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Wigner Measures and Quantum Control

This paper considers Wigner functions and mea sures for infinite dimensional open quantum systems; important examples of such systems are objects of quantum control theory (see [1,2]). An axiomatic def inition of coherent quantum feedback is proposed.

A representation of the states of quantum systems in terms of Wigner measures is possible for systems having classical analogues; it is similar to the represen tation of the states of classical Hamiltonian systems in terms of probability measures on the phase space. In both cases, the passage to a description of the state of a subsystem of some larger quantum system is imple mented by means of the projection operation, because the phase space of the classical analogue of the ambi ent quantum system, being the union of some sub systems, is the Cartesian product of the phase spaces of the classical analogues of these subsystems.

If the dimension of the phase space is finite, then, instead of Wigner measures, we can consider their densities with respect to the Liouville measure, which are classical Wigner functions. However, on an infi nite dimensional phase space, there exists no Liou ville measure, i.e., a Borel σ additive σ finite locally finite measure invariant with respect to symplectic transformations (this is a special case of a well known theorem of Weil). In this case, we can either directly apply the Wigner measure or introduce some "suffi ciently nice" measure instead of the Lebesgue mea sure; e.g., in the case of a linear phase space, we can use the Gaussian measure, as is done in the so called white noise analysis. After this, it becomes possible again to replace Wigner measures by "Wigner func tions," i.e., by their densities with respect to the new measure. We shall consider Wigner measures and their densities in parallel.

The first section, which is of independent interest, considers properties of Wigner measures and func tions; some of the results of this section can be regarded as an extension of results of [4] to Wigner measures. In the next section, an equation describing the evolution of the Wigner functions of quantum sys tems obtained by quantizing Hamiltonian systems with infinite dimensional phase space is given; this equation is obtained as a consequence of a similar equation for the evolution of a Wigner measure (see [5]). (A Wigner measure is a signed cylindrical measure, and it would be interesting to estimate its variation and find countable additivity conditions; however, we do not discuss these issues here.) The last, third, section considers the evolution of the Wigner measures and functions of subsystems of quantum sys tems. In the same section, models of control of quan tum systems are discussed and an axiomatic definition of coherent quantum feedback is given, which, as far as we know, has not been explicitly introduced in the literature so far. We consider largely algebraic aspects of the theory, omitting analytical assumptions.

WIGNER MEASURES

AND FUNCTIONS This section discusses properties of Wigner mea sures and their densities with respect to fixed measures on a classical phase space, that is, Wigner functions (precise definitions are given below). Let E := Q × P be the phase space of a Hamiltonian system, where Q and P are real locally convex spaces (LCSs), P = Q*, and Q = P* (given an LCS X, by X* we denote its dual endowed with a locally convex topology consistent with the duality between X and X*); then E* = P × Q.

Suppose also that 〈•, •〉: P × Q → ޒ is the bilinear form of the duality between P and Q. Then the linear map ping J: E ʯ (q, p) ۋ (p, q) ∈ E* is an isomorphism, and we identify h ∈ E with Jh ∈ E*. In particular, for each h ∈ E, the symbol denotes the pseudodifferential operator on ᏸ 2 (Q, μ) whose Weyl symbol 1 is the func tion Jh ∈ E*. By μ we denote the P cylindrical (Gaus sian) measure on Q whose Fourier transform Φ μ : P → ޒ is determined by Φ μ (p) := exp 〈p, B μ p〉 , where B μ : P → Q is a continuous linear mapping such that 〈p, B μ p〉 > 0 for p ≠ 0. By ν we denote a Q cylindrical measure on P whose Fourier transform Φ ν : Q → ޒ is defined by Φ ν (q) := exp

. In what follows,

we assume that all LCSs are Hilbert, although the main results can be extended to the general case. We identify the space Q with Q* and P with P*, so that = B μ and B μ > 0; note also that μ and ν are σ addi tive if the operator B μ is nuclear.

The Weyl operator ᐃ(h) generated by an element h ∈ E is defined by ᐃ(h) := . The Weyl function corresponding to a density operator T is the function

ᑱ T : E → ޒ defined by ᑱ T (h) : = tr(T ᐃ(h)) (see it does not depend on μ.
Definition 1 (see [5]). The Wigner measure corre sponding to a density operator T is an E* cylindrical measure W T on E determined by the relation

W T (dq 1 , dp 1 ) = ᑱ T (h)(q 2 , p 2 ).
In other words, W T is the (inverse) Fourier trans form of the function ᑱ T (h). Thus, we have W T (dq, dp) = (h)(q 2 , p 2 )F E × E (dq 2 , dp 2 , dq, dp), where F E × E is the Hamiltonian Feynman pseudomeasure on E × E.

The Feynman pseudomeasure F on a Hilbert space is a distribution (in the sense of the theory of Sobolev-Schwartz generalized functions) on , i.e., a continuous (in an appropriate sense) linear functional on some function space on . It is convenient to specify such a functional F , as well as an ordinary measure, in terms of its Fourier transform

: ʯ z ۋ F (ϕ z ) ∈ ,ރ where ϕ z : → ރ is defined as ϕ z (x) := e i〈z, x〉 .
If = E = Q × P and (q, p) = e i〈q, p〉 , then F is said to be a Hamiltonian Feynman pseudomeasure; it is convenient for defining the Fourier transform that on functions given on infinite dimensional spaces and maps them to measures. Actually, the Hilbert space structure is not important here; a Feynman pseudomeasure, as well as a Gaussian measure, can be defined on any LCS; in particular, a Hamiltonian Feynman pseudomeasure can be defined on any sym 1 The definition of a pseudodifferential operator on ᏸ 2 (Q, µ) with symbol F can be found in [5].
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plectic LCS (additional information is contained in [3,9,11]). Proposition 1 (see [5]). If G is the Weyl symbol of a pseudodifferential operator on ᏸ 2 (Q, μ), then

This proposition can also be used as a definition (cf. [4, Definition 3], where it is, however, assumed that dimQ = dimP < ∞ and, for this reason, only Wigner function, rather than measures, are consid ered).

Definition 2. The density Φ T of the Wigner measure W T with respect to a measure η on

Q × P (if this density exists) is called the Wigner η function (if dimQ = dimP < ∞ and η is a Lebesgue measure on Q × P, then the Wigner η function is the classical Wigner func tion).
In what follows, we assume that η = μ ⊗ ν but refer to the Wigner (μ ⊗ ν) function simply as the Wigner function.

Corollary 1. If the assumptions of Proposition 1 hold, then (q, p)Φ T (q, p)μ ⊗ ν(dq, dp) = tr(T ).

Proposition 2. The following relation holds:

The function (q, p) ۋ is the generalized density of the Gaussian measure μ ⊗ ν (see [START_REF] Montaldi | [END_REF] and the references therein). The relations given above and those similar to them can be obtained by using the following heuristic rule. First, we write the corresponding formulas for the case where dimQ < ∞, replacing Gaussian measures by their densities with respect to Lebesgue (=Liouville) measures on the spaces Q and Q × P; in turn, these formulas are obtained by using the standard isomorphisms between the spaces of functions square integrable with respect to the Lebesgue measure and the spaces of functions square integrable with respect to the Gaussian mea sures. After this, we pass to the infinite dimensional case, for which purpose we replace the Gaussian den sity with respect to the Lebesgue measures by general ized densities. It should be borne in mind that the gen eralized densities of Gaussian measures are defined only up to multiplication by a positive number, so that the above method for extending formulas to the infi nite dimensional case applies only to formulas invari G q p , ( )W T dq dp , ( )
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ant with respect to the multiplication of Gaussian den sities by positive numbers.

The following propositions can be regarded as def initions of Wigner measures and functions similar to those given in [4]. Proposition 3. For any density operator T on ᏸ 2 (Q, μ) and any ϕ ∈ ᏸ 2 (Q, μ), the following relations hold:

The notation in the first formula means that the mapping q ۋ W T is a function, while the mapping (dq 1 , dp) ۋ W T is a measure.

The function q ۋ is a generalized density of the Gaussian measure μ, and p ۋ is a gener alized density of the measure ν.

Let

be the integral kernel of a density operator T on ᏸ 2 (Q, μ) defined by (Tϕ) (q) = ϕ(q 1 ) (q, q 1 )μ(dq 1 ).

Proposition 4. For any ϕ ∈ ᏸ 2 (Q, μ), the relation Φ T (q, p) = , e i〈r, p〉 μ(dr) holds.

Let be the integral kernel of a density

operator T on ᏸ 2 (Q, μ) defined by (Tϕ)(q) = (q 1 ) ( q, dq 1 ). Thus, is a function of a point with respect to the first argument and a measure with respect to the second argument.

Tϕ ( ) q

( ) e
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).
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It follows from Proposition 1 that (q, dq 1 ) = W T . Setting s -r = q and s + r = q 1 and using the change of variable formula, we obtain (s -r, ds + r) = W T (ds, dp), or , = W T (dq, dp), which means that the "measure" dp ۋ W T (dq, dp) is the inverse Fourier transform of the function r ۋ , . This implies the following proposi tion. Proposition 5. Let F E be a Hamiltonian pseudomea sure Feynman on E := Q × P. Then Here, the integration with respect to the "measure" dq ۋ W T (dq, dp) requires using the so called Kolmogorov inte gral 2 .

EVOLUTION OF WIGNER FUNCTIONS

AND MEASURES We use the assumptions and notation of the preced ing section. Suppose that, for each t ∈ ,ޒ W T (t) is the Wigner measure describing the state of a quantum sys tem at time t (thus, in this section, W T (•) denotes a function of a real argument whose values are Wigner measures, while in the preceding section, the symbol W T denotes a Wigner measure). Then W T (•) satisfies the equation [5] (1)

where, for each a ∈ ,ޒ sin(a ) is the linear operator acting on the space ᑢ of E* cylindrical measures on E and conjugate to the operator sin(aᏸ ᑢ ) acting on the function space on E by the rule Here, is defined as follows: for each function Ψ:

E → ޒ and each n ∈ ,ގ Ψ(x) := {Ψ, ᑢ} (n) (x)
for 2 The Kolmogorov integral is the trace on the tensor product of the space of functions on Q and the space of measures on Q; is an element of this space (the initial definition, in which nei ther tensor product nor trace are mentioned, can be found in [START_REF] Loève | Probability Theory[END_REF]).
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).

Q ∫ = ρ T 2 W • T t ( ) 2 1 2 ᏸ ᑢ * W T t ( ) ( ) ⎝ ⎠ ⎛ ⎞ sin , = ᏸ ᑢ * aᏸ ᑢ ( ) sin := a 2n 1 - 2n 1 - ( )! ᏸ ᑢ 2n 1 - ( ) . n 1 = ∞ ∑ ᏸ ᑢ n ( ) ᏸ ᑢ n ( )
x ∈ E, where {Ψ, ᑢ} (n) (x) := Ψ (n) (x)I ⊗n ᑢ (n) (x), Ψ (n) and ᑢ (n) denote the nth derivatives of the functions Ψ and ᑢ, respectively, and I ⊗n is the nth tensor power of the operator I determining the symplectic structure on the phase space E [5].

Relation (1) implies an equation describing the evolution of the Wigner μ function. To obtain it, is suf fices to recall that, for any function Φ: E → ,ޒ the nth derivative of the product Φ n μ can be calculated by the Leibniz rule and that the derivatives of the Gauss ian measure μ can be calculated as follows. If h, h 1 ,

h 2 , … ∈ Q, then μ'h = -〈 h, •〉μ; μ''h 1 h 2 = -〈 h 1 , h 2 〉μ + 〈 h 1 , •〉〈 h 2 , •〉μ, etc.
These relations are versions of the Wick formulas.

For each k ∈ Q, the symbol 〈 k, •〉 denotes a func tion defined μ almost everywhere on Q with the fol lowing properties (see [10]):

(i) its domain is a measurable vector subspace of Q of full measure;

(ii) this function is linear on its domain;

(iii) if x ∈ Q, then 〈 k, x〉 = 〈 k,
x〉 (such a function exists and any two functions with properties (i)-(iii) coincide μ almost everywhere (see [10])).

For each a > 0, the operator sin(a ) acting on functions given on E is defined by sin(a )ϕ(μ ⊗ ν) := (sin(a ))(ϕμ ⊗ ν). Suppose also that, for each t ∈ ,ޒ Φ T (t) is the Wigner μ function describing the state of a quantum system at time t.

Theorem 1. The mapping Φ T (•) taking values in the set of Wigner μ functions satisfies the equation

REDUCED EVOLUTION OF WIGNER MEASURES

Let and be the above introduced integral kernels of a density operator T of a quantum system being the quantum version of a classical Hamiltonian system with phase space E 1 × E 2 , where

E 1 = Q 1 × P 1 and E 2 = Q 2 × P 2 .
Then, for the integral kernels of the reduced density operator T 1 acting on ᏸ 2 (Q i , μ i ), i = 1, 2 (here and in what follows, we use the natural generali zations of the above notation and assumptions), we have

B μ 1 2 B μ 1 - B μ 1 - B μ 1 - B μ 1 - B μ 1 2 B μ 1 - B μ 1 2 B μ 1 - B μ 1 2 - B μ 1 2 - L ᑢ * L ᑢ * ᏸ ᑢ * Φ • T t ( ) 2 1 2 L ᑢ * Φ T t ( ) ( ) ⎝ ⎠ ⎛ ⎞ . sin = ρ T 1 ρ T 2
the last integral is again a Kolmogorov integral. Therefore, Propositions 4 and 5 imply the following theorem.

Theorem 2. Let W T and Φ T be the Wigner measure and function of the quantum system with Hilbert space (dq 1 , dp 1 , dq 2 , dp 2 ) and Φ T (q 1 , p 1 ) =

ᏸ 2 (Q 1 × Q 2 , μ 1 ⊗ μ 2 ).
Φ T (q 1 , p 1 , q 2 , p 2 )(μ 2 ⊗ ν 2 )(dq 2 , dp 2 ).
Now, consider the models mentioned in the intro duction. Throughout the rest of the paper, given any Hilbert space -, we use ᏸ s (-) to denote the set of all self adjoint operators on -.

Thus, let ᏼ, ᏼ 1 , ᏼ 2 , Ꮿ, Ꮿ 1 , and Ꮿ 2 be Hilbert spaces. We assume that ᏼ is the Hilbert space of a quantum control system, which we call a quantum plant (QF), and let Ꮿ be the Hilbert space of another quantum control system, which we call a quantum controller (QC); suppose that ᏼ j and Ꮿ j , j = 1, 2, are the Hilbert space of parts of the QP and QC, respec tively. Let Ᏼ := ᏼ ⊗ Ꮿ be the Hilbert space of the united quantum system. Consider

∈ ᏸ s (ᏼ), ∈ ᏸ s (Ꮿ), ∈ ᏸ s (ᏼ 1 ⊗ Ꮿ 1 )
, and ∈ ᏸ s (ᏼ e ⊗ Ꮿ 2 ). We set

:= ⊗ Ᏽd Ꮿ + Ᏽd ᏼ ⊗ + ⊗ Ᏽ + Ᏽ ⊗ ∈ ᏸ s (Ᏼ), where Ᏽd ᏼ ∈ ᏸ s (ᏼ), Ᏽd Ꮿ ∈ ᏸ s (Ꮿ), Ᏽ ∈ ᏸ s (ᏼ 1 ⊗ Ꮿ 1 )
, and Ᏽ ∈ ᏸ s (ᏼ 2 ⊗ Ꮿ 2 ) are the identity operators on the corresponding spaces. The first term in the expression for describes the evolution of an isolated QP, the second term describes the evolution of the isolated QC, and the last two terms describe the (coherent) quantum feedback. It is worth mentioning that the definition of is symmet ric with respect to QP, QC, and the feedback. ,,( )

ρ T 1 1 q 1 1 q 2 1 , ( ) ρ T 1 q 1 1 q 2 1 q 1 q 2 ,
Q 2 ∫ = × e 1 2 B μ 1 μ 1 ⊗ q 1 q 2 , ( ) q 1 q 2 , ( ) , 〈 〉 μ 2 dq 2 ( ), ρ T 1 1 q 1 dq 2 1 , ( ) ρ T 2 q 1 dq 2 1 q 2 dq 2 , , , ( ) Q 2 
∫ = ; W T 1 Φ T 1 W T 1 W T Q 2 P 2 × ∫ e 1 2 B μ 1 1 -q 1 q 1 , 〈 〉 B μ 1 1 -p 1 p 1 , 〈 〉 + ( ) e 1 2 B μ 2 1 -q 2 q 2 , 〈 〉 B μ 2 1 -p 2 p 2 , 〈 〉 + ( ) Q 2 P 2 × ∫ ᑢ ˆᏼ ᑢ ˆᏯ ˆᏼ1 Ꮿ 1 ⊗ ˆᏼ2 Ꮿ 2 ⊗ ᑢ ˆfeedback ᑢ ˆᏼ ᑢ ˆᏯ ˆᏼ1 Ꮿ 1 ⊗ d ᏼ 2 Ꮿ 2 ⊗ d ᏼ 1 Ꮿ 1 ⊗ ˆᏼ2 Ꮿ 2 ⊗ d ᏼ 1 Ꮿ 1 ⊗ d ᏼ 2 Ꮿ 2 ⊗ ᑢ ˆfeedback Ᏼ ˆfeedback
The more general Hamiltonian := ⊗ Ᏽd Ꮿ + Ᏽd ᏼ ⊗ + , where ∈ ᏸ s (ᏼ ⊗ Ꮿ) (see [6] 

ᏼ j = ᏸ 2 ( , μ j ), Ꮿ j = ᏸ 2 ( , ν j ), ᏼ = ᏸ 2 ( × , μ 1 ⊗ μ 2 ), Ꮿ = ᏸ 2 ( ⊗ , ν 1 ⊗ ν 2 ) for j = 1, 2.
In this case, the Wigner function and measure of the union of the QP and the QC are defined on the space × × × , and their evolution is described by the equations of the second section. To obtain the dynamics of the Wigner func tion and measure of the QP (which are defined on × ), we must apply Theorem 2.

Remark 1.

Obtaining the dynamics of a quantum control system (QP) requires finding the Hamilto Although this model is not a special case of any of the models described above, we expect that it can be obtained as the limit of an appropriate sequence of these models.

Remark 2.

We can extend our model, assuming that the QP interacts also with one more quantum system perturbing the dynamics of the control system. Of course, we can also assume that the source of pertur bations is a part of the QP. Remark 3. The approach presented in the first two sections applies directly to quantum systems obtained by applying Schrödinger quantization to classical Hamiltonian systems. To consider more general cases, such as spin system, we must extend our approach by methods of superanalysis. We expect that all our results can be generalized to this case. Remark 4. Feedback for classical Hamiltonian sys tems can be defined in a similar way. Remark 5. The internal dynamics of the QP and QC in our quantum model with (coherent) feedback can be described in more detail. In particular, it can be assumed that = (

⊗ Ᏽ + Ᏽ ⊗ ) ⊗ Ᏽd Ꮿ + Ᏽd ᏼ ⊗ ( ⊗ Ᏽ + Ᏽ ⊗ ) + ⊗ Ᏽ + Ᏽ ⊗ + ⊗ Ᏽ + ⊗ Ᏽ .
In the above relation, the parts of the Hamiltonian describing the QP and the QC and the interaction between them are again symmetric.

Translated by O. Sipacheva
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  Then the Wigner measure and the Wigner function of its subsystem with Hilbert space ᏸ 2 (Q 1 , μ 1 ) are determined by the relations (dq 1 , dp 1 ) =

nians 1

 1 and 2 (or ) (in appropriate classes of Hamiltonians). This problem is similar to the simpler problem of choosing a time dependent Hamilton function 1 (•) on Q ᏼ to which the required dynamics in ᏸ 2 (Q ᏼ , μ) corresponds under the assumption = +, where ∈ ᏸ s (ᏼ) and ∈ ᏸ s (ᏼ).
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