain is a subset of Rn with n > 1 and the solution belongs to
Rm with m > 1) is still in its infancy.

However, the article [9] has established a rate of convergence for the RKDG
scheme (see [2]), using P0 finite elements in space and the RK1 scheme in time, on
unstructured meshes for generic Friedrichs’ systems of the following form{

∂tU +∑
n
j=1 ∂ j (AiU)+BU = f , in (0,T )×Rn,

U(0,x) =U0(x), in Rn,
(1)

where U : (t,x) ∈ (0,T )×Rn→ Rm, Ai : (t,x) ∈ (0,T )×Rn→Mm×m
sym , B : (t,x) ∈

(0,T )×Rn→Mm×m, f : (t,x) ∈ (0,T )×Rn→Rm and Mm×m (resp. Mm×m
sym ) is the

space of m×m (resp. symmetric) matrices with real coefficients. A similar analysis
has been performed in the note [3] on bounded domains.

In addition, the study of the convergence of a scheme based on the Rusanov
scheme on Cartesian meshes has been performed in [4] for constrained Friedrichs’
systems. In fact, to show the existence of a weak solution (in the sense of Defini-
tion 1) to the constrained Friedrichs’ system{

∂tU +∑
n
j=1 A j∂ jU = 0 in (0,T ]×Rn; U(0,x) =U0(x) if x ∈ Rn,

U(t,x) ∈ C if (t,x) ∈ [0,T ]×Rn,
(2)

where C is a fixed closed and convex subset of Rm (with 0 ∈
◦
C ), the authors con-

struct a numerical solution with a two step scheme such that a subsequence con-
verges to a weak solution of (2). In this paper, we extend the strategy of [4] to
schemes on unstructured meshes and to problems posed in bounded domains.

In Section 2, we recall some notations and define our finite volume scheme on
unstructured meshes for constrained Friedrichs’ systems in bounded domains.

In Section 3, we recall some results of [4] on constrained Friedrichs’ systems
in the whole space and state a convergence result in the whole space on a similar
scheme (to the one presented in Section 2 on bounded domains). This result tells
us that the finite volume scheme on unstructured meshes, based on the work [9],
associated with a projection step has the same rate of convergence (in the space
L2((0,T )×Rn;Rm)) as in the unconstrained case (obtained in [9]).

In Section 4, we show that the scheme presented in Section 2 is stable (under a
Courant-Friedrichs-Lewy condition) in the space L∞(0,T ;L2(Ω ,Rm)).

Then in Section 5, we briefly recall the equations of the simplified model of
the dynamical perfect plasticity problem (described in [1]) and how this problem is
related to the constrained Friedrichs’ systems.

Finally, in Section 6, we illustrate the solution constructed by this scheme on the
example of the simplified model of the dynamical perfect plasticity problem and
show that the interaction between the constraint and the boundary condition that
has been underlined theoretically by the nonlinear boundary condition can also be
observed numerically.
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2 Description of the scheme

In this section, we present the general framework of this work and the scheme we
are interested in. Let Th be a triangulation of Ω ⊂ Rn (a n-dimensional polytope)
i.e. Th = (Ki)i∈I , with I ⊂N, is a family of open nonempty convex polytope such
that ∪i∈I Ki = Ω , for all i 6= j, Ki∩K j = /0 and h = supi∈I (diamKi)<+∞. The set
of edges of a polytope K is denoted EK . We introduce the following notations (see
also Figure 1),

mK ,m∂K : L n-measure of K,H n−1-measure ∂K,
e ∈ EK : an edge ((n−1)-dimensional polytope) of K with H n−1-measure me,

EK i,EKb : the set of interior edges e of K, the set of boundary edges e of K,
νKe : the unit exterior normal of K on the edge e with νKe=(ν1

Ke
,ν2

Ke
, . . . ,νn

Ke
),

Ke : neighboring cell of K with K∩Ke = e.

Fig. 1 An unstructured
meshes of the square
[0,1]× [0,1]. Here the poly-
topes are triangles.

K e

Ke
νKe

We also suppose that the triangulation is regular in the sense that there exists a
constant C1 > 0 (independent of the triangulation Th) such that

∀K ∈Th, C1hn ≤ mK , and ∀K ∈Th, ∀e ∈ EK C1hn−1 ≤ me.

We want to investigate the numerical approximation (using finite volume schemes)
of the following constrained Friedrichs system{

∂tU +∑
n
i=1 Ai∂iU = f , on (0,T )×Ω ; U(0,x) =U0(x), on Ω ,

(Aν −Mν)U = 0, on (0,T )×∂Ω ; U(t,x) ∈ C , a.e in (0,T )×Ω
(3)

where C ⊂ Rm is a closed convex (independent of t and x) with 0 ∈
◦
C , Aν =

∑
n
i=1 Aiν

i with ν =
(
ν1, . . . ,νn

)
is the unit exterior normal to Ω and Mν is a non-

negative symmetric matrix that encodes the boundary condition and has to satisfy
some algebraic conditions (see [8, Section 2.1]).

Remark 1. In particular, due to the hypotheses on Aν and Mν , we have
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1. For all k ∈Rm, there exists a unique triple (k0,k−,k+) such that k = k0+k−+k+
and k0 ∈ kerAν , k− ∈ (ker(Aν −Mν))∩ ImAν and k+ ∈ (ker(Aν +Mν))∩ ImAν .

2. For all k,κ ∈ Rm, 〈k |Aν κ〉= 〈k− |Aν κ−〉+ 〈k+ |Aν κ+〉.
The equations of (3) have to be understood in a weak sense (see Definition 1 for

the case Ω = Rn and Section 5 for the general case). To approximate the solutions
of this kind of problem, we first forget about the constraint and use a finite volume
scheme (explicit in time) based on the note [3]. More precisely, we use a piecewise
constant approximation of U , denoted by Vh, such that

∀(t,x) ∈ [t p, t p+1)×K, Vh(t,x) = vp
K , with v0

K =
1

mK

∫
K

U0(x)dx,

where 0 = t0 < t1 < · · ·< tN+1 = T (t p+1− t p = ∆ t) and in a first step, we construct

mK

∆ t

(
vp+1,∗

K − vp
K

)
+ ∑

e∈EK

gKeme = f p
K :=

1
mK∆ t

∫ t p+1

t p

∫
K

f (t,x)dxdt,

where AKe = ∑
n
i=1 Aiν

i
Ke

and we define the interior fluxes (e∩∂Ω = /0),

gKe = (AKe)
+vp

K︸ ︷︷ ︸
Outcoming flow from K to Ke

+ (AKe)
−vp

Ke
,︸ ︷︷ ︸

Incoming flow in K from Ke

(4)

where we denote (AKe)
− (resp. (AKe)

+) the negative (resp. positive) part of AKe , and
the (centered) boundary fluxes,

gKe =
AKe +MKe

2
vp

K , (5)

with MKe = MνKe
a matrix satisfying the conditions of [8, Section 2.1] (see also

Remark 1). In order to take account of the constraint, we simplify project on each
cell K the value vp+1,∗

K onto the set C . Hence, the second step is

vp+1
K = PC

(
vp+1,∗

K

)
.

where PC is the projection onto C . It leads us to the following scheme for U0 ∈
L2(Rn;C ),


∀K ∈Th, v0

K = 1
mK

∫
K U0(x)dx,

∀K ∈Th,∀0≤ p≤ N, vp+1,∗
K = vp

K−
∆ t
mK

∑e∈EK gKe me +∆ t f p
K ,

∀K ∈Th,∀0≤ p≤ N, vp+1
K = PC

(
vp+1,∗

K

)
.

(6)

Thanks to the following discrete Green formula

∑
e∈EK

AKeme = 0 ⇔ ∑
e∈EK b

AKeme + ∑
e∈EK i

(AKe)
+me = ∑

e∈EK i

−(AKe)
−me, (7)
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one can rewrite the first step of the scheme (6) in a non conservative form

vp+1,∗
K − vp

K
∆ t

= ∑
e∈EK i

me

mK
(AKe)

−(vp
K− vp

Ke
)− ∑

e∈EK b

me

mK

MKe −AKe

2
vp

K + f p
K . (8)

Remark 2. We denote by 〈;〉 the canonical scalar product of Rm and |.| the associated
norm. By abuse of notation, we also use the notation |.| for the (matrix) operator
norm associated with the canonical norm of Rm.

Remark 3. When Ω = Rn, one can use the scheme (6) to approximate the solution
of the problem (2). In that case, all the sums over EKb are empty sums.

3 Previous results on constrained Friedrichs’ systems in the
whole space

The aim of this section is to recall the definition of weak solutions to Friedrichs’
systems under convex constraints in the whole space and to state some numerical
results about these systems. We consider the following Cauchy problem: find U :
[0,T ]×Rn→ Rm such that{

∂tU +∑
n
j=1 A j∂ jU = 0 in (0,T ]×Rn; U(0,x) =U0(x) if x ∈ Rn,

U(t,x) ∈ C if (t,x) ∈ [0,T ]×Rn,
(9)

where C is a fixed (i.e. independent of the time and space variables) non empty
closed and convex subset of Rm containing 0 in its interior, the matrices A j are
m×m symmetric matrices independent of time and space, and T > 0. This type of
nonlinear hyperbolic problems has been introduced in [4] where a notion of weak
solutions to problem (9) has been defined.

Definition 1. Let U0 ∈ L2(Rn,C ) and T > 0. A function U ∈ L2([0,T ]×Rn,C ) is
a weak constrained solution of (9) if we have for all κ ∈ C and φ ∈ C ∞

c ([0,T [×Rn)
with φ ≥ 0,

∫ T

0

∫
Rn

(
|U−κ|2∂tφ +

n

∑
j=1

〈
U−κ;A j(U−κ)

〉
∂ jφ

)
dxdt

+
∫
Rn
|U0(x)−κ|2φ(0,x)dx≥ 0. (10)

We recall here the existence and uniqueness result of [4].

Theorem 1. Assume that U0 ∈ L2(Rn,C ). There exists a unique weak constrained
solution U ∈ L2([0,T ]×Rn,C ) to (9) in the sense of Definition 1.

The existence of a solution has been obtained in [4] thanks to a finite volume
scheme on Cartesian grids. At each time step, the scheme first let the solution evolve
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according to the Rusanov scheme without taking care about the constraint. Then, on
each mesh they project the solution onto the set of constraints.

Thanks to this splitting strategy and to a compactness argument (which relies on
the fact that the mesh is Cartesian), they show that the numerical solution admits a
convergent subsequence and they prove that the limit of this subsequence has to be
a solution of (9) in the sense of Definition 1.

In this paper, we use this splitting strategy for schemes defined on unstructured
meshes. One can show that the scheme (6) (see Remark 3) enjoys the same rate of
convergence as in the unconstrained case (for the complete proof, see [7]).

Theorem 2. Let U ∈ H1((0,T )×Rn;C ) be a dissipative solution associated with
the initial condition U0 ∈ H1(Rn;C ). Let Vh be the solution constructed from U0
thanks to the scheme (6) (see Remark 3). Then we have,

‖U−Vh‖L2((0,T )×Rn;Rm) ≤C
√

h,

for some constant C depending on ε , n, T , U0 and the matrices Ai.

4 Stability in time of schemes

Once we know that the strategy of [4] combined with the scheme, analyzed in [9],
leads to a convergent scheme (on unstructured meshes) for constrained Friedrichs’
systems in (0,T )×Rn, one can analyze this splitting strategy on bounded domains
(i.e. for Problem (3)). In this section, we prove that the scheme (6) enjoys a stability
property under a Courant-Friedrichs-Lewy condition. For simplicity, we decide to
derive this stability property in the case where the source term is null. In that case,
the L2(Rn)-norm of the solution do not increase in time.

Proposition 1. Suppose that the following CFL condition holds:

max

(
sup

K,e∈EK

∆ tm∂K

mK

∣∣(AKe)
−∣∣ , sup

K,e∈EK b

∆ tm∂K

mK
|(MKe −AKe)/2|

)
≤ 1, (11)

the scheme (6) is stable, i.e. the approximate solution Vh satisfies (here f ≡ 0)

∀t ∈ [0,T ], ‖Vh(t, ·)‖L2(Rn;Rm) ≤ ‖U0‖L2(Rn;Rm) .

Proof. From the non-conservative form (8), we have

vp+1,∗
K = ∑

e∈EK

me

m∂K
vp+1,∗

K (e),

where we set
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vp+1,∗
K (e) =

{
vp

K +
∆ tm∂K

mK
(AKe)

−(vp
K− vp

Ke
), if e ∈ EK i,

vp
K−

∆ tm∂K
mK

MKe−AKe
2 vp

K , if e ∈ EKb.

Observe that we have for all e ∈ EK i, since (AKe)
− ∈Mm×m

sym ,

|vp,∗
K (e)|2 = |vp

K |2−
∆ tm∂K

mK

(
−
〈
vp

K ;(AKe)
−vp

K

〉
+
〈
vp

Ke
;(AKe)

−vp
Ke

〉)
+

∆ tm∂K
mK

〈
vp

K− vp
Ke

;
(

Id+ ∆ tm∂K
mK

(AKe)
−
)
(AKe)

−(vp
K− vp

Ke
)
〉

Using the CFL condition, we obtain that

∀y ∈ Rm,

〈(
Id+

∆ tm∂K

mK
(AKe)

−
)

y;y
〉
≥ 0. (12)

In particular, if we apply (12) to y = (−(AKe)
−)

1/2
(vp

K− vp
Ke
), it yields

|vp,∗
K (e)|2 ≤ |vp

K |
2− ∆ tm∂K

mK

(
−
〈
vp

K ;(AKe)
−vp

K

〉
+
〈
vp

Ke
;(AKe)

−vp
Ke

〉)
. (13)

Now, if e ∈ EKb, we have, again since AKe and MKe belong to Mm×m
sym ,

|vp+1,∗
K (e)|2 = |vp

K |
2− ∆ tm∂K

mK

〈
vp

K ;
MKe −AKe

2
vp

K

〉
− ∆ tm∂K

mK

〈
MKe −AKe

2

(
Id− ∆ tm∂K

mK

(
MKe −AKe

2

))
vp

K ;vp
K

〉
. (14)

Similarly, the CFL condition (11) implies that for all y ∈ Rm, we have〈
Id− ∆ tm∂K

mK

(
MKe −AKe

2

)
y;y
〉
≥ 0,

and algebraic manipulations (see Remark 1) tells us that〈
MKe −AKe

2

(
Id− ∆ tm∂K

mK

(
MKe −AKe

2

))
vp

K ;vp
K

〉
=

〈(
Id− ∆ tm∂K

mK

(
MKe −AKe

2

))
M1/2

Ke
(vp

K)+;M1/2
Ke

(vp
K)+

〉
≥ 0,

which implies that (14) becomes

|vp+1,∗
K (e)|2 ≤ |vp

K |
2− ∆ tm∂K

mK

〈
vp

K ;
MKe −AKe

2
vp

K

〉
.

Using convexity, it yields
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|vp+1,∗
K |2 ≤ |vp

K |
2− ∆ t

mK
∑

e∈EK i

(
−
〈
vp

K ;(AKe)
−vp

K

〉
+
〈
vp

Ke
;(AKe)

−vp
Ke

〉)
me

− ∆ t
mK

∑
e∈EK b

〈
vp

K ;
MKe −AKe

2
vp

K

〉
me.

Furthermore, if we use the relation (7), we obtain

|vp+1,∗
K |2 ≤ |vp

K |
2− ∆ t

mK
∑

e∈EK i

(〈
vp

K ;(AKe)
+vp

K

〉
+
〈
vp

Ke
;(AKe)

−vp
Ke

〉)
me

− ∆ t
mK

∑
e∈EK b

〈
vp

K ;
AKe +MKe

2
vp

K

〉
me. (15)

Remark that, thanks to Remark 1, we have for all e ∈ EKb〈
vp

K ;
AKe +MKe

2
vp

K

〉
=
〈
(vp

K)−;MKe(v
p
K)−

〉
≥ 0.

Consequently, from (15) and since for all y ∈ Rm, |PC (y)| ≤ |y|, we obtain

|vp+1
K |2 ≤ |vp

K |
2− ∆ t

mK
∑

e∈EK i

(〈
vp

K ;(AKe)
+vp

K

〉
+
〈
vp

Ke
;(AKe)

−vp
Ke

〉)
me. (16)

Then, we remark

∑
K∈Th

∑
e∈EK i

(〈
vp

K ;(AKe)
+vp

K

〉
+
〈
vp

Ke
;(AKe)

−vp
Ke

〉)
me = 0.

Consequently, summing the inequality (16) over K ∈ Th and from p = 0 to q− 1,
where t ∈ [0,T ] and q an integer such that t ∈ [tq, tq+1) (or q = N+1 if t = T ), leads
to the stability property.

5 The simplified model of the dynamical perfect plasticity

Let us briefly recall the equations of this model and the two points of views that one
can use to describe its (theoretical) solution. First, the equations, derived from the
physics of solids (see [1, Sections 3.1 & 3.2]), of this simplified model of dynamical
perfect plasticity are {

∂tv−divσ = f , ∇v = ∂tσ +∂t p,
|σ | ≤ 1, and 〈σ ;∂t p〉= |∂t p|. (17)

where v : Ω × [0,T ]→ R is the velocity of the material, σ : Ω × [0,T ]→ R2 the
Cauchy stress tensor and p : Ω × [0,T ]→ R2 the plastic deformation tensor and Ω
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is a open bounded subset of R2. The tensor σ is constrained to stay in the unit closed
Euclidean ball of R2, denoted B. To these equations, we add initial and boundary
conditions. The boundary condition, that comes from the hyperbolic point of view,
is the following nonlinear one

〈σ ;ν〉+T (v) = 0, on (0,T )×∂Ω , (18)

where T (z) = min(−1,max(z,1)). It shows a threshold on the velocity (due to the
constraint) in the boundary condition. We also need an initial condition

(v,σ)(t = 0) = (v0,σ0) (19)

that has to satisfy two hypotheses

〈σ0;ν〉+ v0 = 0 H 1 on ∂Ω , (20)
|σ0| ≤ 1 a.e. in Ω . (21)

The first condition asserts that the initial condition has to satisfy the hyperbolic
boundary condition that one could use in the unconstrained case and the second
condition states that the initial condition satisfy the constraint. In fact, one can show
(see [1, Proposition 7.1]) that the solution of this simplified model satisfies the fol-
lowing inequality for all (k,τ) ∈ R×B and all ϕ ∈W 1,∞(R×R2) (with ϕ ≥ 0 and
compactly supported in R×R2)

∫ T

0

∫
Ω

(
(v− k)2 + |σ − τ|2

)
∂tϕ dxdt +

∫
Ω

(
(v0− k)2 + |σ0− τ|2

)
ϕ(0)dx

−2
∫ T

0

∫
Ω

(σ − τ) ·∇ϕ(v− k)dxdt +2
∫ T

0

∫
Ω

f (v− k)ϕ dxdt

+2
∫ T

0

∫
∂Ω

(σ ·ν− τ ·ν)(T (v)− k)ϕ dH n−1 dt ≥ 0. (22)

Thanks to (18) and algebraic manipulations, one has

(σ ·ν− τ ·ν)(T (v)− k)

=
1
4

(
(k+ τ ·ν)2− (T (v)− k− (σ ·ν− τ ·ν))2

)
≥ 1

4
(k+ τ ·ν)2 , (23)

Equation (23) allows us to rewrite (22), using the hyperbolic variable U =t (v,σ) as

∫ T

0

∫
Ω

|U−κ|2 ∂tϕ +
2

∑
i=1
〈U−κ;Ai(U−κ)〉∂iϕ +2〈F ;U−κ〉ϕ dxdt

+
∫

Ω

|U0−κ|2 ϕ(t = 0)dx+
∫ T

0

∫
∂Ω

〈κ+;Mν κ+〉ϕ dH n−1(x)dt ≥ 0, (24)

where F =t ( f ,0,0), U0 =
t (v0,σ0), κ =t (k,τ)
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A1 =

 0 −1 0
−1 0 0
0 0 0

 , A2 =

 0 0 −1
0 0 0
−1 0 0

 and Mν =

1 0 0
0 (ν1)2 ν1ν2

0 ν1ν2 (ν2)2

 , (25)

and κ+ stands for the projection onto (ker(Aν +Mν))∩ ImAν . The fact that Equa-
tion (24) is satisfied for all κ and all ϕ is the definition of a solution to Problem (3)
(see also [8]). In addition, when the solution U is in W 1,∞([0,T ];L2(Ω ;C ), one can
show (see [1, Section 7]) that Equations (17), (18) and (19) are equivalent to this
definition of a weak constrained solution to Problem (3).

6 Numerical tests on the simplified model of the dynamical
perfect plasticity

Now that this mechanical problem has been put into the hyperbolic framework (3),
the simplified model of dynamical perfect plasticity can be approached thanks to
the scheme described in Section 2. One important point to notice first is that this
scheme does not include a special treatment at the boundary to model the nonlinear
boundary condition (18). Indeed, we only take into account the constraint thanks
to a projection step on every mesh and the first step of this scheme uses the linear
boundary condition

(Aν −Mν)U = 0 ⇔ 〈σ ;ν〉+ v = 0. (26)

Our goal now is to test numerically the interactions between the boundary condition
and the constraint for this particular hyperbolic system under constraint and to see
if the nonlinear boundary condition is obtained with this scheme. The major point
that allows us to bring to light these facts is the velocity threshold overrun in the
boundary condition (18). To observe this overrun, we present here one test case (for
more test cases, see [7, Section 4.4]).

The test is based on the following formal motivation: we want to observe large
velocities near the boundary. But if we look at the equation of motion

∂tv−divσ = f ,

we see that if f is positive (for example) near the boundary (for each time) then
the velocity is going to increase over time near the boundary. Hence, we present a
test case when the source term f is equal to a positive constant near the boundary
and to zero elsewhere. This test allows us to obtain large velocity near the boundary
(i.e. |v| � 1 near ∂Ω ) and to bring to light that the nonlinear boundary is taken into
account by our scheme. For this test case, we use the following data

• Spatial domain : Ω = [0,1]× [0,1]. Our mesh is regular and contains 80000 tri-
angles.
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• Final time : T = 1. We use 800 time-steps and consequently the CFL condi-
tion (11) is approximately equal to 0.71.

• Initial data : In this test, we use data that touch the boundary x = 1. The initial
velocity v0 is null outside the open ball B1 of radius 0.3 and center (1,0.5), v0
is equal to −1 on the open ball B2 of radius 0.25 and center (1,0.5). In the strip
between these two balls, we join these two constants using a C 1 connection. It
is important to notice that −1≤ v0 ≤ 0. In order to satisfy the (linear) boundary
condition at x = 1 the first component of σ is equal to −v0. The second compo-
nent of σ is null on Ω . Consequently, we have v0 + 〈σ ;ν〉 = 0 on ∂Ω . Remark
also that the initial data belong to the convex set of constraints.

• The term source f is equal to 50 for all t ∈ [0,T ], for all y ∈ [0,1] and x > 0.8
and to 0 elsewhere.

We decide to highlight the interaction between the constraint and the boundary
at time t = 0.5 in Figure 2. In this figure, we display the velocity (top left of the
figure), the first component, denoted σ1 in the following, of σ (top right), the second
component (bottom left), denoted σ2, and the term σ1 +T (v) (which is involved in
the boundary condition at x = 1: σ1 +T (v) = 0).

We observe that the introduction of a positive term source in the strip [0.8,1]×
[0,1] allows us to get a large velocity (i.e. v� 1) near the boundary x = 1 (see Fig-
ure 2a). The theoretical boundary condition implies that in this situation we should
see that σ1 = −1 at the boundary x = 1 (and consequently, σ2 = 0 due to the con-
straint). Numerically, the scheme produces a solution that matches the mathemati-
cal model (see Figure 2b and 2c). Consequently, the nonlinear boundary condition
is satisfied by the numerical approximation (see Figure 2d) despite the fact that we
have not implemented any particular treatment at the boundary to get this nonlinear
boundary condition. This fact may be seen as a first validation of our scheme.
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(a) Velocity (b) First component σ1 of σ

(c) Second component σ2 of σ (d) σ1 +T (v) (i.e. the boundary term on the
right of the domain)

Fig. 2: Test case at time t = 0.5.
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