
HAL Id: hal-01397666
https://hal.science/hal-01397666v1

Submitted on 16 Nov 2016 (v1), last revised 8 Jan 2018 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Adaptive Feedforward and Feedback Control for Cloud
Services

Sophie Cerf, Mihaly Berekmeri, Bogdan Robu, Nicolas Marchand, Sara
Bouchenak, Ioan Doré Landau

To cite this version:
Sophie Cerf, Mihaly Berekmeri, Bogdan Robu, Nicolas Marchand, Sara Bouchenak, et al.. Adaptive
Feedforward and Feedback Control for Cloud Services. 20th World Congress of the International
Federation of Automatic Control (IFAC 2017), Jul 2017, Toulouse, France. �hal-01397666v1�

https://hal.science/hal-01397666v1
https://hal.archives-ouvertes.fr

Adaptive Feedforward and Feedback Control for
Cloud Services

Sophie Cerf ∗ Mihaly Berekmeri ∗ Bogdan Robu ∗ Nicolas Marchand ∗

Sara Bouchenak ∗∗ Ioan D. Landau ∗

∗ Univ. Grenoble Alpes, CNRS, GIPSA-lab, F-38000 Grenoble, France
{sophie.cerf,mihaly.berekmeri,bogdan.robu,nicolas.marchand,

ioan-dore.landau}@gipsa-lab.fr
∗∗ Université de Lyon, INSA-Lyon, CNRS, LIRIS, F-69621 Lyon, France

sara.bouchenak@insa-lyon.fr

Abstract: The use of cloud services is becoming increasingly common. As the cost of these services
is continuously decreasing, service performance is becoming a key differentiator between providers.
Solutions that aim to guarantee Service Level Objectives (SLO) in term of performance by controlling
cluster size are already used by cloud providers. However most of these control solutions are based on
static if-then rules, they are therefore inefficient in handling the highly varying service dynamics of cloud
environments. Client concurrency, network bottlenecks or non homogeneity of resources are just a few
of the many causes that make the behavior of cloud services highly non linear and time varying. In this
paper a novel control theoretical approach is presented that is robust to these phenomena. It consists of
PI and feedforward controller adapted online. A stability analysis of the adaptive control configuration
is provided. Simulations using a cloud service model taken from the literature illustrate the performance
of the system under various conditions. The use of adaptation significantly improves control efficiency
and robustness with respect to variations in the dynamic of the plant.

Keywords: control of computing systems, adaptive control, cloud computing, PI and feedforward
control, MapReduce

1. INTRODUCTION

In the last decades, the world has faced a steep surge in the
amount of produced data. This brings novel challenges for their
storage and analysis. Many new programming paradigms have
emerged to face the specificity of so called Big Data, such as
MapReduce or Spark. Cloud computing, with its promise of
barely unlimited storage and processing capabilities, is becom-
ing an increasingly attractive solution. One of the biggest ap-
peals of cloud computing is the on-demand assigning of a large
group of shared hardware resources to software applications,
called elastic resource provisioning, but there is a growing need
for frameworks that efficiently deal with the dynamics of cluster
resources (Lorido-Botran et al., 2014).

Current autonomic resource provisioning approaches that are
deployed in public clouds don’t work well for real time appli-
cations. In most clouds, if an application running in the cloud
has to meet run time criteria, it is up to the human application
manager to decide the amount of resources it needs. When
the manager is notified that the application is running slowly,
it requires high level of expertise to decide on how much to
intervene. The difficulty of the task is increased by the fact that
the optimal configuration can vary due to the shared use of hard-
ware resources or workloads fluctuations over time (Ari et al.,
2003; Li et al., 2010), among many other factors (Koh et al.,
1 This work has been partially supported by the LabEx PERSYVAL-Lab
(ANR-11-LABX-0025-01) funded by the French program Investissement
d’Avenir.
2 This work has been supported, in part, by the European FP7 research project
AMADEOS Grant Agreement 610535 on Systems of Systems.

2007). Therefore, there is a need for fully automatized and
robust cluster scaling algorithms able to deal with these dis-
turbances. Ensuring service performance is essential as missing
deadlines result in consequent financial losses. It is estimated
that an on-line brokerage industry service unavailability costs
around 100.000$ per minute. For on-line shopping companies,
page load-time should not be more than 2 seconds or users tend
to give up their shopping, resulting in revenue loss for com-
panies (Nah, 2004). Cloud providers have to guarantee service
performance and availability in order to win users’ loyalty.

Ensuring the performance of cloud services is a highly complex
challenge. A cloud service behavior varies over time due to the
dynamic of its environment (hardware, network, etc.). As cloud
providers desire to maximize the utilization of their clusters,
they have mechanisms for the dynamic reallocation of unused
resources in the cluster, which further add to the variability of
system performance. Hence, even with the same workload and
the same resource amount, an application performance may
vary depending on how noisy neighboring applications are.
Moreover, cloud services are highly complex paradigms that
include running on top of multiple software stacks, making their
behavior regarding to resource provisioning highly non linear.

Several solutions to deal with performance management of
cloud services have recently emerged. Current approaches can
be separated into four categories: static, reactive, predictive and
combined approaches. In the industry, static deployments are
the standard and usually tuned based on the application peak de-
mand and are generally over-provisioned. Reactive approaches
are based on reacting to an input metric such as the current

CPU utilization, the request rate or the service time by adding
or removing servers as necessary (Hwang et al., 2016). Some
public cloud providers such as the Amazon Auto Scaler offer
the framework for reactive techniques but it is up to the user
to define the scaling thresholds, which is very difficult, not
reliable and requires great expertise. One of the most advanced
reactive techniques are those which use queuing theory analytic
models to decide capacity requirements based on the workload
count (Gandhi et al., 2012). A different approach consists of us-
ing predictive techniques to estimate the future load of a service
and provision accordingly (Nguyen et al., 2013). There are also
few solutions which try to mix the advantages of prediction and
reaction into combined techniques, see Ali-Eldin et al. (2012).
To our knowledge there is no work in the state of the art that
aims at looking into this issue of resource provisioning from
a robustness point of view, for instance through control adap-
tation regarding system configuration and environment varia-
tions. A solution able to be efficient no matter the workload,
network or hardware state is missing.

In this article a control theoretical approach is presented which
aims at controlling cloud services using cluster scaling. On-
line mechanisms that use information about past states of the
systems to derive adequate system configuration are novel and
promising approaches in computer science. Hellerstein et al.
(2004) highlighted the promise of control theory, in providing
a mathematical basis for the on-line adaptation of software
systems, over a decade ago. Recently, the increasing number
of publications in the field of control for computing systems
shows the emergence of this new field for automatic control,
see Patikirikorala et al. (2012) for a survey. The main asset of
control theory is the mathematical guarantees it provides that
can be further utilized by cloud providers to erect their Service
Level Agreement (SLA). 3

The control developed in this paper is composed of a reactive
part (a feedback PI controller) that ensures steady state system
convergence; and an predictive feedforward controller to ensure
disturbance rejection. Our control is made robust with the ad-
dition of an adaptation algorithm that estimate the feedforward
gain. The second major contribution of this article is the use
of real systems for our developments and tests. As requests
processed by Big Data cloud services are highly diverse and
data and/or computing intensive, studying those system with
realistic scenarios is a real challenge. MRBS (a benchmark suite
for the Big Data paradigm MapReduce) enables to run realistic
workloads of multiple jobs and even to consider concurrency
issues. The use of MRBS on a real cloud enables to truly
capture the behavior of cloud services in their every-day IT
companies usage.

The remaining of the paper is organized as follows: after an
introduction to MapReduce (the use case used to illustrate
the control approach) and an overview of its modeling, the
adaptive control algorithm is presented. Stability analysis is
performed and control validation is done through simulation.
Finally, conclusion are drawn and future development avenues
are given.

2. MAPREDUCE USE CASE

As an framework to develop and test our methodology, we
chose a cluster running MapReduce jobs . This choice has been

3 SLA is as a part of a service contract, where services are formally defined.

motivated by the fact that MapReduce is one of the most pop-
ular parallel processing paradigms for Big Data systems cur-
rently in use. MapReduce was developed by Google in the last
decade as a general parallel computing algorithm running on
distributed platforms such as clouds that would automatically
handle job and data management (data partitioning, consistency
and replication, task distribution, scheduling, load balancing
and fault tolerance (Dean and Ghemawat, 2008)). Nowadays,
numerous IT leaders such as Yahoo, Facebook or LinkendIn
use versions of MapReduce. MapReduce is a general paradigm
that aims at being able to treat extremely diverse requests such
as data mining or recommendation algorithms. Ensuring ac-
ceptable performance of MapReduce jobs is essential for all
users, and thus became a priority for clouds providers where
MapReduce is deployed.

To understand why assuring performance in MapReduce clus-
ters is such a challenge, a light analysis of how MapRe-
duce works is presented here. MapReduce is a programming
paradigm developed for parallel, distributed computations over
very large amounts of data. The initial implementation of
MapReduce is based on a master-slave architecture, where the
master node is in charge of task scheduling, monitoring and
resource management and the slave nodes take care of start-
ing and monitoring local mapper and reducer processes. For a
user to run a MapReduce job, at least three things need to be
supplied to the framework: the input data to be treated, a Map
function, and a Reduce function. From the control point of view,
the Map and Reduce functions can be only treated as black box
models since they are entirely application-specific, and we do
not have a priori knowledge of their behavior. Without some
profiling, no assumptions can be made regarding their run time,
resource usage or the amount of output data produced. On top
of this, many factors (independent of MapReduce configuration
parameters: input data, Map and Reduce functions) are identi-
fied that influence job performance: CPU, input/output skews,
software failures (Sangroya et al., 2012), servers homogene-
ity assumption not holding up (Anjos et al., 2015), and bursty
workloads (Ghit et al., 2014) among others. All the sources of
disturbances specific to clouds (concurrency, network skews
(Li et al., 2015), hardware failures, etc.) can be added to the
variability of our system, especially when MapReduce is exe-
cuted on a public cloud, as they are often more volatile.

For a client using MapReduce, it is essential to have guarantees
in term of service performance, dependability or costs. For
instance, an e-commerce company running MapReduce to per-
form sale recommendation based on client preferences needs
to have the list of recommended products in a few tenth of
seconds, otherwise their webpage will take too much time to
be loaded. From the cloud provider point of view, this service
time (the time it takes for a user request to be treated) is thus a
performance metric that has to be monitored.

One simple action that can be done to control the on-line service
time is to modify the number of resources of the cloud allocated
to the jobs. For the MapReduce use case, adding resources,
commonly known as nodes, to the cluster will increase the
number of Map and Reduce functions processing the input
data leading to a reduction of the service time. If the number
of resources (nodes) diminishes, the results are converse. The
cluster size is then our control signal.

However, in the case of public clouds, multiple clients send
requests at the same time thus generating a varying input

workload which influences the service performance. If multiple
concurrent jobs are running, the amount of resources allocated
for each job is reduced and thus the job service time increases.
As the workload of the system is independent of the cloud
provider we will consider it as a disturbance. Mathematical
formulation of the system modeling is given below in Section 3.

3. MAPREDUCE MODELING

In order to derive a model of MapReduce, Hadoop (its most
used open source implementation) has been implemented on a
real cluster and real-life requests are launched. The experiments
used for the modeling process were run using the MapRe-
duce Benchmark Suite (MRBS) developed by Sangroya et al.
(2012). MRBS is a performance and dependability benchmark
suite for MapReduce systems that can emulate several types of
workloads and inject different fault types into a MapReduce
system. The workloads emulated by MRBS are selected to
represent a range of loads, from the compute-intensive to the
data-intensive (e.g. business intelligence - BI) workload. One
of the strong suits of MRBS is to emulate client interactions,
which may consist of one or more MapReduce jobs run at
the same time. A data intensive BI workload is selected for
our experiments but other types of workloads can be used as
well. It consists of a decision support system for a wholesale
supplier. Each client interaction emulates a typical business
oriented query run over a large amount of data (10GB here). All
the nodes in the cluster were on the same switch to minimize
network skews. The experiments were conducted on Grid5000,
on a single cluster of 60 nodes. Grid5000 is a French nation-
wide cluster infrastructure made up of a 5000 CPUs, developed
to aid parallel computing research (Cappello et al., 2005). Each
node from the cluster used for the test has a quad-core Intel
CPU of 2.53GHz, an internal RAM memory of 15GB, 298GB
disk space and infiniband network.

A dynamic model that predicts MapReduce cluster perfor-
mance (i.e. the average service time of all submitted jobs) with
respect to the number of nodes of the cluster and number clients
sending requests was proposed and validated by experiments
in Berekmeri et al. (2014) and is recalled in the blue dotted box
of Fig. 1.

yr(t)

u(t)

e(t)

d(t)

y(t)
Service time

#Nodes

#Clients

Reference
service time

G

Compensatory Path

D

Direct Path

+ + +
-

PI

PI controller

g

FeedForwad
controller

+

+
Error

PAA

Parameters
Adaptation

Algorithm

MapReduce System

Fig. 1. MapReduce model and control schema

In Berekmeri et al. (2014), the system is considered linear in
its operating region and the models were first identified as
continuous transfer functions and then discretized using the
sampling period Ts = 30 sec. The resulting equation is 4 :
4 The complex variable z−1 will be used to characterize the system’s behavior
in the frequency domain and the delay operator q−1 will be used for the time
domain analysis.

y(t) = D(q−1)d(t)+G(q−1)u(t) (1)
where y is the average service time of all jobs (the output),
u is the changes in the number of nodes in the cluster (the
control input) and d is the changes in clients (considered as a
measurable disturbance). In the following we will use the error
e(t), which is the comparison of the measured service time with
its reference value, as a performance indicator of our control.
D(q−1) is the direct path transfer function, the link between the
disturbance and our performance metric, and G(q−1) represents
the compensatory path, it enables to modify the cluster size to
control the service time. Both models were identified as first-
order transfer function with delays, as described in eq. (2):

D(q−1) =
bDq−1

1+aDq−1 q−rD G(q−1) =
bGq−1

1+aGq−1 q−rG (2)

with bD = 1.07, aD =−0.79, rD = 8, bG =−0.18, aG =−0.92
and rG = 5.

An analysis of the cloud system behavior detailed in Section 1
intuitively shows that the systems is non linear and time variant,
thus the previous linear model is not accurate for a wide range
of input or disturbance values. Therefore, for the remaining of
the article an adaptive technique will be used and the system
will be heavily tested by arbitrary varying the direct path time
constant and static gain by a factor of two (from half to double
the nominal value - see Section 4) in order to simulate real life
conditions.

4. CONTROL FOR CLOUD SERVICES

The control presented in this paper consist of a PI controller
introduced for asymptotic zero reference tracking error and
a feedforward loop for dynamic disturbance compensation. A
real time adaptation of the feedforward compensator is consid-
ered in order to improve the performance since some parame-
ters of the system are unknown and time-varing.

4.1 Adaptive FeedForward Control Law

Under the classical feedback-feedforward control loop in black
of Fig. 1 (without the PAA adaptation path in purple) and using
the eq. (2), the optimal value of the feedforward controller is
given by:

u∗FF(t) =−bD(1+aG)

bG(1+aD)
.d(t) = g∗d(t)

For the development of the adaptation algorithm, we will make
the following hypotheses:

(H1) the effect of the PI controller can be neglected,
(H2) aD = aG,
(H3) rD = rG and are known.

Then the algorithm will be analyzed for the cases where hy-
pothesis H1, H2 and H3 are violated.
Let us define the adaptive feedforward control algorithm as:

uFF(t) = ĝ(t)d(t) (3)
where ĝ is given by

ĝ(t +1) = ĝ(t)+αx(t +1)e(t +1)

= ĝ(t)+
αx(t +1)

1+αx2(t +1)
e0(t +1) with α > 0 (4)

The filtered disturbance x is defined by:

x(t) = F(q−1)d(t) =
q−(rN+1)

1+ âN
d(t), (5)

where the a priori adaptation error e0(t +1) is the value of the
regulation error at time t + 1 and is based on the estimation of
ĝ(t): e0(t + 1) = e0(t + 1/ĝ(t)). The a priori error e0(t + 1) is
considered as a performance metric for our system. One can
also define the a posteriori error e(t + 1) = e0(t + 1/ĝ(t + 1))
which gives:

e(t +1) =
1

1+αx2(t +1)
e0(t +1) (6)

Theorem For the scheme represented in Fig. 1, under the
hypothesis H1, H2 and H3, using the adaptive feedforward
control given by eq. (3) to (5), one has:

limt→∞e(t +1) = limt→∞e0(t +1) = 0
for any initial conditions provided that:

H ′(z−1) =
1+ âGz−1

1+aGz−1 (7)

is a strictly positive real transfer function.

Remark This later condition is always satisfied provided that
|âG|< 1 (stability condition for the model) and âG ≤ 0.

Proof Under the hypothesis H1, H2 and H3, the expression of
the error e for a fixed value ĝ is :

e(t +1) = e0(t +1) =
bGq−(rG+1)

1+aGq−1 (g∗− ĝ)d(t +1) (8)

Filtering d(t) by the filter F given in eq. (5) allows to rewrite
eq. (8) as:

e(t +1) =
1+ âGq−1

1+aGq−1 (g
∗− ĝ)x(t)

When replacing ĝ with ĝ(t + 1) and neglecting the additional
vanishing term resulting from the non comutativity of time
varying operators, one has:

e(t +1) =
1+ âGq−1

1+aGq−1 (g
∗− ĝ(t +1))x(t) (9)

Eq. (9) has the standard form of an a posteriori adaptation
error equation and one can use straight-forwardly the results
of Landau et al. (2011), Chapter 3, Theorem (3.2).

Remark The proof have shown the convergence of the adapta-
tion error (i.e. the performance variable). However, the conver-
gence of ĝ → g∗ is related to the richness of d.

4.2 Removing the hypotheses H1, H2 and H3

H1: the effect of the PI controller can not be neglected The
continuous time PI controller has the transfer function:

PI(s) =
KI

s
+KP

Using the difference approximation
1−q−1

TS
for differential

operator one gets:

PI(q−1) =
KITS +KP −KPq−1

1−q−1 =
r0 + r1q−1

1−q−1 =
BK(q−1)

AK(q−1)

Using the results of Landau et al. (2016), Chapter 15, Section
15.17, eq. (15.86) for our particular scheme (with the values
AK = 1−q−1, BK = r0 + r1q−1, BG = bG q−(rG+1), AG = 1+
aG q−1, S = 1, AM = 1, BM = 0), one gets:

e(t +1) =
q−(rG+1)bG(1−q−1)[g∗− ĝ(t +1)]d(t)

(1+aGq−1)(1−q−1)+bG(r0 + r1q−1)q−(rG+1)

(10)

Using the parameter adaptation algorithm given in Section
4.1, the stability condition becomes that the following transfer
function

H ′′(z−1) =
(1− z−1)(1+ âGz−1)

(1+aGz−1)(1− z−1)+bG(r0 + r1z−1)z−(rG+1)

(11)
should be a strictly positive real transfer function.

Remark If this condition is not satisfied, taking into account
eq. (10) one can use instead of the filter F given in eq. (5) the
filter FPI :

FPI(q−1) =
q−(rG+1)b̂G(1−q−1)

(1+ âGq−1)(1−q−1)+ b̂G(r0 + r1q−1)q−(rG+1)

(12)

H2: aD ̸= aG Denoting the unmeasurable output of the dis-
turbance propagation path D(q−1) by z(t), eq. (10) becomes in
the presence of the PI controller:

e(t +1) = H ′(q−1)([g− ĝ(t +1)]d(t)+ [aG −aD]z(t)) (13)
Since the adaptation does not affect directly the second term in
the left hand side of eq. (13), we have to analyze its influence.
As z(t) is the output of an asymptotically stable plant whose
input is bounded, it will also be bounded. Therefore the signal
δ (t) = [aG − aD]z(t) will be bounded. Furthermore, due to the
PI controller, the effect of this disturbance term will go to
0 asymptotically in steady state for a constant value of d(t),
since in eq. (10) the numerator of the transfer operator contains
(1−q−1). This also holds if there is no PI since, for a constant
disturbance, the adaptation algorithm will interpret this term as
an additional constant disturbance which will be canceled.

H3: rD ̸= rG but known Hypothesis H3 on delays can be
relaxed to rG ≤ rD both known, but making the algorithm more
complex.

5. SIMULATION RESULTS

The validation of our adaptation mechanism will be done
through comparison of the adaptive control algorithm with
the optimal linear feedforward controller (computed on the
assumption that bG and aG are known) to the optimal linear
controller when the gain bG varies by 50%. We will then
analyze the introduction of a PI controller and finally study
the robustness of our adaptive control algorithm performances
regarding the possible uncertainties on âG in the filter used to
generate x(t).

Time (in min)
0 50 100 150 200 250

D
is

tu
rb

an
ce

 (
#c

lie
nt

s)

6

8

10

12

14

16

Fig. 2. Disturbance Scenario

The disturbance scenario we have simulated is represented in
Fig. 2. After taking a constant value for stabilization of the

system, the number of clients sending requests to our cloud
service varies with inconstant frequency around the nominal
number of clients dN = 10. In the following, we will consider
that H2 does not hold, that is to say that the two paths of our
model do not have the same dynamics. H3 will always hold
while from time to time a PI will be added, thus modifying
assumptions of H1.

The behaviour of the optimal feedforward controller on the
nominal model, on a model with a 50% different gain and
eventually coupled with a PI controller which parameters are
issued from (Berekmeri et al., 2016) are given in Fig. 3.

Time (in min)
0 50 100 150 200 250

P
er

fo
rm

an
ce

 in
di

ca
to

r
(in

 s
ec

)

-40

-30

-20

-10

0

10

20

30
nominal model
model 50% different
model 50% different with PI action

Fig. 3. Optimal Feedforward Controller performances for vari-
ous scenarios

When simulating with the nominal model, the performance
tends to 0 in steady state even if a transitory phase appears
when a change in the disturbance occurs due to the differ-
ence of dynamics in direct and compensatory paths (H2). The
modification of the real gain of the direct path changes the
dynamics of the system and adds a steady state error (blue line).
In order to deal with this, a PI is introduced that drives back
our performance indicator to 0 in steady state. The PI is chosen
with a really slow dynamics in order to prevent over reaction as
explained in Berekmeri et al. (2016).

M
ag

ni
tu

de
 (

dB
)

-20

-15

-10

-5

0

5

10

10 0

P
ha

se
 (

de
g)

-90

-45

0

45

90

âG = aG = −0.92

âG = −0.84

a) without PI

Frequency (rad/s)

M
ag

ni
tu

de
 (

dB
)

-40

-30

-20

-10

0

10

10 0

P
ha

se
 (

de
g)

0

45

90

b) with PI

Frequency (rad/s)

Fig. 4. Bode diagram of the transfer functions given in eq.
(7) and (11) a) without PI for âG = aG = −0.92 and for
âG =−0.8 b) with PI for âG = aG =−0.92

The stability of the adaptive control system without and with
the PI controller is assured since the transfer functions given in
eq. (7) and (11) are strictly positive real as shown in the bode
diagram of Fig. 4 (phase between −90o and +90o).

Then the adaptive feedforward is simulated with α = 10−4 and
ĝ(0) = 0 i.e. no a priori knowledge is considered. Once again
three scenarios are considered, the results are shown in Fig.
5: nominal model, 0.5bG and adding the PI controller to the
adaptive control algorithm.

Time (in min)
0 50 100 150 200 250

P
er

fo
rm

an
ce

 in
di

ca
to

r
(in

 s
ec

)

-20

-10

0

10

20

30
nominal model
model 50% different
model 50% different with PI action

Fig. 5. Adaptive Feedforward Controller performances for var-
ious scenarios

When simulating with the nominal model, the adaptive feed-
forward control drives the performance indicator to 0 but with
a longer convergence time than in the optimal simulation and
with more oscillations. However, the adaptive control maintains
the steady state to 0 even for the case with modified value of bG.
The addition of a PI controller reduces the convergence time
and the magnitude of the transients.

The introduction of adaptation in the PI scenario enables the
significant reduction of transient magnitudes and convergence
times as can be seen in Fig. 6. Indeed, the error convergence
time is reduced from 5.17 to 0.76 during the disturbance rejec-
tion phase (on the time horizon from 100 min to 300 min).

Time (in min)
0 50 100 150 200 250

P
er

fo
rm

an
ce

 in
di

ca
to

r
(in

 s
ec

)

-15

-10

-5

0

5

10

optimal feedforward
adaptive feedforward

Fig. 6. Optimal and Adaptive Feedforward and PI Controller
performances comparison, model 50 % different

Fig. 7 illustrates the robustness of adaptation algorithm perfor-
mance combined with a PI with respect to the value of âG in the
filter F . The model is considered with a variation of 50% of its
gain and the coefficient in the filter is taken with its nominal

value (aG = −0.92), with higher value (aG = −0.84) and a
lower value (aG = −0.96). These values reflect a modification
of the time constant by a factor 2.

Time (in min)
0 50 100 150 200 250

P
er

fo
rm

an
ce

 in
di

ca
to

r
(in

 s
ec

)

-6

-4

-2

0

2

4

6

8

10
âG = aG

âG = −0.96

âG = −0.84

Fig. 7. Robustness analysis of Adaptive Feedforward and PI
Controller performance with respect to filter variations

Neither the magnitude of the transients nor the convergence
time change significantly when the filter pole varies. This al-
lows to conclude that the performance of the adaptive controller
is robust with respect to changes in the model dynamics (aG) or
with respect to uncertainties in its estimation.

6. CONCLUSION

This paper presents an adaptive control strategy that ensures
efficient control for the performance of Cloud Services in
term of service time, by dynamically controlling its resource
cluster size. The control algorithm is based on a PI and an
adaptive estimation of the feedforward gain. Simulations are
based on a model of MapReduce, a well known Big Data cloud
service, running realistic workloads on a real cloud. Results
show that the adaptive control enables the reduction by at least
a factor of 6 the variance of the service time compared to a
PI and optimal feedforward when concurrent clients requests
disturb the system. Moreover, the presented adaptive control
has proven its robustness as it successfully manages to control
the cloud service even when the physical system is significantly
different from the considered model. The obtained results show
the potential of the adaptive feedfoward control combined
with a feedback controller. For the final version of the paper,
experimental results on a physical distributed system will be
provided.

This novel usage of adaptive control theory shows encouraging
results. We believe that the use of control theory for cloud
systems can be extended quite straightforwardly to other com-
puting systems such as networks management or VM control
as many similarities connect those different computing applica-
tions.

Future works will consist in extending the proposed adaptation
algorithm to improve its convergence behavior, as well as
including more system specific constraints, such as delays
or control signal quantification. Experiments to validate the
adaptive control on a real cloud system, such as Amazon Web
Service or Microsoft Azure, running realistic jobs are planned.
Other service metrics such as availability, dependability or costs
which are crucial for service providers and users will also be
considered.

REFERENCES

Ali-Eldin, A., Tordsson, J., and Elmroth, E. (2012). An adaptive
hybrid elasticity controller for cloud infrastructures. In IEEE
Network Operations and Management Symposium, 204–212.

Anjos, J.C., Carrera, I., Kolberg, W., Tibola, A.L., Arantes,
L.B., and Geyer, C.R. (2015). MRA++: Scheduling and data
placement on mapreduce for heterogeneous environments.
Future Generation Computer Systems, 42, 22–35.

Ari, I., Hong, B., Miller, E.L., Brandt, S.A., and Long, D.D.
(2003). Managing flash crowds on the internet. In 11th
IEEE/ACM International Symposium on Modeling, Analysis
and Simulation of Computer Telecommunications Systems,
246–249.

Berekmeri, M., Serrano, D., Bouchenak, S., Marchand, N., and
Robu, B. (2014). A Control Approach for Performance of
Big Data Systems. In 19th IFAC World Congress (IFAC WC
2014), volume 19.

Berekmeri, M., Serrano, D., Bouchenak, S., Marchand, N.,
and Robu, B. (2016). Feedback Autonomic Provisioning
for Guaranteeing Performance in MapReduce Systems. to
appear in IEEE Transactions on Cloud Computing.

Cappello, F., Caron, E., Dayde, M., Desprez, F., Jegou, Y.,
Primet, P., Jeannot, E., Lanteri, S., Leduc, J., Melab, N.,
Mornet, G., Namyst, R., Quetier, B., and Richard, O. (2005).
Grid’5000: A large scale and highly reconfigurable grid
experimental testbed. In Proceedings of the 6th IEEE/ACM
International Workshop on Grid Computing, 99–106.

Dean, J. and Ghemawat, S. (2008). Mapreduce: simplified data
processing on large clusters. Communications of the ACM,
51(1), 107–113.

Gandhi, A., Harchol-Balter, M., Raghunathan, R., and Kozuch,
M.A. (2012). Autoscale: Dynamic, robust capacity man-
agement for multi-tier data centers. ACM Transactions on
Computer Systems (TOCS), 30(4), 14.

Ghit, B., Yigitbasi, N., Iosup, A., and Epema, D. (2014). Bal-
anced resource allocations across multiple dynamic MapRe-
duce clusters. ACM SIGMETRICS Performance Evaluation
Review, 42(1), 329–341.

Hellerstein, J.L., Diao, Y., Parekh, S., and Tilbury, D.M. (2004).
Feedback control of computing systems. John Wiley & Sons.

Hwang, K., Bai, X., Shi, Y., Li, M., Chen, W.G., and Wu,
Y. (2016). Cloud performance modeling with benchmark
evaluation of elastic scaling strategies. IEEE Transactions
on Parallel and Distributed Systems, 27(1), 130–143.

Koh, Y., Knauerhase, R., Brett, P., Bowman, M., Wen, Z., and
Pu, C. (2007). An analysis of performance interference ef-
fects in virtual environments. In IEEE International Sympo-
sium on Performance Analysis of Systems & Software, 200–
209.

Landau, I.D., Airimioaie, T.B., Castellanos-Silva, A., and Con-
stantinescu, A. (2016). Adaptive and Robust Active Vibration
Control: Methodology and Tests. Springer.

Landau, I.D., Lozano, R., M’Saad, M., and Karimi, A. (2011).
Adaptive control: algorithms, analysis and applications.
Springer Science & Business Media.

Li, X., Huang, M.C., Shen, K., and Chu, L. (2010). A realistic
evaluation of memory hardware errors and software system
susceptibility. In Proceedings of USENIX Annual Technical
Conference (ATC), 75–88.

Li, Z., Shen, Y., Yao, B., and Guo, M. (2015). OFScheduler:
A dynamic network optimizer for MapReduce in heteroge-
neous cluster. International Journal of Parallel Program-
ming, 43(3), 472–488.

Lorido-Botran, T., Miguel-Alonso, J., and Lozano, J.A. (2014).
A review of auto-scaling techniques for elastic applications
in cloud environments. Journal of Grid Computing, 12(4),
559–592.

Nah, F.F.H. (2004). A study on tolerable waiting time: how
long are web users willing to wait? Behaviour & Information
Technology, 23(3), 153–163.

Nguyen, H., Shen, Z., Gu, X., Subbiah, S., and Wilkes, J.
(2013). Agile: Elastic distributed resource scaling for in-
frastructure - as - a - service. In Proceedings of the 10th
International Conference on Autonomic Computing (ICAC),
69–82.

Patikirikorala, T., Colman, A., Han, J., and Wang, L. (2012).
A systematic survey on the design of self-adaptive software
systems using control engineering approaches. In Proceed-
ings of the 7th IEEE International Symposium on Software
Engineering for Adaptive and Self-Managing Systems, 33–
42.

Sangroya, A., Serrano, D., and Bouchenak, S. (2012). MRBS:
towards dependability benchmarking for Hadoop Mapre-
duce. In Euro-Par 2012: Parallel Processing Workshops, 3–
12. Springer.

