N

N

Freshness analysis of functional sequences in launchers
Dorine Petit, Jean-Philippe Georges, Thierry Divoux, Bruno Regnier,
Philippe Miramont

» To cite this version:

Dorine Petit, Jean-Philippe Georges, Thierry Divoux, Bruno Regnier, Philippe Miramont. Freshness
analysis of functional sequences in launchers. 4th IFAC Symposium on Telematics Application, Nov
2016, Porto Alegre, Brazil. hal-01397554

HAL Id: hal-01397554
https://hal.science/hal-01397554
Submitted on 16 Nov 2016

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://hal.science/hal-01397554
https://hal.archives-ouvertes.fr

Freshness analysis of functional sequences
in launchers *

Dorine Petit *** Jean-Philippe Georges ***
Thierry Divoux *** Bruno Regnier *** Philippe Miramont ***

* Université de Lorraine, CRAN, UMR 7039, Campus Sciences, BP
70239, Vandeuvre-les-Nancy Cedex, 54506, France
(e-mail: firstname.name@univ-lorraine.fr)

** CNRS, CRAN, UMR 7039, France
*** CNES, Direction des Lanceurs, 52 rue Jacques Hillairet, 75612,
Paris, France (e-mail: firstname.name@cnes.fr)

Abstract: Nowadays, many embedded systems use specific data buses to guarantee the
exchange of data. The next generation of space applications is moving to components off-the-
shelf (COTS) technology as switched Ethernet network in order to reduce the financial cost,
being attentive to the mass. However, performance should be gained without sacrificing the
reliability and the properties that enabled a tele-monitoring. This paper focuses on how to
obtain a single traffic capture file that will be sent over ground-board communications and how
to test later the freshness requirement satisfaction. A freshness formalization is proposed as
well as a freshness verification algorithm based on the analysis of single trace captured using
multicast communications. An experimental evaluation has been leaded in nominal and link

failure cases.

Keywords: Observability; freshness; switched network; tele-monitoring; space vehicles.

1. INTRODUCTION

In space applications (aircrafts, satellites, launchers), con-
ventional communication technologies are evolving from
specific buses and federative control strategies to switched
topologies that will support modular and distributed ar-
chitecture Monchaux et al. (2012). Component off-the-
shelf (COTS) technology is aimed at replacing the cur-
rent MIL-STD-1553B (Department of Defense (1978)) for
control traffic and (TDMA based) Pulse-Coded Modula-
tion buses for telemetry traffic, buses embedded in the
european (unmanned) launchers. Switched Ethernet net-
work are hence expected to be embedded into the next-
generation of the space launchers (Robert et al. (2013)).
Candidates protocols may be AFDX (ARINC 664 P7
(2003)) or TTEthernet (SAE AS 6802 (2011)).

Traffic monitoring can be the cornerstone for understand-
ing such communication networks. The monitoring activ-
ity aims at collecting from the various network devices
a set of relevant data. This enables to characterize the
network state and therefore to identify unusual network
behavior. According to the application domain, the pur-
poses of the monitoring can also be different like network
management, network security, network performance anal-
ysis, etc. The monitoring mechanisms depend directly on
the intended application and also on the nature of the
observed system.

In launchers, the on-board controller manages the con-
trol state by sending specific data from/to the sen-

* Co-founded study by CNES and CRAN in the frame of CNES
Launchers’ Research and Technology program.

sors/actuators. It corresponds to traffic command (noted
TC) for mission control, on-board operations scheduling
and automated procedures. Additionally, the network sup-
ports telemetry traffic (noted TM) for low rate mission
control and housekeeping data Notebaert (2014). By an-
alyzing the content of the packets, it should be possible
to retrieve the values measured by the sensors and those
sent by the controller to the actuators. Hence, the network
acts as an observer of the control state. This is the appli-
cable approach for launchers. Indeed, the whole traffic is
monitored on-board and both TC and TM exchanges are
sent over a ground-board link. It enables tele-diagnosis of
launchers by post-analysis studies and replaying a network
in order to improve the performances of a given architec-
ture. The Ethernet protocols used in launcher applications
may be different from those used for industrial factory
automation, but the demands on end-to-end delays and
other real-time requirements remain in the same order of
magnitude. The main difference comes from the fact that
the diagnosis of the devices and applications states relies
here on the packet captured on the network. There is no
additional supervision traffic, such performance metrics
like freshness have to be recovered from the traces sent
by air-ground data link.

The objective of this paper is to propose a method to
validate end-to-end freshness inside a network as part of
an observability analysis. The main novelty consists in
achieving such validation for launchers just based on a
single frame capture file that will be monitored through a
ground-board communication. Section 2 summarizes the
related work concerning network monitoring. Section 3
details the challenges and restrictions of such method

in which the network state is observed from a specific
machine. It shows ambiguous situations to be taken into
account for both freshness and ordering properties with
regards to a sequence of frames. Section 4 explains how the
method might be implemented while section 5 illustrates
it on an experimental platform. It should be helpful for
engineers to discuss about the performance of the avionics
during a past launch and provide capacity to detect, isolate
and report faults.

The processing time of each task will not be taken into
account in this study. It is not assumed for the traffic to
be periodic and it should be robust to dynamic change
of the topology (for instance a booster separation) or a
different mission of the flight.

2. RELATED WORK AND BACKGROUND

This paper aims at providing a framework to analyse the
traffic capture. It will be helpful for trade-off of quality-of-
service and to detect, isolate and report faults. For such
critical real-time constrained application, numerous works
have already focused on the performance evaluation of the
network end-to-end delays (network calculus, trajectory
approach, real-time calculus). However, avionics requires
to verify different properties that encompass not a single,
but a sequence of frames mapping a functional command.
An important property is to test if the end-to-end freshness
is satisfied as defined in Lauer et al. (2011). Consider the

periodic chain T} Gy LT, Any Tnt1 (task T; regularly
produces data d; for T;y1; each task is computed on a
given device). A J-freshness requirement may be defined
such that a data d,, is "globally” produced from data d;
themselves produced not earlier than ¢ time units before.
From a traffic capture point of view, a functional sequence
would be observed according to the frames Fj ... F,, (that
respectively corresponds to the transportation of data
dy ...dy). The verification of the freshness requires then to
evaluate the difference between the timestamp of the frame
related to the event at the end of a functional sequence and
the timestamp of the frame that corresponds to the earliest
dependent event at the beginning of the sequence. The
paper will show the challenges to retrieve such analysis:
how to obtain a single traffic capture file that will be sent
over ground-board communications and how to test later
the freshness requirement satisfaction.

The first issue deals with the acquisition of a unique
traffic capture file. There exist several different techniques
to capture network traffic. A point-to-point link can be
split with a special device, named network Test Access
Point (TAP) which enables to connect a monitor on this
particular link in a passive way. A second method, called
port mirroring, consists of using a special switches function
(available on the most of commercial switches), which
enables to copy all traffic coming from all or part of ports
to a dedicated port.

Contrary to conventional topologies based on a bus, many
monitors have to be implemented to obtain a real picture
of the communications in switched networks whatever is
the solution retained for traffic monitoring Robert et al.
(2015). It means that all local capture files should be sent
to a common device that will merge the files in order to
generate a new file that will represent the load all along

the network (file that has to be transmitted to the ground
via the telemetry channel). To merge all the local traces, it
needs a global reference time with synchronisation offsets
have to be as small as possible since the clocks in each
monitor are initially running asynchronously and may
produce significant offsets. The underlying question is
therefore the time synchronization method that may be
addressed by using a synchronisation protocol as Network
Time Protocol (NTP) or IEEE1588 - Precision Time
Protocol (PTP). Some work (mainly, in an operating
system tracing) suggest to rely on offline synchronisation
by using a post-processing algorithm. These algorithms
are mainly based on regression analysis (linear, least-
squares, convex hull, etc.) or linear programming. Robert
et al. (2015) discuss the challenges and the limits of those
methods.

The verification of properties has been already studied.
QoS performance of switched Ethernet networks, and
in particular, end-to-end delays have been estimated by
determinist methods as noticed by Bauer et al. (2010):
network calculus, real-time calculus, trajectory approach.
End-to-end properties have been also estimated, especially
for Integrated Modular Avionics (IMA). Lauer et al.
(2011) propose hence computation of upper-bounds of
end-to-end properties computed as optimal solutions of
Integer Linear Programming. Results integrate here the
computation time required by each function. Badache
et al. (2014) propose then criteria enabling to quantify
hence the quality of valid temporal allocations. These
works are strongly linked to the notion of virtual links
valid for AFDX networks. Furthermore, these estimations
consider the knowledge of the traffic.

3. OBSERVABILITY

Assume that each message is sent over the network in
multicast. The destination address corresponds to a group
that gathers the original destination and the address of
a PC that will be called the observer o. This station has
then the availability to capture each frame that will be
sent over the network.

A functional sequence is defined as a set of frames F ... F),
sent by m devices (m < n). In launchers, three kind of
devices can be distinguished: the sensors, the actuators
and the controller. It leads that avionics requirements
are usually linked to a set of exchanges between those
three kind of devices. To simplify, the functional sequence

s % ¢ X 4 is now considered. It corresponds to the
periodic transportation of a measure X produced by a
sensor s and of an action Y computed by the (on-board)
controller ¢ for an actuator a. Fig. 1 details the exchanges,
with the copy to the observer o.

We note z (k) the date at which the sensor is sending the
k-value of the measure and y (I) the date at which the
controller is sending the [-value of the command. An end-
to-end freshness requirement means here that the value
X, that has served to compute the value Y sent at y (1),
has to be received before but not ¢ time units before
(x (k) > y (I)—§). Assume now that the delay of the frame
sent at z (k) is noted A (x (k)). End-to-end freshness for a
command Y (1) will be satisfied if it can be found a measure
X (k) such that:

N
—~
=
|
>
Q
—~
N
—~
=
~
I

Yo (1)
Fig. 1. Functional sequence and freshness

VieN, FkeN|jy)—-d<zk)+A(x(k) <y (1)

The existence enables also to take into account potential
frames losses and oversampling. The problem is that
both z (k) and y (1) are local values, based on different
clocks. From the point of view of the observer (that
will receive each frame), available timestamps are slightly
different. Dates are modified according the Quality of
Service offered by the network, such that timestamps
available are z, (k) = x (k) + Ay (z (k) and y, (1) =
y () + A, (y (1)) where A, (z) corresponds to the delay
to send frame z to the observer. y, (1) represents the date
at which the command Y (I) has been captured by the
observer (the timestamp in the trace). And since the path
between the sensor and the controller is not the same
as between the sensor and the observer, delays may be

different (A (z (k)) # A, (z (k))).

Since only the dates in the capture file are known, a new
rule is proposed to check if the end-to-end freshness is

satisfied for a functional sequence s X ¢ X 4. Tt consists
in verifying if the observer receives an instance k of a
measure at a time compatible with the reception of a
command ! that will be based on this measure (Y (I) =
f (X (k))). It is hence suggested the following proposition.

Proposition 1. The end-to-end freshness for a command
Y (I) (I € N) will be satisfied if it can be found a measure
X (k) such that:

FEEeN|yo (1) =6+ Apaz < o (k) < Yo (1) — 204z (2)

where A4, corresponds to the maximum delay of any
frame in the network. The proposition is valid for § >
3Amax-

Proof. Starting from (1):
FEeN[yl)—d<z(k)+A(x(k) <y()

(
First, by introducing A, (y (1)) and then A, (x (k)), it can
be written that:

y (D) + 80 (y (1) = (k) + Az (k) + 20 (y (1)
Yo (1) = x (k) + A (2 (k) + Ao (y (1))
Yo (1) + Ao (x (k) = zo (k) + A (2 (k) + Ao (y (1))

And hence:
Yo (l) + A, (1' (k)) —-A (JE (k)) A (y (l)) > Zo (k) (3)

Secondly, on the left side of the inequality,
z (k) + Az (k) + A0 (y (D) 2y (1) =0+ Ao (y (1))
z (k) + Az (k) + A (y (1) = yo (1) = 0
o (k) + A (z (k) + Ao (y (1) = yo (1) = 0+ Ao (z (k)
And hence:
To (k) = Yo (1) =64 Ao (x (k) = A (z (k) = Ao (y (1)) (4)

Based on (3) and (4), the end-to-end freshness property is
satisfied if:

Yo (l) + A, (‘T (k)) —A ($ (k)) -4, (y (l)) > X (k)
2 Yo (1) + Ao (z (k) — Az (k) = Ao (y (1) =6 (5)

Assuming that delays are bounded by A, 4., then:
—28maz < Do (2 (k)= A (2 (k) = B0 (y (1) < Amaz (6)
It enables to write that any k' € N that verifies:
Yo (1) = 20mmaz > 2o (k') > 4o (1) — 6 + Appaz
would also verifies (5) (due to (6)). It implies also that it
verifies (1).

(6) = (5) <= y() =2 () +A@k)) 2 y() -0
It may be noticed that the proposition given in (2) is
more restrictive since it rules out two time windows. It
corresponds in fact to ambiguous time windows. Fig. 2
shows that it may contain measures not relevant for a given
command Y (1).

o x| AN
. I N
I Yy ' I |
UN N
0 | | |
: zo (k) Yo (1) : Yo (1
Yo (l) - 2Amaz Yo (l))

(a) Late measure (b) Early measure

Fig. 2. Ambiguous situations (Y (1) # f (X (k))

Fig. 2a highlights a situation in which a frame X (k) is
captured before a frame Y (I) whereas this command was
not computed from this measure since it has been received
after on the controller. In Fig. 2b, a frame X (k) seems to
be not earlier than § time units before the frame Y (k)
but it was received before on the controller such that
it was not considered to produce the command. That’s
the reason why time windows [y, (1) — 2A 42, Yo (1)] and
[Yo (1) = 0,y0 (1) — & + Apaz] are rejected (even if they
may contain relevant situations). Moreover, other situa-
tions may happen outside those intervals. For instance, a
measure observed just after a command might have been
received before on the controller and then used to produce
the command. Moreover, a measure observed before the
freshness requirement might have been in fact received
on the controller later, and might be hence valid. Fig. 3
summarizes the validity domains of the measures that will
refresh the command.

§ ¢
N ®
~ 9 § ¢
/ + s
;t: ;b ;b valid measures
SO

N | Y

Fig. 3. Excluded time windows

Y, (/)\24
3/0(/)
(/)744

Hatched areas in Fig. 3 correspond to measures out of the
scope of a command Y (), while the white area contains
valid (useful) measures. Gray areas correspond to domains
that need to be excluded too since they are ambiguous
(might contain both valid and not valid measures). Con-
sidering periodic measurements and commands, it means
from there that measurement period has to be less than
d — 3A s (regardless clocks synchronisation).

It is important to note here that the width of the ambigu-
ous domains is related to the maximum delay A,,,.. For
high bandwidth networks, it means that the valid domain
will be close to the interval given in (1). The accuracy may
also be improved by considering separately the three delays
mentioned in (6) rather than a common maximum value.
By interconnecting the observer with a higher throughput
link, it is also possible to decrease A, (z).

This study was focussing on end-to-end freshness. It is
not limited to periodic communications between a sensor,
a controller and an actuator. A similar analysis may be
however achieved regarding the end-to-end latency defined
in Lauer et al. (2011): the time elapsed between an event
at the beginning of a functional chain and the first event
depending on it at the end of the chain. This paper shows
furthermore that if someone wants to check the frame
arrival order between two measures or commands, it is
necessary as shown, in Fig. 2a, that the second value is
received at the observer at least after 2A,,,,, time units (if
the sending inter-arrival time is larger than A,,q.).

4. METHODOLOGY
4.1 Data preparation

At this point, it is assumed that a trace (captured by the
on-board observer with a tool like tcpdump and sent to the
ground) is available. The trace corresponds to a Wireshark
pcap file as shown in Fig. 4. As explained previously,
the multicast functionality is used to capture the traffic
in order to be free of the synchronisation and multiple
observability points. It is important to note however that
it may introduced issues that need to be taken into account
in the following data processing (several frames might be
simultaneously forwarded on a switched network and the
frame order perception might be different from one point
compared to another).

In the trace, frames are timestamped (with their arrival
date on the observer) and sorted chronologically. We
assumed also that each frame is encoded according to a
common application protocol and contains a data type
(might be a measure, a command or even a telemetry
information) and a sequence number fields. It means that
is possible to associate for each frame i the type T;, its
sequence number K; and its arrival date on the observer
D;. The capture file might be seen here as a matrix F
where each row corresponds to the set F; = {T;, D;, K;}
with i € {1,...,n}.

In addition, it can be retrieved from the specification of the
mission of the flight a list of functional sequences for which
the end-to-end freshness (and the ordering) property has
to be satisfied. For a given sequence Sj, it corresponds both
to the ordered sets of the related type in the related chain

Destination Protocol l Length Info

Proto

4 0.001710000

Raspberr_4f:80: 7f 98:90:96: al: 8e: 2b Proto 188 Packet 1 of M3

2|
¥ Ethernet II, Src: Hughes_00:13:10 (00:00:10:00:13:10), Dst: IPv4mcast_00:07:37 (01:00:Se: 00: 07: 37)
Address: IPv4mcast_00:07:37 (01:00:Se:00: 07: 37)
o0 = LG bit: Globally unique address (factory default)

1 = 16 bit: Group address (multicast/broadcast)
 Source: Hughes_00:13:10 (00: 00: 10: 00:13:10)
Address: Hughes_00:13:10 (00:00:10:00:13: 10)
[} . = LG bit: Globally unique address (factory default)
95 = 16 bit: Individual address (unicast)
Type: Unknown (0x8548)
Data: ML
Version: 1

v prow, Len: 192, Mumber: 1
Type: Data
 Timestamp: 13554781,753717000 s
EPOCH Time (s): 13534781
Timestamp (ns): 753717000
Message:
Packet Number: 1
Payload Length (bits): 192
Payload:

[ZEEoL 00 Se 00 07 37 00 00
DTN ce 00 08 cf ec 2c 31
5700 01 00 0 00 00 00 00 00 0O
EECM00 00 00 00 00 00 00 00

@ %1 [Frame (frame). 60 bytes I JFrofie Defadk

Fig. 4. Extract of a pcap Wireshark file

C; = {Cj1,...,Cjm} and of the freshness requirements
Rj ={d1,---,0jm}. 0jm means that it is required that
a frame with the type C; n,—1 arrived not earlier than 6;
time-units before a frame with the type C; ,,. It means that
specifications might be gathered in a set S where each item
corresponds to the set S; = (C;|R;). We consider in this
paper that a task only requires a single fresh data frame
T;_1 to produce a data T}.

4.2 Data processing

The next step, following the data selection, is data pro-
cessing. The Algorithm 1 is used to parse the trace file
and hence verify if the freshness is respected for all types
defined in all iterations of all sequences. In fact, it pro-
vides all frames collections that successfully satisfy the
sequences specifications.

Algorithm 1: Parsing trace

Data: The frames captured F = (T|D|K) and the
sequences specifications S = (C|R)
Result: V the successful frames collections

1 forall §; € S do

2 f’(—{fi€f|Ti€Cj};
3 | L+ |Cl;

4 foreach F] | T; = C;,; do
5 P«—{Fi};
6

7

8

9

forall P, € P | P, NEq C; do

k «— |P.|;

p— x| Fl="Pyk;

V < FindInputs(F,p,Cji—k, Rji—k+1);
10 P<+— PU{P. x V};
11 P «— P\P.;

12 if P # (0 then
13 L Vj(—VjUP;

Line 2 filters the trace (according to the sequence) in order
to speed up the algorithm. If a sequence refers several
times to the same type, line 4 might lead to consider a
frame as the final end of a sequence while it was just in
the middle. In line 6, all candidates chains that do not
correspond to the sequence chain specification (function

NEq checks that all types regardful of the ordering are
contained) are taken into consideration. The core of the
algorithm consists then in retrieving a tree with all sets
(P) of frames that match the sequence specifications. The
roots of the trees correspond to the different iterations of
the ending type of the sequence. The function FindInputs
detailed in Algorithm 2 is used to retrieve the list of frames
that are relevant as input of the one considered in the
sequence.

Algorithm 2: FindInputs(F,p,T,d)

Input: The trace F = (T'|D|K), the initial position p,
the searched type 7 and the J-freshness
property

Output: The list V of matching frames

YV«

14— p—1;

while i > 0 and D; > D), — 2A,,,, do

| i¢—i—1; /* skip ambiguous frames */
while i > 0 and D; > D), — 0 + Apqr do
if T; = 7 then
L V+—Vu {]:Z},
1—i—1;

N 0w B W N =

®

9 return V;

The validity is analyzed in Algorithm 2 according to (2)
(see lines 3 and 5). A4z 1S & pre-processing constant that
will have been computed (for instance through Network
Calculus). Several frames are possible when the inter-
arrival time of the input is lower than the freshness
property. These frames will generate the branches of the
trees in Algorithm 1. If no frames are valid, the branch will
be pruned at line 11. At the end, if the condition in line 12
is false, the sequence was not here satisfied. Otherwise,
Algorithm 1 gives all frames collections that may be used
to print the freshness (like in the following section) or the
number of inputs that satisfied any specific type. It also
possible to compute the whole latency of a sequence (the
difference between the arrival date of the last and the first
elements of the sequence). Finally, it may be noticed that
a similar algorithm might be defined to check the ordering
property of the frames of a given type. Such algorithm will
check that the sequence number is increasing all along the
trace and that the time difference between two consecutive
numbers is at least 2A,,,,, (to avoid ambiguous situations).

5. CASE STUDIES

The results presented in this section were obtained by
applying the previous algorithms on a real benchmark
detailed in (Robert et al., 2015, Fig. 5).

5.1 The benchmark

Two scenarios are experimented in the upper stage of a
launcher when the separation of lower stage and boosters
already happened. The topology (Fig. 5) is a 100 Mb/s
switched Ethernet network architecture. Experiments are
achieved in a nominal and a link failure cases.

The architecture is divided in two networks (line and
dashed) and is composed of 17 terminal machines and

Observer

Actuators

Fig. 5. Upper stage topology

2 switches. The observer is connected to both networks
in order to get a unique trace gathering all traffics. The
switching plane is implemented in a static way in order to
not generate additional traffic on the network.

During the experiments, all traffic going through the
network is scheduled and known. 66 flows are configured
among the machines connected to a same network. The
length of each flow is 72 bytes except for six of them that
have a length of 200 bytes. The traffic load is around
2 Mb/s and the maximum delay, if all the flows are
transmitted at the same time is 0.4416 ms. Traffic might
be periodic, aperiodic or event-triggered.

Several sequences are defined. Each frame requires the
end-to-end freshness § to be not greater than 10 ms. By
consequence, the § > 3 % A4, hypothesis is verified and
the Algorithm 1 is used to verify the freshness.

5.2 Results: nominal case

This section presents the results in the nominal case
without any failures. The 10 ms-freshness property is
verified for a functional sequence like in section 3, i.e.
based on a command computed from a measure. The
measure is periodic with a period of 5 ms, such that 1 or 2
measures (X (k) and X (k + 1)) might be used to compute
a command Y (I). The verification of the freshness is done
by evaluating the time difference between a command Y (1)
and each valid measure X (k). Fig. 6a shows each time
difference that respects the freshness requirement.

Fig. 6a shows that at least one fresh measure is available
to compute a command in the framework of (2). The
variation of the freshness is due to the non synchronisation
of the two flows and to the jitters. The clocks deviation
between machines and observer remained however limited
during the experiments, such that X (k) freshness values
remained similar and did not vary so much between 0
to 5 ms as it could be the case for another experiment.
Sometimes, two measures are even available (when it is
not the case, one of the two measure is rejected due to the
non synchronisation issue or the ambiguous domains).

We observe also the ordering in a second experiment. Here
the tested sequence consists of 22 aperiodic frames (of
three types). Table 1 gives additional information that
might be derived from the proposed algorithms. In nominal

T T T T T T T T
1
0 KO K KWK oK KBEORK OB OB K K K OROK kX
0] d-freshness requirement
§/ k" freshness
. (k — 1)*" freshness —%——
= 6 | i
o
8
I 4 ‘ ‘“
) 2 N ‘“
0
0 20 40 60 80 100 120 140 160 180

(a) Nominal case

10
8 S-freshness requirement
X' (k) —a=—
X (k
ol (k) |

N

0 20 40 60 80

100 120 140 160 180

(b) Link failure case

Fig. 6. Freshness of each measure valid for a command. Abscissa gives the sequence number [of the command

case, no packet is lost and the inter-arrival time at the
observer is very close in average to the theoretical value.
Indeed, the minimum inter-arrival time is always higher
than the 2A,,,, criteria, such that frames are received
according to the predefined order.

Table 1. Order results

Criteria Nominal case Link failure case

Packet lost ratio 0% 29 %

Inter-arrival time avg 0.705 s 0.340 s
min 0.009 s 0.009 s
max 4.010 s 1.990 s

5.8 Results: link failure case

This case is experimented by unplugging the controller of
the network in solid in Fig. 5 during about 10 s (the whole
experiment lasts 18 s). Table 1 shows that, in this case,
losts occur and the inter-arrival time decreases.

Regarding the freshness analysis (see Fig. 6b), no measure
X (k) is received and hence enables to satisfy the freshness
requirement during the link failure (for I € [30,123]). In
the launcher case, this issue is however taken into consid-
eration by using a redundancy in the nodes strategy. As
shown by Fig. 5, a second sensor and a second network (the
dashed lines) will sent the same type of data, such that the
controller might use it to compute a new command. The
proposed algorithms enable to verify that this redundancy
will also be able to satisfy freshness requirements since a
measure X' (k) will be at least received in time.

6. CONCLUSION

This paper addresses an important topic for embedded sys-
tems like launchers (or even distributed network satellites):
the tele-monitoring. It focus especially on how advanced
properties may be verified simply based on a trace of all ex-
changes through the network during a flight. The analysis
of the single capture is complex since the timestamps in the
trace do not correspond to the exact sending or receiving
time of the frame from the source to the destination. This
paper proposes methods to verify the end-to-end freshness
and arrival ordering requirements based on a single trace.

Future works aim at adding pre-processing of the trace
into the observer (embedded in the launcher) through a

Software Defined Network architecture. Here the frames
capture might be substituted by OpenFlow communica-
tions.

REFERENCES

ARINC 664 P7 (2003). Part 7 — avionics full duplex
switched ethernet (afdx) network. Aeronautical Radio
Incorporated Specification 664, Aircraft Data Network.

Badache, N., Jaffres-Runser, K., Scharbarg, J.L., and
Fraboul, C. (2014). Managing temporal allocation in
integrated modular avionics. In Proceedings of the 2014
IEEE Emerging Technology and Factory Automation
(ETFA). Barcelona.

Bauer, H., Scharbarg, J.L., and Fraboul, C. (2010). Im-
proving the worst-case delay analysis of an afdx network
using an optimized trajectory approach. IEEE Trans-
actions on Industrial Informatics, 6(4), 521-533. doi:
10.1109/T11.2010.2055877.

Department of Defense (1978). Military standard air-
craft internal time division command/response multi-
plex data bus. MIL-STD 1553B.

Lauer, M., Ermont, J., Boniol, F., and Pagetti, C. (2011).
Latency and freshness analysis on ima systems. In
Emerging Technologies € Factory Automation (ETFA),
2011 IEEFE 16th Conference on. Toulouse, France.

Monchaux, D., Gast, P., and Sangare, J. (2012). Avionic-
x: A demonstrator for the next generation launcher
avionics. FEmbedded Real-Time Software and Systems
(ERTS 2012).

Notebaert, O. (2014). Future on-board networks in space
systems. In 10th IEEFE International Workshop on
Factory Communication Systems. Toulouse, France.

Robert, J., Georges, J.P., and Divoux, T. (2015). On
the observability in switched ethernet networks in the
next generation of space launchers: Problem, challenges
and recommendations. In The Seventh International
Conference on Advances in Satellite and Space Com-
munications (SPACOMM).

Robert, J., Georges, J.P., Divoux, T., et al. (2013). Toward
self-reconfiguration of switched ethernet architectures in
the next generation of space launchers. In The Fifth
International Conference on Advances in Satellite and
Space Communications (SPACOMM).

SAE AS 6802 (2011). Time-triggered ethernet. AS-2D2
Deterministic Ethernet and Unified Networking.

