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Formation of exciton rings and localized bright spots in coupled semiconductor quantum wells
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CNRS, LPTMS, Universite Paris Sud, UMR8626, 91405 Orsay, France;

and University of Bordeaux, LOMA UMR-CNRS 5798, F-33405 Talence Cedex, France

We consider indirect excitons generated at the ring-shaped boundaries between electron- and hole-rich regions
in semiconductor quantum wells (QW’s). We show theoretically that the in-plane translational motion of the
excitons is confined in the radial direction. The confinement potential results from the electrostatic interaction
of the exciton dipole moment with the in-plane electric field induced at the boundary by the macroscopic charge
separation. Our results directly apply to the external ring and the localized bright spots (LBS) observed in the
photoluminescense (PL) pattern of indirect excitons.

I. INTRODUCTION

The observation of the external ring [1,2] and localized
bright spots (LBS) [1,3,4] in PL patterns of indirect excitons in
biased semiconductor QW’s has attracted much attention both
on the experimental [5–8] and the theoretical [9–11] sides
during the past 14 years. All these features were shown to
originate from the reaction-diffusion dynamics of electrons
and holes. The electrons are injected in the nearest to the
positive lead QW layer by the current filaments due to the
applied gate voltage. In the absence of photoexcitation, these
electrons fill uniformly the layer plane. A focused laser is then
used to excite electron-hole pairs in the surrounding barriers.
Holes are captured efficiently by the QW layer close to the
negative lead and form a lake of a positive charge around
the excitation spot [12]. Electrons from the current filaments
going through the lake bind with the holes to form excitonic
ensembles seen as LBS rings in the PL pattern. The interface
between the hole lake and the outer unperturbed electron sea
is seen as the external PL ring.

The external and LBS rings are sources of cold exciton
gases. Spontaneous onset of extended spatial coherence
[13,14], polarization textures [16], and macroscopic ordering
[1] in the PL from these rings have been observed. Theoretical
interpretation of these phenomena goes beyond the classical
reaction-diffusion model and suggests emergence of novel
quantum phases of excitons, in which the interplay between the
dipolar interaction and spin degree of freedom can be studied
at the macroscopic level [15–20].

Until now it has been assumed that, after an exciton has
been created, it propagates out from the charge interface under
combined action of diffusion and repulsive electrostatic inter-
action with other excitons. Careful analysis of the available
experimental data indicates, however, that the assumption of
free propagation of a single exciton in the radial direction
should be revised. As can be inferred from the exciton PL
patterns, the clouds squeeze (reduce the width) with lowering
of temperature [1,4]. This experimental fact raises doubts on
the free radial expansion picture, notably at low temperatures,
where the exciton motion was argued to become ballistic
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[16,17,19]. Indeed, in contrast to the width of a cloud, the
exciton coherence length increases when the temperature is
lowered [14].

Here, we argue that in-plane translational motion of
indirect excitons generated at the rings is confined in the
radial direction. The confinement originates from electrostatic
interaction of the exciton dipole moment with in-plane electric
field induced by the macroscopic charge separation. The field
tilts the dipoles, thus polarizing excitons in the structure plane.
Polarized excitons seek for the region where the in-plane field
is higher, i.e., the region of the charge interface. This way, we
show that the external and LBS rings represent trapped exciton
clouds.

Our argument provides a natural explanation to a whole
series of experimental facts. First, it explains the afore-
mentioned squeezing of the clouds when the temperature is
reduced. Secondly, it allows us to reproduce the excitation
power versus temperature (PT) phase diagram of the external
ring reported in Ref. [1] (and, simultaneously, in Ref. [2]).
Furthermore, it provides understanding to the ”Mexican hat”
spatial profile of the exciton blueshift measured in the vicinity
of an LBS [3]. In fact, this observation had initially prompted a
phenomenological interpretation of LBS’s as trapped exciton
clouds [3,4]. The bump in the central part of the energy profile
has been explained as due to stimulated flux of excitons
towards the center of the trap. This hypothesis is further
supported by the experimentally observed universality in ther-
modynamic behavior of cold exciton gases: different LBS’s
containing strongly different number of excitons, develop the
extended coherence and polarization textures all at the same
critical temperature. This peculiar phenomenon was shown
to be the distinct feature of two-dimensional Bose-Einstein
condensation in an ensemble of harmonically trapped gases
maintained at the same chemical potential [21,22].

The paper is organized as follows. In Sec. II, we consider
interaction of a dipolar exciton with an in-plane field and
obtain the formula for the exciton potential energy due to this
interaction. To calculate the spatial distribution of the field
(exciton potential energy), one needs to know distributions
of electron and hole densities in charged regions. These are
introduced in Sec. III following Ref. [9]. In Sec. IV, we
calculate the electric field in the vicinity of the electron-hole
interface. Section V is devoted to discussions and comparison
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FIG. 1. The macroscipic charge separation induces an in-plane
electric field which hybridizes 1s and 2p states of an indirect exciton.
As a consequence, the excitons become polarized along the field.
Classically, one can say that the field tilts the exciton dipole moment.
Polarized excitons will seek for the regions where the induced electric
field is stronger and, therefore, will become localized at the ring-
shaped boundary.

of our results with the available experimental data. We
conclude this section by showing that our model of an LBS
provides an adequate basis for theoretical interpretation of the
coherence [14] and polarization [16] textures as well.

II. TRAPPING MECHANISM

Since the first experiments on cold exciton gases in
QW’s several trapping configurations have been proposed and
realized. These include strain-induced traps [23–26], traps
created by laser-induced interdiffusion [27], magnetic traps
[28], laser-induced traps [29], and a large variety of proposals
which rely on the electrostatic interaction of the exciton dipole
moment with collinear electric field Ez (z is the structure
growth direction) [30–33]. In the latter case, the interaction
energy is given by ε(x,y) = −edEz(x,y), showing that the
excitons will seek for the regions in the (x,y) plane where the
electric field is stronger.

In our case, the external transverse electric field applied to a
bilayer QW structure is roughly uniform in the structure plane,
so that no artificial potential landscapes for excitons is created.
An indirect exciton generated at the ring has been assumed to
propagate out from the source as a free particle (if one neglects
the exciton-exciton interaction). We are going to show that at
the carrier densities achieved in this kind of experiment the
radial motion of excitons is confined, i.e., excitons are localized
at the ring. The microscopic mechanism of this confinement is
detailed below.

As we have already mentioned, the exciton ring appears
at the boundary between the internal hole-rich region and
the external electron-rich region. Thus one can expect the
existence of in-plane electric field Er (r,θ ) in the vicinity of the
ring oriented everywhere outwards the center, along the radii.
In the ground state an exciton does not interact with this field,
since the relative two-dimensional motion of the electron-hole
pair is characterized by a symmetric wave function. However,
the interaction is already possible in the first order of the
perturbation theory due to admixing of the 2p-exciton state.
Classically, the electric field “stretches” the exciton, tilting
its dipole moment (Fig. 1). As in the case of the artificially

created potential profiles discussed above, interaction of an
in-plane component of the exciton dipole moment with the
built-in electric field at the boundary results in appearance
of an electrostatic trap for the exciton in the radial direction,
which localizes excitons at the ring.

The corresponding interaction energy can be estimated
following the general rules of quantum mechanics. For that
purpose, let us consider the quantum-mechanical problem of
the relative in-plane motion of an electron and a hole confined
to different QW’s (or to diffrent edges of a wide single QW)
and binded into an indirect exciton. The relative e-h motion is
described by the Hamiltonian

HX
0 = − �

2

2μ

(
∂2

∂ρ2
+ 1

ρ

∂

∂ρ
+ 1

ρ2

∂2

∂ϕ2

)
− e2

εε0ρ
,

where ρ = (x,y) and we have let ze = zh for simplicity. This is
nothing but the Hamiltonian of a two-dimensional Hydrogen
atom. Its eigenfunctions can be found in analytical form
[34]. Here we will be interested in 1s and 2p states. The
corresponding wave functions read as

φ1s
X (ρ) =

√
2

π (2aB)2
e−ρ/2aB (1)

for 1s state and

φ
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X (ρ) = 2

9
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X (ρ) = 2

9

√
1

3π (2aB)2

ρ

2aB

e−ρ/6aB (cos ϕ − i sin ϕ),

φ
2p

X (ρ) = 2

9

√
1

6π (2aB)2

(
1 − 2

3

ρ

2aB

)
e−ρ/6aB

(2)

for 2p states. The latter, in the absence of magnetic field,
form a degenerate triplet at the energy ε2p. This energy can be
approximately estimated as the energy of 2s state reported in
Ref. [35].

Treating the spontaneously induced electric field Er as a
perturbation one can write (in the first order)

φ
1sp

X (ρ) = φ1s
X (ρ) +

∑
2p

〈1s| V̂ |2p〉
ε2p − ε1s

φ
2p

X (ρ), (3)

where the summation is over the states (2) and the dipolar
interaction operator V̂ is given by

V̂ = −eEr · ρ = −eErρ cos ϕ.

From Eq. (3) one can see that due to the admixing of 2p states
the exciton becomes polarized in the direction of the field Er

in the structure plane. Therefore it can now interact with this
field and the interaction energy is given by

ε(r) = 〈1sp|V̂ |1sp〉 =
∑
2p

|〈1s|V̂ |2p〉|2
ε2p − ε1s

.

In general, however, the in-plane electric field can be strong
enough to transform the 1s indirect exciton into a strongly
mixed hybrid state. The potential energy of such sp hybridized
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exciton can be found by diagonilizing a 3 × 3 Hamiltonian,

Ĥsp =
⎛
⎝s v v

v p 0
v 0 p

⎞
⎠,

where we have denoted s = ε1s , p = ε2p and v =
〈1s| V̂ |2p ↑〉 = 〈1s| V̂ |2p ↓〉 = eEraB/2

√
6. One obtains

the following set of eigenvalues:

ε = p,

which corresponds to the p-shell oriented perpendicularly to
Er and

ε(r) = s + p ±
√

(s − p)2 + 8v2(r)

2

for the sp hybrids oriented along Er . In what follows, we will
be interested in the dependence of the ground-state energy,

ε0(r) = δ −
√

δ2 + 8v2(r)

2
, (4)

(we have introduced δ = p − s) of the polarized indirect
exciton on the distance from the center of the ring r . Our
main goal is thus to calculate the radial electric field Er as a
function r .

III. RADIAL DISTRIBUTION OF ELECTRON AND HOLE
DENSITIES

To calculate Er , one needs to know the electron and the hole
density distributions, ne and nh. These can be obtained from
the reaction-diffusion model supplemented with the drift term
due to the induced electric field. Here we employ the simplest
model proposed in Ref. [9], neglecting the interaction with the
electric field and allowing the analytic expressions for ne and
nh. In this model, one neglects the escape of photogenerated
holes from the topmost quantum well and assumes that ne and
nh are strictly zero inside and outside the ring, respectively.
The latter approximation is reasonable for the system studied
in Ref. [1], since no significant PL signal is seen in the inner
region between the ring and the photoexcitation spot. Kinetic
equations for steady state then take the form

Dh∇2nh(r) + Pxδ(r) = 0 r � R, (5a)

De∇2ne(r) + G − ne(r)

τe

= 0 r > R. (5b)

Here, De,h are the electron (hole) diffusion constants, G is
a spatially uniform source for electrons, Px is the amount of
holes injected into the QW per second, 1/τe is the electron
escape rate due to tunneling. The linear equations (5) can be
solved analytically. The relevant length scale of the problem is
fixed by the electron depletion length l = √

Deτe. In the limit
R � l, one finds

R = Px

2πGl
,

i.e., the ring radius depends linearly on the excitation power.
For the system under consideration, such behavior of the ring
radius has been observed experimentally [15]. This justifies

a posteriori the assumption R � l. In the same limit, the
expressions for ne and nh take the form

nh(x) = p ln(x−1) 0 < x � 1, (6a)

ne(x) = n(1 − x−1/2e−ζ (x−1)) x > 1, (6b)

where we have introduced p = Px/2πDh, n = Gτe, x ≡ r/R,
and ζ = R/l.

IV. CALCULATION OF THE ELECTRIC FIELD

The knowledge of the electron and hole density profiles
allows one to calculate radial distribution of the electrostatic
field Er . The further simplification of the model, which one
can make here, is to neglect the curvature of the interface.
The numerical study shows that this is indeed correct at least
for large enough ring radii (compared with the width of the
ring) and when one is interested in the field distribution in the
vicinity of the interface [the latter corresponds to x = 1 in (6)].

In this simplified geometry, the total electric field at the
point y ≡ r/R can be represented as the superposition of
electric fields from a large number of elementary filaments
parallel to the interface:

Er (y) = e

2πεε0

(∫ 1 nh(x)dx

y − x
−

∫
1

ne(x)dx

y − x

)
. (7)

The calculation of integrals in Eq. (7) is not trivial. The
integrals have logarithmic divergencies at the point we are
interested in and should be regularized in the sense of the
principal value. The resulting set of equations, suitable for
numerical calculations, has the form

Er (y) = e

2πεε0

(∫ |y−1|

0

±ne,h(y + x) ∓ ne,h(y − x)

x
dx

+
∫ x0

|y−1|

nh(y − x) + ne(y + x)

x
dx

)
|y − 1| � x0,

Er (y) = e

2πεε0

∫ x0

0

±ne,h(x + y) ∓ ne,h(x − y)

x
dx

|y − 1| > x0, (8)

where the sign +/− as well as the subscript e/h states for
y > 1 or y � 1, respectively.

Finally, one should bear in mind, that the CQW’s are
surrounded by conducting contact layers. The contacts will
contain electrostatic images of the electron and the hole lakes,
located on the distances 2kh from the QW’s, where h is the
barrier width (we neglect the space between the QW’s) and
k = 1,2, . . . is an integer. The contribution from the images
can be taken into account by replacing

ne,h −→ ne,h

(
1 + 2x

∞∑
k=1

(−1)k√
x2 + k2ξ 2

)
(9)

in the integrals (8), where ξ ≡ 2h/R.
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FIG. 2. Built-in electrostatic trap for the radial in-plane motion
of indirect excitons at different laser excitation powers. By increasing
the excitation power P one injects more holes in the upper QW and,
provided that the gate voltage Vg is fixed, makes the ring expanding.
Assuming that the parameter p depends linearly on the laser power,
for the values of parameters chosen one obtains the linear growth of
the ring radius R with P . At the same time, the depth of the trap
increases as is shown in the inset.

V. RESULTS AND DISCUSSION

A. External ring

We first discuss trapping of excitons at the external ring.
The exciton potential energy profiles calculated using Eqs. (4)
and (8) are presented in Fig. 2. We used the following set of
parameters: n = 6 × 1010cm−2, ε = 12.9, aB = 10 nm, h =
200 nm, l = 10 μm, and δ = 2 meV. The parameter p which
governs the radial distribution of holes according to (6) took the
values in the range 5.6–11.2 × 1010cm−2, which corresponds
to the increasing laser power P . The fixation of the parameter
n corresponds to the fixed gate voltage Vg .

Consistently with the experimental results presented in
Refs. [2,15], we assumed the ring radius R being proportional
to p. For the given value of p the upper bound x0 in the
integrals (6) had been increased until the shape, the effective
width and the height of the trap saturated. This criterion
was already achieved at x0 ∼ 0.2, that justifies the simplied
geometry we have used. Further increase of x0 leads to the shift
of the whole picture towards higher energies. The numerical
procedure described above qualitatively corresponds to the
experimental configuration of Ref. [5] where the PT phase
diagram of the external ring was obtained. Remarkably, the
depth of the electrostatic trap increases when increasing P
as one can see in the inset of Fig. 2. This observation is in
agreement with the excitation power versus the temperature
(PT) phase diagram of the external ring reported in Refs. [1,2].
Indeed, the depth of the trap should roughly correspond to the
temperature at which the external ring washes out: as soon as
the thermal kinetic energy of the excitons exceeds the potential
barrier height, the excitons become delocalized.

We point out that even in this simplified model one has
a large set of parameters. As expected, the depth of the trap

is strongly sensitive to the electron and hole densities. The
latter can be estimated from the laser excitation density (see
Ref. [12]). The background electron density n = Gτe can in
principle be determined by measuring the electron current
through the sample in the absence of photoexcitation [13],
provided that the electron escape time from the QW due
to tunneling is known in advance [7]. To the best of our
knowledge, neither the electron current nor the tunneling time
have not been measured yet. Therefore n was an adjustable
parameter of the problem.

B. Linear polarization and coherence textures around an LBS

An LBS is essentially a ring of a small radius where the
electron and the hole density distributions are inverted. As the
ring shrinks the excitons form a dense cloud in the center which
is seen as a bright spot in the PL pattern. At low temperatures,
extended spontaneous coherence and polarization textures
have been observed around an LBS. The motion of the excitons
forming the coherent state is governed by an effective potential
produced by the repulsive interaction with the dense bright core
from the internal side and by the electrostatic confinement
potential in the outer region. This assumption is consistent
with the “mexican-hat” profile of the exciton energy observed
in Ref. [3]: the bump in the central part of the hat roughly
corresponds to the maximum of the PL intensity. Below we
show that the linear polarization and forklike defects in the PL
coherence pattern around an LBS can be interpreted as due to
spin-orbit coupled BEC of excitons at the ring-shaped trap.

An exciton in GaAs-based quantum wells considered here
is composed of an electron with the spin ±1/2 and a heavy
hole with the spin ±3/2. Depending on the mutual orientation
of the e and h spins, the spin of an exciton may take four
possible values:

|X〉 =

⎛
⎜⎝

e+1/2h+3/2

e+1/2h−3/2

e−1/2h+3/2

e−1/2h−3/2

⎞
⎟⎠ =

⎛
⎜⎝

X+2

X−1

X+1

X−2

⎞
⎟⎠, (10)

where e±1/2 and h±3/2 stem for the electron and the hole spin
components, respectively. As a consequence of the orbital
momentum conservation rule, only X−1 and X+1 components
are optically active and contribute to the left (σ−) and right
(σ+) circularly polarized emission of the excitons. The X+2

and X−2 components are dark.
Earlier theoretical works on spinor condensates (see, for

example, Ref. [36]) exploited mainly the idea borrowed
from the physics of ferromagnetism: short-range exchange
interaction can favor a phase with broken rotational symmetry.
The orientation and position of the domain walls in this case
are defined by fluctuations of external potential. However, this
is not the case for the condensate of indirect excitons. The ob-
served polarization textures are pinned to the crystallographic
axes and their orientation is the same for each bright spot.

As was first noticed by A. Kavokin [37], this experimental
fact suggests that the exciton spin texture is due to spin-orbit
interaction (SOI). Translational motion of an electron and
a hole in the electrostatic field of ion cores results in the
spin-dependent splitting of the corresponding subbands. In
the absence of structural inversion asymmetry (SIA), the
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FIG. 3. Schematic illustration of the exciton condensate localized
at the ring-shaped channel around an LBS. Color shows the
regions with positive (orange) and negative (blue) degrees of linear
polarization in a qualitative agreement with the experiment [16].
The emitted light is polarized everywhere along k according to the
result (16).

Hamiltonian of a free exciton takes the form [38]

ĤX
BIA = �

2k2

2m
+

⎛
⎜⎜⎝

0 βhke−iφ βekeiφ 0
βhkeiφ 0 0 βekeiφ

βeke−iφ 0 0 βhke−iφ

0 βeke−iφ βhkeiφ 0

⎞
⎟⎟⎠,

(11)

where k is the absolute value of the exciton wave vector k, and
φ is the angle between k and the x axis. The off-diagonal part
of (11) can be obtained as a tensor sum Ĥ e

BIA ⊕ Ĥ h
BIA of an

electron [39],

Ĥ e
BIA = β ′

e

(
σxk

e
x − σyk

e
y

)
, (12)

and a hole [40,41],

Ĥ h
BIA = β ′

h

(
σxk

h
x + σyk

h
y

)
, (13)

spin Hamiltonians, where one should let ke = mek/(me + mh)
and kh = mhk/(me + mh) (we implicitly average out the
relative motion of an electron and a hole within the exciton).
The coordinate axes are chosen as x || [100] and y || [010].

The ground state of the Hamiltonian (11) is the plane wave

|Xφ〉 = 1

2
eik0 r

⎛
⎜⎝

1
−eiφ

−e−iφ

1

⎞
⎟⎠ (14)

with

k0 = m

�2
(βe + βh). (15)

In our case the local orientation of k is imposed by
the ring-shaped confinement, as detailed above and shown
schematically in Fig. 3. The macroscopic occupation of the

single-particle state (14) results in circulation of excitons
around the dense core. The direction of the exciton flow
(clockwise or counter-clockwise) is not important for our
consideration. By evaluating the intensities

Ix = 〈�|x〉 〈x|�〉 = 1
2n(ρ) cos2 φ, (16a)

Iy = 〈�|y〉 〈y|�〉 = 1
2n(ρ) sin2 φ (16b)

with |�〉 = √
n(ρ) |Xφ〉 and

〈x| = (0, 1/
√

2, 1/
√

2, 0) (17)

〈y| = (0, −i/
√

2, i/
√

2, 0), (18)

one obtains the linear polarization degree

ρl ≡ Ix − Iy

Ix + Iy

= cos(2φ). (19)

The results (16) and (19) show that the emitted light is
polarized everywhere along the condensate velocity v0 =
�

m
k0. This is schematically illustrated in Fig. 3. The linear

polarization texture (19) corresponds very well to the textures
observed around an LBS [16,42].

This way, according to our hypothesis, an LBS can be
regarded as a (quantized) vortex of a dilute exciton BEC
pinned to a dense core (the origin of the core remains to be
understood). Numerical simulations of the shift-interferometry
measurement shows that a quantized vortex should be charac-
terized by a pair of opposite forks [14].

VI. CONCLUSIONS

To conclude, we have shown that the rings of dipolar
excitons observed in coupled GaAs quantum wells at low
temperatures represent trapped exciton gases. The trapping is
due to the electrostatic interaction of the excitons with in-plane
electric field induced at the boundary between electron- and
hole-rich regions. Our results are in a good agreement with the
available experimental data. We suggest that the polarization
and coherence patterns observed around LBS can be due to
spin-orbit coupled Bose-Einstein condensation of excitons in
a ring-shaped trap.
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