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FEMs on composite meshes for plasma
equilibrium simulations in tokamaks

Holger Heumann, Francesca Rapetti, Minh Duy Truong

Abstract We rely on a combination of different finite element methods on compos-
ite meshes, for the simulation of axisymmetric plasma equilibria in tokamaks. One
mesh with Cartesian quadrilaterals covers the vacuum chamber and one mesh with
triangles discretizes the region outside the chamber. The two meshes overlap in a
narrow region around the chamber. This approach gives the flexibility to achieve
easily and at low cost higher order regularity for the approximation of the flux func-
tion in the area that is covered by the plasma, while preserving accurate meshing of
the geometric details in the exterior. The continuity of the numerical solution across
the boundary of each subdomain is enforced by a new mortar-like projection.

1 Introduction

The possibility of using composite meshes in finite element (FE) simulations of
industrial problems is a recurrent topic [12, 14, 7, 4, 13]. Composite meshes are
involved as soon as the global discretization of a PDE combines discretizations
on local (overlapping or non-overlapping) subdomains, each suitably triangulated
by non-matching grids. The reason for using composite meshes are various: fitting
the geometry or the local smoothness of the solution, resolving multiple scales in
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regions with irregular data, using fast solvers on structured grids or a divide-and-
conquer/domain decomposition approach to very large problems on parallel ma-
chines.

In the present case, we are looking for a simple and practical approach to in-
troduce in certain parts of the computational domain FE functions that are not only
continuous, but have also first order, second order or higher order continuous deriva-
tives. In general it is very difficult to introduce FE spaces over simplicial unstruc-
tured meshes with such properties. On the other hand, if we work with Cartesian
meshes this becomes very simple. It is sufficient to use tensor products of spline
spaces with sufficiently high regularity. So, as it is naive to expect that technical
devices can be entirely triangulated with Cartesian meshes, we introduce compos-
ite meshes involving Cartesian meshes in those subdomains where we want high
regular FE representations and triangular unstructured meshes in those subdomains
where we want conformity with the geometry.

The industrial application we consider concerns the free boundary plasma equi-
librium in tokamaks for nuclear fusion [2], mathematically described by the force
balance and Maxwell’s equations in the eddy-current approximation. By symmetry
considerations, the free boundary plasma equilibrium problem can be reduced to a
scalar semi-linear elliptic one for the poloidal flux. As the magnetic field and the
current density are tangential to the level sets of the poloidal flux, the precise cal-
culation of the level set distribution for the poloidal flux is fundamental in tokamak
science. Hence, it is important to have good approximations not only of the poloidal
flux but also of its derivatives.

In Figure 1 we show a sketch of the cross section of a tokamak. It contains the
geometrical details such as coils, passive structures and the iron core, that need to
be accurately resolved by a triangulation. A peculiarity of the free boundary plasma
equilibrium problem is the unknown plasma domain, that is implicitly given as the
domain that is bounded by the largest level set that it not intersected by the lim-
iter. At the beginning, in tokamak devices the plasma was always attached to the
limiter, later the focus shifted towards devices with so called divertors that allow to
create plasmas that are completely detached from material. The boundary of such a
plasma is characterized by saddle points, also called X-points, of the poloidal flux.
The magnetic axis, located at the maximum of the poloidal flux, is another impor-
tant critical point to be computed. So, here again, continuous higher derivatives of
approximations of the poloidal flux, are very desirable.

Fig. 1 Right: Geometric de-
scription of the tokamak in the
poloidal plane. Left and mid-
dle: Sketch for characteristic
plasma shapes. The plasma
boundary touches the limiter
(middle) or the plasma is en-
closed by a flux line that goes
through an X-point (right).
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Fig. 2 Left: detail view for
the WEST tokamak, with
the iron core (green), the
passive structures (red) and
the various coils (light blue).
Right: the composite meshes
for the WEST tokamak. 0 1 2 3 4 5 6
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In [9], we showed that the numerical calculation of free boundary plasma equilib-
ria highly benefits from approximating the poloidal flux through some higher regu-
lar FE functions in the interior of the limiter. In the present paper, we rather analyse
the precision of the proposed approach, by varying the discretization parameters.
We thus compute the approximation error between the computed and the synthetic
solution of a model problem for the same method adopted in [9], by varying, for
example, the local polynomial degree in the subdomains, the size of the overlap
between the meshes, the local size of the mesh elements. Indeed, FE methods on
composite meshes are widely used in practice, but their theoretical foundation is
fairly limited in the literature. Therefore, we report here experimental convergence
results for different discretization schemes involving composite meshes.

The outline is the following: In section 2 we recall the classical mortar element
method (MEM) for overlapping meshes in order to introduce, in the following sec-
tion 3, a modified method (MEM-M) that simplifies the implementation by avoiding
integrals over cut elements. We then present experimental convergence results.

2 The mortar element method (MEM) with overlapping meshes

We consider the following Poisson problem for the unknown ψ in the bounded
domain Ω ⊂ Rn with boundary Γ = ∂Ω :

−∇ · (∇ψ) = f in Ω and ψ|∂Ω = ψ0 in Γ , (1)

where ∇ (resp. ∇· ) is the gradient (resp. divergence) operator in Rn. The right-
hand side f and the Dirichlet data ψ0 are given. Let L2(Ω), be the functional
space of measurable functions on Ω that are square integrable in Ω and H1(Ω) =
{u ∈ L2(Ω), ∇u ∈ L2(Ω)2} the Hilbert space endowed with the norm ‖u‖2

H1(Ω)
=

‖u‖2
Ω
+ |u|2H1(Ω)

where |u|2H1(Ω)
= ‖∇u‖2

Ω
. Let Ω in ⊂ Ω be a subdomain with

Ω in ∩Γ = /0 and Ω ex = Ω \Ω in the complement of Ω in in Ω . Further, the bound-
ary of Ω in, γ := ∂Ω in, is the interface between Ω ex and Ω in. To formulate (1) as
a variational problem in a domain decomposition framework, let us introduce the
functional space

Hg = {(v,w) ∈ H1(Ω ex)×H1(Ω in), v|Γ = g, v|γ = w|γ}.

Then, the weak formulation of (1) is: Find (ψex,ψ in) ∈Hψ0 s.t. for all (v,w) ∈H0
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Ω ex

∇ψ
ex ·∇vdx+

∫
Ω in

∇ψ
in ·∇wdx =

∫
Ω ex

f vdx+
∫

Ω in
f wdx . (2)

We wish to introduce different types of meshes T ex and T in in the two subdomains
Ω ex and Ω in. To achieve a maximum of flexibility we do not expect the meshes T ex

and T in to be conforming with Ω ex and Ω in. More precisely, we denote by Ω ex
h and

Ω in
h the domains covered by the mesh elements of T ex and T in, resp., and we

only require that Ω ex ⊂ Ω ex
h ⊂ Ω , Γ ⊂ ∂Ω ex and Ω in ⊂ Ω in

h ⊂ Ω . Hence the ap-
proximation of (2) enters into the framework of overlapping domain decomposition
methods. Let γex = ∂Ω ex

h \Γ and γ in = ∂Ω in
h be the two boundaries of Ω ex

h and Ω in
h

in Ω that replace the interface γ . Then we introduce the space

Vg = {(v,w) ∈ V ex×V in, v|Γ = Π
Dirg, v|γex = Π

exw, w|γ in = Π
inv} ,

where V ex and V in are H1(Ω ex
h ) and H1(Ω in

h ) conforming FE spaces defined over
T ex and T in. The operators Π Dir, Π ex and Π in are projections onto the Dirichlet
trace spaces V

Γ
= tr|Γ V ex, V ex

γ := tr|γex V ex and V in
γ := tr|γ in V in. The MEM with

overlapping domains [10, 3, 1] applied to (2) reads: Find (ψex,ψ in)∈ Vψ0 such that

aex
s (ψex,v)+ain

t (ψ
in,w) = `ex

s ( f ,v)+ `in
t ( f ,w) ∀(v,w)∈V0 , (3)

where
aM

s (ψ,v) :=
∫

Ω M
h

∇ψ ·∇vdx−
∫

Ω ex
h ∩Ω in

h

s∇ψ ·∇vdx ,

`M
s ( f ,v) :=

∫
Ω M

h

f vdx−
∫

Ω ex
h ∩Ω in

h

s f vdx ,

for M = ex and M = in. Optimal convergence results are available when s+ t = 1
and Π ex, Π in, are the L2 projections onto tr|γex V ex, tr|γ in V in, resp. [3, 1]. However,
two very restrictive disadvantages occur with the formulation (3):

1. The assembling of the stiffness matrices associated to aex
s (·, ·) and ain

t (·, ·) in-
volves products of basis functions defined on different meshes. Similarly, the
assembling of the load vectors corresponding to `ex

s ( f , ·) and `in
t ( f , ·) involves

integration over intersections of elements from different meshes.
2. The stability of MEMs requires the projections Π ex and Π in to be stable in H

1
2 .

The obvious choice of L2 projections involves again surface integrals of products
of basis functions defined on different meshes.

In the following section we will introduce two mortar-like mappings different
from the standard L2 projection, that allow to choose s = t = 0 in (3) and hence
avoid the assembling of the stiffness matrix for basis functions on two different
meshes.
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3 A Modified Mortar Mapping (MEM-M)

We recall that the FE spaces V ex and V in can be represented as direct sums V ex =
V ex
◦ ⊕V ex

γ and V in = V in
◦ ⊕V in

γ where V ex
γ = tr|γex V ex and V in

γ = tr|γ in V in are the
earlier introduced trace spaces of V ex and V in. Let us define two mappings Π ex

f ψ in

for ψ in = ψ in
◦ +ψ in

γ , with ψ in
◦ ∈ V in

◦ , ψ in
γ ∈ V in

γ and Π in
f ψex for ψex = ψex

◦ +ψex
γ ,

with ψex
◦ ∈ V ex

◦ , ψex
γ ∈ V ex

γ with:

Π
ex
f ψ

in := Π
ex(ψ in

γ +Ψ
in
◦ ), with ain

0 (Ψ
in
◦ ,w) = `in

0 ( f ,w)−ain
0 (ψ

in
γ ,w)∀w ∈ V in

◦ ,

where Π ex is either the L2-projection or standard nodal interpolation operator onto
V ex

γ and Π in
f analogously defined. We then introduce the space

Vg, f = {(v,w) ∈ V ex×V in, v|Γ = Π
Dirg, v|γex = Π

ex
f w, w|γ in = Π

in
f v} ,

and obtain the following modified version of the MEM for overlapping meshes:
Find (ψex,ψ in) ∈ Vψ0, f such that

aex
0 (ψex,v)+ain

0 (ψ
in,w) = `ex

0 ( f ,v)+ `in
0 ( f ,w) ∀(v,w)∈V0,0 , (4)

A similar approach with the lowest order FE spaces in the non-destructive testing
context has been adopted in [5, 6]. It can be shown that (4) is equivalent to the
following formulation. Find (ψex,ψ in) ∈ V ex×V in, ψex

|Γ = Π Dirg such that:

aex
0 (ψex,v)+ain

0 (ψ
in,w) = `ex

0 ( f ,v)+ `in
0 ( f ,w) ∀(v,w)∈V ex

◦ ×V in
◦ ,v|Γ=0

ψ
ex
|γex = Π

in
ψ

in, ψ
in
|γ in = Π

ex
ψ

ex,
(5)

which corresponds to the numerical zoom formulation in [8]. When the Π ex and Π in

are interpolation operators and V ex and V in are lowest order Lagrangian FE spaces
we can recall an optimal convergence result from [11, Theorem 1] for the error in
the L∞-norm.

4 Numerical Experiments

For the numerical experiments, we consider a rectangular domain Ω = [−1,1]2 and
define Ω in as the polygon with vertices (−0.125,0.5), (0.375,0.25), (0.375,−0.375),
(0,−0.5), (−0.375,−0.375), and (−0.5,0.25). The meshes T in and T ex for the in-
terior and exterior domain will be a Cartesian mesh and a triangular mesh. For sim-
plicity we prefer to take Ω ex

h =Ω ex =Ω \Ω in. For the numerical test, we choose the
data f (x,y) and ψ0 such that ψ(x,y) = cos(πx)sin(πy) is the solution of (1). If hex
(resp. hin) is the maximal diameter of elements in T ex (resp. T in), and pex (resp.
pin) the local polynomial degree of the FE spaces V ex (resp. V in), one has optimal
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convergence if, for a smooth solution, the approximation error in the H1(Ω ex
h ) and

H1(Ω in
h )-norms behaves as O(hp−1), with h = max(hex,hin) and p = min(pex, pin)

(in L2(Ω ex
h ) and L2(Ω in

h )-norms one dares to obtain O(hp)). To keep the presen-
tation as clear as possible we show in the following figures always the maximum
between the error in Ω ex

h and that in Ω in
h .
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Fig. 3 Left and Center: Sketch of the two different settings. We may choose Ω in
h to have a minimal

overlap with Ω ex
h (left), that is γex is contained in the layer of elements of T in which define γ in.

Otherwise, we say that Ω in
h has a large overlap with Ω ex

h (center). Right: Adaptive definition of
γ in in the case of minimal overlap between Ω in

h and Ω ex
h . Note that, γex (magenta) remains fixed,

while γ in (red) changes due to the refinements in Ω in
h . The interior edges of elements of T ex and

T in are omitted for clearness.

We consider two different pairings of FE spaces V ex-V in. The first denoted with
P1-Q1 uses lowest order linear FEs over T ex and lowest order bilinear FEs over
T in. The second pair, denoted with P2-Q3 uses quadratic FEs over T ex and bicubic
FEs over T in. The elements of P2-Q3 are not only continuous on Ω in

h and Ω ex
h but

have also continuous gradients on Ω in
h .
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Fig. 4 Convergence in L2 and H1 of the scheme MEM-M using L2-projection (left) or nodal inter-
polation (right).

We focus on the overlapping MEM-M (4) which uses the modified mortar map-
pings and is equivalent to (5). We also analyse the influence on the error curves of
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using either L2 projections or interpolation to realize the gluing across γex and γ in

for the MEM-M. We start with the case where Ω in
h has minimal overlap with Ω ex

h
(see Fig. 3, left). Thus γ in is adapted with the refinements in Ω in

h as shown in Fig. 3.
Convergence results with MEM-M are presented in Fig. 4. The convergence rate
with MEM-M is optimal for the error in the H1-norm. The results look slightly bet-
ter if we apply the interpolation instead of the L2 projection in the definition of the
mortar mapping.

Next, we study the convergence rates for MEM-M when Ω in
h has a large overlap

with Ω ex
h (see Fig. 3, right). Note that both γex and γ in remain fixed during the refine-

ments in Ω in
h . Once again, the MEM-M yields optimal convergence rate in the H1

norm (see Fig. 4). Moreover in the case of larger overlap we observe even optimal
convergence in the L2-norm. There is no qualitative difference between MEM-M
based on the L2-projection or on the interpolation.

With the classical overlapping MEM (3) with the parameters s and t set to zero
(MEM-0), the convergence rates in the H1 and L2 norms are not optimal in the case
of minimal overlap between Ω in

h and Ω ex
h . The MEM-0 does not yield convergence

in the case of a large overlap between Ω in
h and Ω ex

h .

References

1. Y. Achdou, Y. Maday. The mortar element method with overlapping subdomains. SIAM J.
Numer. Anal., 40(2):601–628, 2002.

2. J. Blum. Numerical Simulation and Optimal Control in Plasma Physics. Wiley/Gauthier-
Villars Series in Modern Applied Mathematics, 1989.

3. X.-C. Cai, M. Dryja, M. Sarkis. Overlapping nonmatching grid mortar element methods for
elliptic problems. SIAM J. Numer. Anal., 36(2):581–606, 1999.

4. G. Chesshire, W.D. Henshaw. Composite overlapping meshes for the solution of partial dif-
ferential equations. J. Comput. Phys., 90(1):1–64, 1990.

5. A. Christophe, L. Santandrea, F. Rapetti, G. Krebs, Y. Le Bihan. An overlapping non-matching
grid mortar element method for Maxwell’s equations. IEEE Trans. Magn., 50(2), 2014.

6. A. Christophe, Y. Le Bihan, F. Rapetti. A mortar element approach on overlapping non-nested
grids: application to eddy current non-destructive testing. Appl. Math. Comp., 267:71–82,
2015.

7. J. Fish, T. Belytschko. Elements with embedded localization zones for large deformation
problems. Comput. & Struct., 30(1):247–256, 1988.

8. F. Hecht, A. Lozinski, O. Pironneau. Numerical zoom and the Schwarz algorithm. In Domain
decomposition methods in science and engineering XVIII, LNCSE 70:63–73, Springer, Berlin,
2009.

9. H. Heumann, F. Rapetti. A finite element method with overlapping meshes for free-boundary
axisymmetric plasma equilibria in realistic geometries. RR-8916, Inria SAM, 2016.

10. Y. A. Kuznetsov. Overlapping domain decomposition with non-matching grids. In Recent
developments in domain decomposition methods and flow problems (Kyoto, 1996; Anacapri,
1996), volume 11 of GAKUTO Int. Ser. Math. Sci. Appl., 62–71. Gakkōtosho, Tokyo, 1998.
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