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Abstract Kechris showed in [9] that there exists a largest Π1
1 set of measure

0. An explicit construction of this largest Π1
1 nullset has later been given in

[7]. Due to its universal nature, it was conjectured by many that this nullset
has a high Borel rank (the question is explicitely mentioned in [4] and [16]).
In this paper, we refute this conjecture and show that this nullset is merely
Σ0

3. Together with a result of Liang Yu, our result also implies that the exact
Borel complexity of this set is Σ0

3.
To do this proof, we develop the machinery of effective randomness and ef-

fective Solovay genericity, investigating the connections between those notions
and effective domination properties.

Keywords Effective descriptive set theory, Higher computability, Effective
randomness, Genericity

1 Introduction

We will study in this paper the notion of forcing with closed sets of positive
measure and several variants of it. This forcing is generally attributed to Solo-
vay, who used it in [15] to produce a model of ZF + DC in which all sets of
reals are Lebesgue measurable. Stronger and stronger genericity for this forc-
ing coincides with stronger and stronger notions of randomness. It is actually
possible to express most of the randomness definitions that have been made
over the years by forcing over closed sets of positive measure.

In the first section we give a brief overview of the part of algorithmic
randomness that we need in the paper. In the second section we make a mod-
ification to the usual definition of effective Solovay genericity directly inspired
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by a notion introduced by Jockusch in [8] about effective genericity for Cohen
forcing. This new definition will reveal itself to be interesting for its connec-
tions with effective domination properties. In the third section we will give a
quick description of what we need of higher computability theory and higher
randomness to approach the last section. Finally in the last section we give
higher analogues of the Solovay genericity notions studied in section two, and
we show again their connections with randomness and higher effective domi-
nation properties. This will allow us to conclude with the Borel complexity of
the largest Π1

1 nullset.

2 General Background

In this paper, we will work in the space of infinite sequences of 0’s and 1’s,
called the Cantor space, denoted by 2ω. We will call strings finite sequences
of 0’s and 1’s, sequences elements of the Cantor space and sets the sets of
sequences. For a string σ, we will denote the set of sequences extending σ by
[σ].

The set of integers We will denote the domain of the computable function
Φe, and [We] will denote

⋃
σ∈We

[σ], where We is seen as a set of strings. We
will denote by 〈, 〉 a fixed computable pairing function from ω × ω to ω.

We will consider computable functionals (computable functions using se-
quences as oracles) as functions from the Cantor space to the Baire space.
Then a computable functional Φ is considered define on X ∈ 2ω if ∀n ΦX(n) ↓
and we denote by domΦ the set {X | ∀n ΦX(n) ↓}. We say that a function f is
computable relative to X or X-computable if there is a computable functional
defined on X such that ΦX = f .

The topology on Cantor space is generated by the basic intervals [σ] =
{X ∈ 2ω | X � σ} for σ a string. For A ⊆ 2ω Lebesgue-measurable, λ(A) will
denote the Lebesgue measure of A, which is the unique Borel measure such
that λ([σ]) = 2−|σ| for all strings σ.

2.1 About the arithmetical complexity of sets

In the Cantor space, open sets can be described as countable unions of strings.
We call an open set effective if it can be described as the union of a com-
putably enumerable set of strings, i.e. if it is equal to [We] for some e. Such a
set is said to be Σ0

1 . On the other hand, when it is open but not necessarily
effectively open, the set is said to be Σ0

1. However, a non-effective open set
is always effective relatively to some oracle. If X is such an oracle, we say
that the set is Σ0

1(X). A closed set is called effective if its complement is an
effective open set, in which case we say that the closed set is a Π0

1 set. We
can then continue to describe the effective Borel sets through the arithmetical
hierarchy as effective unions of effective Borel set of lower complexity and as
their complements. So a Σ0

n+1 set will be an effective union of Π0
n sets, and a
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Π0
n+1 set will be the complement of a Σ0

n+1 set. For example, a set A is Σ0
4 if

we have an integer e such that A =
⋃

m1∈We

⋂
m2∈Wm1

⋃
m3∈Wm2

[Wm3 ]c.

We have a canonical surjection from integers to Σ0
1 sets (The one which

associates to e the computably enumerable set [We]), but also from integers
to Σ0

n sets for a fixed n. In the above example, with n = 4 the integer e is
associated to the Σ0

4 set A. In this context e will be called an index for the
set A.

Also for a computably enumerable set of integers W , we denote by W [t]
the enumeration of W up to stage t. We extend this definition to effective open
sets: if O = [W ], then O[t] = [W [t]]. Similarly, if F = Oc, F [t] = O[t]c.

2.2 About algorithmic randomness

In 1966, Martin-Löf gave in [11] a definition capturing elements of the Cantor
space that can be considered ‘random’. Many nice properties of the Martin-Löf
random sequences make this notion of randomness one of the most interesting
and one of the most studied.

Intuitively a random sequence should not have any atypical property. A
property is here considered atypical if the set of sequences having it is of mea-
sure 0. It also makes sense to consider only properties which can be described
in some effective way (because any X has the property of being in the set {X}
and thus nothing would be random).

Definition 1 An intersection of measurable sets
⋂
nAn is said to be effec-

tively of measure 0 if the function which to n associates the measure of An
is bounded by a decreasing computable function whose limit is 0. A Martin-
Löf test is a Π0

2 set
⋂
nOn effectively of measure 0. We say that X ∈ 2ω is

Martin-Löf random if it is in no Martin-Löf test.

One can iterate this idea by considering Π0
n sets effectively of measure

0 for any n ≥ 2. Martin-Löf randomness is also called 1-randomness, the
use of Π0

3 sets effectively of measure 0 gives us 2-randomness, Π0
4 sets give

us 3-randomness, and so on. The requirement for a Martin-Löf test to be
effectively of measure 0 is important and leads to very nice properties. In
particular there exists a universal Martin-Löf test, i.e. a test containing all the
others (see [11]). This is not the case anymore if we drop the ‘effectively of
measure 0’ condition. Instead we get a notion known as weak-2-randomness.

Definition 2 We say that X ∈ 2ω is weakly-2-random if it is in no Π0
2

nullset.

As a randomness notion, weak-2-randomness is a strictly stronger than
1-randomness, but is strictly weaker than 2-randomness (see [13] section 3.6).
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3 Solovay genericity and its variants

Cohen introduced in [5] the general technique of forcing by forcing with all
dense open sets of the Cantor space (with the usual topology) in a countable
model of ZFC. The most basic effective version of this would be to say that
X is generic if it belongs to all dense Σ0

1 sets, a notion introduced by Kurtz
in [10]. Jockusch introduced and studied in [8] a slightly different notion.

Definition 3 (Kurtz, Jockusch) We say that X is weakly-1-generic if it
belongs to all dense Σ0

1 sets. We say that X is 1-generic if for any Σ0
1 set U ,

either X belongs to U or X belongs to some other Σ0
1 set U ′ disjoint from U .

We will apply Jockusch’s idea behind 1-genericity to forcing with Π0
1 sets.

First note that by definition, the weakly-2-randoms are exactly the sequences
which are in all Σ0

2 sets of measure 1. If we consider the topology generated
by Π0

1 sets of positive measure, because Σ0
2 sets of measure 1 are then dense

open sets for this topology, we also get in some sense a genericity notion.

3.1 Forcing with Π0
1 sets

Adding a measure requirement to the definition of genericity will always link
us to randomness. We study what happens if we drop the measure require-
ment and if we consider instead the Σ0

2 sets which are dense for the topology
generated by the Π0

1 sets, i.e. the Σ0
2 sets which intersect all non-empty Π0

1

set. It is clear that the Cantor space with this topology is a Baire space, i.e.
has the property that an intersection of dense open sets is dense. This directly
comes from the fact that a decreasing intersection of non-empty closed sets is
non-empty. This justifies the following definition:

Definition 4 Let {Gi}i∈ω be the collection of all Σ0
2 sets which intersect all

the Π0
1 sets. We say that X is weakly-Π0

1 -generic if it belongs to
⋂
iGi.

As the next proposition shows, weak-Π0
1 -genericity has nothing to do with

randomness.

Proposition 1 No weakly-Π0
1 -generic sequence is 2-random.

Proof We construct uniformly in n a Σ0
2 set intersecting all Π0

1 sets and with
measure smaller than 2−n. Let {Fe}e∈ω be an enumeration of the Π0

1 sets.
For each e we initialize σe to the first string (using lexicographic order) of
length n + e + 1. Our Σ0

2 set will consist of a computably enumerable set A
of indices of Π0

1 sets. We now describe the algorithm to enumerate elements
of A: At stage t, for each substage e < t in increasing order, if the index of
Fe ∩ [σe] has not been enumerated yet into A, then enumerate it. After that,
if (Fe ∩ [σe])[t] = ∅ then reset σe to be the string of length n+ e+ 1 following
σe in the lexicographic order. If σe is already the last such string, leave it
unchanged.



Higher randomness and forcing with closed sets 5

Let us prove that the measure of theΣ0
2 set represented by A is smaller than

2−n. For each e, if Fe∩ [σe] = ∅ then by compactness (Fe∩ [σe])[t] = ∅ for some
t. Thus at most one string σe of length n+e+1 such that Fe∩[σe] 6= ∅ has been
enumerated into A, and the measure of A is bounded by

∑
e 2−n−e−1 ≤ 2−n.

Now our Σ0
2 set is dense because if Fe is not empty then there exists a string

σe of length n+e+1 such that Fe∩ [σe] is not empty and then A will intersect
Fe.

From this we can then construct a Π0
3 set effectively of measure 0 and

containing all the weakly-Π0
1 -generic sequences.

Following Jockusch’s 1-genericity idea we now define Π0
1 -genericity:

Definition 5 A sequence X is Π0
1 -generic if for all Σ0

2 sets G, either X is in
G or there is a Π0

1 set F disjoint from G such that X is in F .

We now establish a simple but surprising connection with computability
theory, which appears to be previously unknown. We say that a sequence X is
computably dominated if for every total function f : ω → ω, computable
relative to X, there exists a total computable function g such that g dominates
f (i.e. ∀n f(n) ≤ g(n)).

Proposition 2 A set X is Π0
1 -generic iff it is computably dominated.

Proof Suppose X is computably dominated and take any Σ0
2 set

⋃
n Fn. Sup-

pose that X belongs to its complement, a Π0
2 set

⋂
nOn. Let us define the

X-computable function f : ω → ω which to n associates the smallest t so that
X ∈ On[t]. As X is computably dominated, there is a computable function g
which dominates f . Then X ∈

⋂
nOn[g(n)], an effectively closed set disjoint

from
⋃
n Fn.

Conversely suppose that X is Π0
1 -generic and consider a functional Φ,

defined on X. We have that domΦ = {X | ∀n ΦX(n) ↓} is a Π0
2 set containing

X. But then as X is Π0
1 -generic, it is contained in a Π0

1 set F contained
in the domain of Φ. Let us now build1 a computable function f such that
∀X ∈ F ΦX < f . To compute the value of f(n) we find the smallest pair
〈m, t〉 such that for all strings σ of size m with [σ] ⊆ F [t], the functional Φ
halts on n in less than t steps with σ as an oracle (considering that if Φ needs
to use bits of the oracle at positions bigger than |σ|, it does not halt). Then
we set f(n) to the sum of all those values plus one. All we need to show is that
f is total. Fix n and let us prove there is a m so that for all X ∈ F we have
ΦX�m(n) ↓. Suppose not, then for all m there is X ∈ F with Φσm(n) ↑ where
σm = X �m. As {σm}m∈ω is infinite it has at least one limit sequence Y and
as F is closed we have Y ∈ F . Also as ΦY�m(n) ↑ for all m we have that Φ is
not defined on Y which contradicts the hypothesis. Thus for some t we have
that F [t] is covered by a finite union

⋃
i≤k[σi] such that Φσi(n) ↓. It follows

1 One can also directly deduce the existence of such a function f using the fact that the
supremum of a computable function, over an effectively compact set, is right-ce.
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that for some t and some m we have that Φσ(n) halts in less than t steps for
all strings σ of size m such that [σ] ⊆ F [t].

A direct computation shows that the set of computably dominated sequences
is Π0

4 . The above proposition lowers down the Borel complexity to Π0
3: if for

every set A we denote by A◦ the interior of A for the topology generated by
Π0

1 sets, i.e. the union of all Π0
1 sets included in A, then the set of computably

dominated sequences is the intersection over all the Π0
2 sets P , of P ◦∪P c. We

will show later with Theorem 1 that this characterization is optimal: The set
of computably dominated sequences is not Σ0

3.

3.2 Forcing with Π0
1 sets of positive measure

We now introduce a notion of genericity which is a measure-theoretic variation
of Π0

1 -genericity defined in the previous section. The notion will be interesting
for its counterpart in Higher computability. It will also help us to show that the
set of computably dominated sequence is not Σ0

3. Let us consider the topology
generated by Π0

1 sets of positive measure. To obtain weak-2-randomness we
consider only Σ0

2 sets of measure 1. We now would like to consider all Σ0
2

sets which intersect with positive measure every Π0
1 set of positive measure.

In order to keep a genericity notion, we would like to avoid asking explicitly
for the intersection to be of positive measure. To do so, we can consider the
topology generated by Π0

1 sets containing only Martin-Löf randoms: such sets
are necessarily of positive measure, and if they intersect other Π0

1 sets, then
also the intersection must be of positive measure.

Definition 6 Let {Gi}i∈ω be the collection of all Σ0
2 sets A intersecting every

Π0
1 sets of Martin-Löf randoms. Then we say that X is weakly-Π0

1 -Solovay-
generic if it belongs to

⋂
iGi.

Definition 7 We say that X is Π0
1 -Solovay-generic if for any Σ0

2 set A,
either X is in it or there exists a Π0

1 set F of Martin-Löf randoms and disjoint
from A such that X is in it.

Proposition 3 A set X is Π0
1 -Solovay-generic iff it is weakly-2-random and

computably dominated.

Proof Suppose that X is weakly-2-random and computably dominated. Take
any Σ0

2 set and suppose that X does not belong to it. By Proposition 2, as X is
computably dominated, we have that X belongs to some Π0

1 set disjoint from
the Σ0

2 set. Also as X is weakly-2-random it is in particular Martin-Löf random
and thus it must belong to a Π0

1 set containing only Martin-Löf randoms. But
the intersection of these two Π0

1 sets must contain only Martin-Löf randoms
and is disjoint from the Σ0

2 set.
Conversely, suppose that X is Π0

1 -Solovay-generic. It is weakly-2-random,
because in particular it is in every Σ0

2 set of measure 1. It is also by definition
Π0

1 -generic. Then by Proposition 2 we have that it is computably dominated.
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We now use this notion of forcing with Π0
1 sets of Martin-Löf randoms, in

order to show that the set of computably dominated sequences is not Σ0
3. For

this we adapt a technic that Liang Yu exposed in [16], in order to show that
the Borel complexity of the weak-2-randoms is not Σ0

3. The proof we give is
very similar and uses the same key lemma:

Lemma 1 (Yu Liang [16]) For every Π0
1 set P , there is a Π0

2 set
⋂
n Vn of

measure 0, such that for any string σ, if P ∩ [σ] 6= ∅, then P ∩ [σ]∩
⋂
n Vn 6= ∅.

Theorem 1 The set of computably dominated sequences is not Σ0
3.

Proof Suppose that a Π0
2 set

⋂
n Un contains only computably domibated

sequences. Let

B =
⋃
{T | T ∩

⋂
n

Un = ∅ and T is a Π0
1 set of Martin-Löf randoms}

Let us prove that the set B intersects any non-empty Π0
1 set containing only

Martin-Löf randoms. Take any non-empty Π0
1 set P containing only Martin-

Löf randoms. We claim that there must exists a string σ such that [σ]∩P 6= ∅
but such that [σ]∩P ∩

⋂
n Un = ∅. Suppose otherwise and consider

⋂
n Vn, the

Π0
2 set of measure 0 given by Lemma 1. Note that we can suppose that both⋂
n Un and

⋂
n Vn are decreasing intersections. Let σ0 be such that [σ0]∩P 6= ∅.

By hypothesis on
⋂
n Vn and

⋂
n Un, there must exists an extention σ1 of σ0

with [σ1] ⊆ V0, [σ1] ⊆ U0 and such that [σ1] ∩ P 6= 0. By iterating the
same argument, we can build a sequence of strings σ0 ≺ σ1 ≺ σ2 ≺ . . . such
that [σi+1] ⊆ Vi, [σi+1] ⊆ Ui and such that [σi+1] ∩ P 6= ∅. It follows that
the unique sequence Y ∈

⋂
n[σn] ∩ P also belongs to

⋂
n Vn and

⋂
n Un. As

Y ∈
⋂
n Un it must be computably dominated. As Y ∈

⋂
n Vn it is not weakly-

2-random. But as Y ∈ P it is Martin-Löf random. Also by a classical result of
algoritmic randomness, if X is Martin-Löf random but not weakly-2-random,
it is not computably dominated (see for instance Proposition 3.6.4 of [13]),
which gives a contradiction. Thus for every Π0

1 set P containing only Martin-
Löf randoms, there must exists some string σ such that [σ] ∩ P 6= ∅ but such
that [σ]∩P ∩

⋂
n Un = ∅. Consequently B is dense for the topology generated

by Π0
1 sets of Martin-Löf randoms.

Consider now any countable union of Π0
2 sets

⋃
nGn containing only com-

putably dominated sequences. For each set Gn we associate a set Bn defined
as above, which is dense for the topology generated by Π0

1 sets of Martin-
Löf randoms. From Proposition 3, if something is sufficiently generic for this
topology, it is computably dominated (and weakly-2-random). Thus there is a
computably dominated sequence in

⋂
nBn. But we also have by design of the

Bn that
⋂
nBn ∩

⋃
nGn = ∅, which contradicts the fact that

⋃
nGn contains

all the computably dominated sequences.

3.3 A separation for weak and non weak-genericity

We will now prove that weak-genericity is not enough to obtain computable
domination. For this we shall adapt a proof of a theorem in [1] saying that for
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any function f , there is a weakly-2-random X and an X-computable function
g not dominated by f . Here we want weak-Π0

1 -Solovay-genericity instead of
weak-2-randomness.

Theorem 2 For any function f : ω → ω there is an X weakly-Π0
1 -Solovay-

generic computing a function g : ω → ω which is above f infinitely often.

Proof For this proof we will use the Kucěra-Gács theorem, saying that within
any Π0

1 set of positive measure, we can computably encode any real by some
sequence of this Π0

1 set. However for both the encoding and the decoding we
need to know the same lower bound on the measure of the set. We give here
the exact theorem that we use to do our proof:

Theorem 3 (Kucěra-Gács) There is a computable function Φ such that
uniformly in an integer n, a rational q and an index e for a Π0

1 set F with
λ(F ) > q, one can find, relatively to the halting problem, a string σ so that
[σ] ∩ F is still of positive measure and so that the function Φ with σ as an
oracle and applied to 〈e, q〉, outputs n.

One can find a detailed proof of this theorem in section 3.3.2 of [13]. Let us
say that a Σ0

2 set has the (∗) property if it intersects with positive measure
all Π0

1 sets of positive measure. The weakly-Π0
1 -Solovay-generic sequence X

will be defined as the limit of a sequence of strings σ0 ≺ σ1 ≺ σ2 ≺ . . . of
longer and longer length. We first give a naive version of our argument: In the
first Π0

1 component F of the first Σ0
2 set with the (*) property, we use the

Kucěra-Gács theorem to encode f(0) + 1 using an index e for F and a lower
bound q for the measure of F . It means that as specified in Theorem 3 we
find a string σ0 so that the function Φ with σ0 as an oracle and applied to
〈q, e〉 will output f(0) + 1. As [σ0]∩F still has positive measure there is a Π0

1

set enumerated in the second Σ0
2 set with the (∗) property, which intersects

[σ0]∩F with positive measure. We then encode in this second Π0
1 set the value

f(1) + 1. We can continue like this for all Σ0
2 sets with the (*) property.

There are two obstacles here. During the decoding, we do not know what
Π0

1 sets and what lower bound on their measure have been used for the en-
coding. So we do not just encode in each Π0

1 set the value f(n) + 1, but also
the index of the next Σ0

2 set with the (∗) property. But even if we have the
right Σ0

2 set, we still do not know which of its Π0
1 sets have been used. We fix

this by doing something special in both the encoding and the decoding. Fix in
advance an enumeration {〈ni, qi〉}i<ω where ni is an integer and qi a rational.
During the encoding, pick the Π0

1 set number ni such that the pair 〈ni, qi〉 is
the first in the enumeration with the property that qi is a lower bound of its
measure. During the decoding, we will pick Π0

1 sets in the order given by the
same enumeration. If at some point the measure goes below the corresponding
rational we will know it in a finite time. Then we restart the decoding with
the next Π0

1 set in the enumeration. We know that at some point we will have
the right one.

However, a last problem is that by the time we have the right Π0
1 set,

we might have decided a lot of values of the function f and maybe the one
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that we have coded is already taken. The trick is to design the encoding in a
way that we know in advance the time it will take to reach the right Π0

1 set.
The value of f we encode has to be chosen accordingly. We now give the details.

The encoding:

Without loss of generality we can suppose f strictly increasing. Let {Si}i∈ω
be an enumeration of all the Σ0

2 sets. For each Si and each n let us define the
Π0

1 set Fi,n so that Si =
⋃
n Fi,n. Now let {ei}i<ω be a list of indices for all

the Σ0
2 sets Sei having the (∗) property. Let {〈ni, qi〉}i<ω be an effective list

of all pairs of integers and rationals.

Let us define a string σ0 = ε (the empty string), a Π0
1 set T0 = Fe0,0, and

an integer representing time with t0 = 0. Start by encoding f(0) + 1 and e1
into T0 ∩ [σ0], assuming without loss of generality that it has measure bigger
than some q that we will reuse in the decoding. Let σ1 be the string encod-
ing those values. Suppose now that for i ≤ k + 1 the strings σi have been
defined, and for i ≤ k the integers ti and the Π0

1 sets Ti have been defined.
Let us define σk+2, tk+1 and Tk+1. Let i be the smallest integer such that
λ(Fek+1,ni ∩ Tk ∩ [σk+1]) ≥ qi. Let t be the computational time necessary to
decode the two values encoded in Tk ∩ [σk], which is also the computational
time necessary to find σk+1 during the decoding, assuming we already know X,
Tk, σk, and the lower bound on the measure of Tk∩ [σk] that has been used for
the encoding. Let t′ be the smallest computational time s so that for all j < i
we have λ(Fek+1,nj ∩ Tk ∩ [σk+1])[s] < qj , and let tk+1 = tk + t + t′. let Tk+1

be Fek+1,ni ∩ Tk. Then we encode f(tk+1 + 1) + 1 and ek+2 into Tk+1 ∩ σk+1,
using qi as a lower bound. Finally let σk+2 be the string encoding those values.

The decoding:

We set e0 to be the same as the one used in the encoding, n0 = 0, q0 to
be the measure used in the encoding of the first two values in T0 ∩ [σ0], and
T0 = Fe0,n0 . For each k > 0 we initialize the Π0

1 set Tk = ∅, the integers ek = 0
and the pairs 〈nk, qk〉 to be the first element in the list {〈ni, qi〉}i<ω. Then we
set for each k ≥ 0 the string σk = ε.

At stage t for each substage k ≤ t in increasing order, if Tk = ∅ go to the
stage t+ 1. Otherwise check whether λ(Tk ∩ [σk])[t] ≥ qk.

Case 1 : λ(Tk ∩ [σk])[t] ≥ qk. Then perform the t first computation steps
of the decoding with Tk ∩ [σk] as the Π0

1 set and qk as the lower bound on the
measure. If in t steps or less we get two values a and b, set all the unassigned
values of g(m) for m ≤ t to be a and set ek+1 to be b. Also set σk+1 to be the
prefix used in the decoding and Tk+1 to be Tk ∩ Fek+1,nk+1

. Then go to next
substage, or next stage if it is the last substage.

Case 2 : λ(Tk∩ [σk])[t] < qk. Then move 〈nk, qk〉 to the next element in the
list {〈ni, qi〉}i<ω. Set Tk = Tk−1 ∩ Fek,nk

. Also for all k′ > k reset Tk′ to be ∅
and 〈nk′ , qk′〉 to the first element in the list {〈ni, qi〉}i<ω. Then restart at the
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same stage t and the same substage k.

Verification:
Let the stages tk be those that we defined during the encoding process.

Let us prove that at stage tk and substage k of the decoding process we have
the right Π0

1 set Tk, the right string σk and the right value qk used for the
encoding.

It is obviously true for t0. Suppose this is true up to k and let us show
this is true for k + 1. Let i be the index so that 〈ni, qi〉 is the first pair in
the enumeration with λ(Fek+1,ni

∩ Tk ∩ [σk+1])[t] ≥ qi. Recall that tk+1 =
tk + t + t′, where t′ is the smallest time such that for all j < i we have
λ(Fek+1,nj

∩Tk∩[σk+1])[t] < qj and where t is the computational time necessary
to find σk+1 during the decoding, assuming we already know Tk, σk and the
lower bound on the measure of Tk ∩ [σk] that have been used for the encoding.
By the induction hypothesis we already have those three inputs at time tk.
Then at time tk+t we know Tk, σk+1, and using σk+1, we know ek+1. Obviously
by the time tk + t + t′ we could eliminate all the Fek+1,nj

for j < i and then
we have the right Tk+1.

Now let us prove that g is infinitely often bigger than f . When we just
moved to the right Tk, no more values of g will be decided until the two values
are decoded inside Tk ∩ [σk]. The reason is that for all k′ > k the set Tk′ is
reset to ∅ in the algorithm. Then until this is done the values of g are decided
at most up to tk. And once this is done we have the right value of f(tk+1)+1
that we will have assigned to some g(s) for at least one s ≤ tk + 1. As f is
strictly increasing we have g(s) > f(s).

Using Theorem 2, we have some weakly-Π0
1 -Solovay-generics which are not

computably dominated and so not Π0
1 -Solovay-generic. One can prove that

weakly-Π0
1 -Solovay-genericity implies weakly-Π0

1 -genericity by showing that
any Σ0

2 set intersecting all the Π0
1 sets also intersects with positive measure all

Π0
1 sets of positive measure. Take any Σ0

2 set intersecting all the Π0
1 sets. Take

now a set F of positive measure and consider the Σ0
2 set

⋃
n Fn of Martin-Löf

randoms (the complement of the universal Martin-Löf test). As it has measure
1, there is some Fn such that F ∩Fn has positive measure. But by hypothesis
our Σ0

2 set intersects F∩Fn. The intersection contains only Martin-Löf random
sequences and thus is necessarily of positive measure. Thus there is also some
weakly-Π0

1 -generics which are not Π0
1 -generics.

4 Background on higher computability and higher randomness

We now give a few definitions of higher computability and higher randomness.
The Turing reductions are replaced by hyperarithmetical reductions. One in-
tuitive way to understand a hyperarithmetical computation is to think of a
standard Turing computation, but with an infinite-time Turing machine. For
those machines the computational time is not an integer anymore, but an or-
dinal. Tapes are infinite and pre-filled with 0’s, at a successor stage everything
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happens as in a regular Turing machine. At a limit stage, the machine changes
to a special ‘limit’ state, the head comes back to the first cell of the first tape
and if the value of a cell of a tape does not converge, it is reset to 0 (otherwise
it is set to the limit of its previous values). The rest works as usual.

For example, we can build the ordinal time Turing machine which on a
tape, at finite computation time t = 〈s, e〉 write 1 on the cell number e of this
tape if the program number e halts in less than s steps. At ordinal time ω we
then have the halting problem on this tape. Then stages ω + n can be used
to compute what one could compute with the halting problem. This can be
iterated to compute anything that could be computed in a finite jump. But we
can even go beyond a finite jump and continue through the ordinal jumps. To
formalize this properly we need to fix the notion of notation for computable
ordinals.

4.1 Computable ordinals

More details about this section can be found in [14]. An ordinal is defined as
the order type of a well-ordered set. When the ordinal is infinite and countable
it can be the order-type of a well-ordered set with domain ω. We say that a
countable ordinal α is computable if we have a relation R ⊆ ω × ω which is a
well-founded linear order of a subset of ω of order-type α and if there is some
e such that (n,m) ∈ R↔ 〈n,m〉 ∈We. In this case we say that e codes for α
and we write |e| = α. Let us denote by W the set of integers which code for
computable ordinals and let us denote by Wα the set of integers which code
for computable ordinals strictly smaller than α.

As there are uncountably many countable ordinals, not all of them are
computable. Moreover it is known that they form a strict initial segment of
the countable ordinals. We denote by ωck1 the smallest non-computable ordinal.
This notion can then be relativised. We say that e is an X-code for the ordinal
α if we have a relation R ⊆ ω × ω which is a well-founded linear order of
a subset of ω of order-type α and if (n,m) ∈ R ↔ 〈n,m〉 ∈ WX

e . We then
write |e|X = α. We denote by WX the set of X-codes for X-computable
ordinals, and we denote by WX

α the set of X-codes for X-computable ordinals
strictly smaller than α. Finally, we call ωX1 the smallest ordinal which is non-
computable relatively to X. Note that any countable ordinal is computable
with a representation of itself as an oracle.

4.2 Second order definable sets

We say that a sequence X is hyperarithmetic if for some computable function
f and some computable ordinal α we have n ∈ X ↔ f(n) ∈ Wα. One can
define the hyperarithmetic sequences equivalently as the sequences we can
Turing-compute with sufficiently many successive effective joins and iterations
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of the jump, constructed by induction over the computable ordinals. Also
coming back to the analogy with infinite-time Turing machines we have in [6]
a theorem saying that a sequence X is hyperarithmetic iff it can be computed
by an infinite-time Turing-machine in a computable ordinal length of time.
Similarly we define what is hyperarithmetic for sets. We say that A ⊆ 2ω is
hyperarithmetic if there exists e and α computable such that X ∈ A ↔ e ∈
WX
α .

We now define Π1
1 sequences. While hyperarithmetic sequences can be con-

sidered to be the higher counterpart of computable sequences, Π1
1 sequences

can be considered to be the higher counterpart of computably enumerable se-
quences. They are the sequences one can define with a formula of arithmetic
containing arbitrary many first order quantifications and only universal second
order quantifications (with no negations in front of them). We have another
equivalent definition. A sequence X is Π1

1 if for some computable function f
we have n ∈ X ↔ ∃α < ωck1 f(n) ∈ Wα. Coming back to the analogy with
infinite-time Turing machines, the Π1

1 sequences also correspond to the sets
of integers one can enumerate along computable ordinal length of time with
such a machine (when we interpret sequences as sets of integers, considering
that n in the set iff the n-th bit of the sequence is one). The Σ1

1 sequences
are their complements (again, when we see sequences as sets of integers), the
higher equivalent of co-recursively enumerable sequences. Finally a set A is
Π1

1 if we have an integer e so that X ∈ A↔ ∃α < ω1 e ∈ WX
α . We also have

a canonical surjection from integers to Π1
1 sets, so like the arithmetical sets,

they can be indexed (in the above example, e is an index for the Π1
1 set A).

A set is called ∆1
1 if it is both Σ1

1 and Π1
1 . By a theorem of Kleene (see

chapter 2 in [14]) they are exactly the hyperarithmetical sets. An index for a
∆1

1 set will consist of a pair of two indices. One expressing it as a Π1
1 predicate

and one expressing its complement as a Π1
1 predicate.

Note that for Π1
1 sets, the existential quantification over the ordinals goes

up to ω1. Indeed, if ωX1 > ωck1 it is possible that X ∈ A is witnessed by some
X-code e for α ≥ ωck1 . This leads us to a Π1

1 set of great importance for this
paper, the set {X | ωX1 > ωck1 } (the proof that this set if Π1

1 can be found in
section 9.1 of [13]). We now state two theorems that will be useful for the rest
of the paper.

Theorem 4 (Sacks [14]) Uniformly in ε and an index for a ∆1
1 set A, one

can compute an index for a Σ1
1 closed set F so that F ⊆ A and λ(A−F ) ≤ ε.

Also one can uniformly from an index of a ∆1
1 set obtain an index for the ∆1

1

real being the measure of this set.

Theorem 5 (Spector [14]) If f : ω → WX is a total Π1
1 (X) functional

predicate then supn |f(n)| < ωX1 .
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4.3 Higher randomness

We now introduce notions of randomness which are higher effective variations
of the usual randomness notions.

Definition 8 (Sacks) We say that X ∈ 2ω is ∆1
1-random if it is in no ∆1

1

nullset.

Martin-Löf was actually the first to promote this notion (see [12]), suggest-
ing that it was the appropriate mathematical concept of randomness. Even if
his first definition undoubtedly became the most successful over the years,
this other definition got a second wind recently on the initiative of Hjorth
and Nies who started to study the analogy between the usual notions of ran-
domness and their higher counterparts. In order to do so they created in [7] a
higher analogue of Martin-Löf randomness.

Definition 9 (Hjorth, Nies) A Π1
1 -Martin-Löf test is given by an effectively

null intersection of open sets
⋂
nOn, each On being Π1

1 uniformly in n. A
sequence X is Π1

1 -ML-random if it is in no Π1
1 -Martin-Löf test.

This definition is strictly stronger than ∆1
1-randomness (see Corollary 9.3.5

in [13]). The higher analogue of weak-2-randomness has also been studied (see
[4]).

Definition 10 We say that X is weakly-Π1
1 -random if it belongs to no⋂

nOn with each On open set Π1
1 uniformly in n and with λ(

⋂
nOn) = 0.

Earlier, Sacks gave an even stronger definition, made possible by a theorem
of Lusin saying that even though Π1

1 sets are not necessarily Borel, they remain
all measurable.

Definition 11 (Sacks) We say that X ∈ 2ω is Π1
1 -random if it is in no Π1

1

nullset.

This last definition is of great importance. Kechris proved that there is a
universal Π1

1 nullset, in the sense that it contains all the others (see [9]). Later,
Hjorth and Nies gave in [7] an explicit construction of this Π1

1 nullset. Chong
and Yu proved in [4] that weakly-Π1

1 -randomness is strictly stronger than
Π1

1 -Martin-Löf-randomness, but it is still unknown whether Π1
1 -randomness

coincides with weakly-Π1
1 -randomness.

To separate the two notions, the idea of showing they have different Borel
complexity was promoted in [4]. In the next section we show that this will not
be possible, by proving that the biggest Π1

1 nullset has the surprisingly small
Borel complexity of Σ0

3. Using results of [17] we will conclude that the Borel
complexity of both the weakly-2-randoms and the Π1

1 -randoms, is strictly Π0
3.

We now give some important results about higher randomness, that will be
needed to achieve this:

Theorem 6 (Sacks) The set {X | ωX1 > ωck1 } has measure 0.
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Thus no X such that ωX1 > ωck1 is Π1
1 -random. The following beautiful

theorem of Chong, Yu and Nies (see [3]) strengthens Sacks’ theorem:

Theorem 7 (Chong, Yu, Nies) A sequence X is Π1
1 -random iff it is ∆1

1-
random and ωX1 = ωck1 .

One could also define the randomness notion introduced by Σ1
1 nullsets,

but this turns out to be equivalent to ∆1
1-randomness.

Theorem 8 (Sacks) A ∆1
1-random sequence is in no Σ1

1 nullset. Therefore
Σ1

1 -randomness coincides with ∆1
1-randomness.

5 Higher Solovay genericity and its variants

Definition 12 We say that X is weakly-Σ1
1-Solovay-generic if it belongs

to all sets of the form
⋃
n Fn which intersect with positive measure all the Σ1

1

closed sets of positive measure, where each Fn is a Σ1
1 closed set uniformly in

n.

Definition 13 We say that X is Σ1
1-Solovay-generic if for any set of the

form
⋃
n Fn where each Fn is a Σ1

1 closed set uniformly in n, either X is in⋃
n Fn or X is in some Σ1

1 closed set of positive measure F , disjoint from⋃
n Fn.

As in the lower case, one could drop the measure requirement in the defini-
tion of Σ1

1 -Solovay-genericity and obtain interesting relations with domination
properties. However we will focus in this paper only on (weakly-)Σ1

1 -Solovay-
genericity.

Unlike in the lower case, we have that the set of weakly-Σ1
1 -Solovay-generics

is of measure 1. We can actually prove easily that they coincide with the
weakly-Π1

1 -randoms. Let
⋃
n Fn be a uniform union of Σ1

1 closed sets with
measure strictly smaller than 1. Let

⋂
nOn be its complement. As it is a Π1

1

set, we have e such that X ∈
⋂
nOn ↔ ∃α < ω1 e ∈ WX

α . But by Theorem
6 we have that {X | ∃α ≥ ωck1 e ∈ WX

α } ⊆ S is of measure 0. Thus for
some computable α we have that {X | e ∈ WX

α } has positive measure. As it
is a ∆1

1 set, we can find using Theorem 4 a Σ1
1 closed set of positive measure

contained in it. Thus
⋃
n Fn does not intersect all Σ1

1 closed sets of positive
measure. Conversely a uniform union of Σ1

1 closed sets of measure 1 intersects
with positive measure any Σ1

1 closed set of positive measure. Then the weakly-
Σ1

1 -Solovay-generics are exactly the weakly-Π1
1 -randoms.

We will now prove that the notion of Σ1
1 -Solovay-genericity is exactly the

notion of Π1
1 -randomness. As explained at the end of the section (after The-

orem 10), one can also consider this equivalence as the higher counterpart of
Proposition 3.
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We already know from Theorem 7 that if X is weakly-Π1
1 -random but not

Π1
1 -random, then ωX1 > ωck1 . We will show that if X is Σ1

1 -Solovay-generic
then ωX1 = ωck1 which will prove the difficult part of the equivalence.

In order to prove this, we use a technique developed by Sacks and simplified
by Greenberg, to show that the set of X with ωX1 > ωck1 has measure 0. First
note that if ωX1 > ωck1 then there is o ∈ WX such that |o|X = ωck1 . In particular
for each n we can uniformly restrain the relation coded by o to all elements
smaller than n. If |o|X is a limit ordinal this gives a set of X-codes for ordinals
smaller than |o|X but cofinal (i.e. unbounded) in |o|X . Thus if ωX1 > ωck1 , there
is a function f : ω →WX computable in X such that supn |f(n)|X = ωck1 . The
idea is the following. Suppose that for some X we have a computable function
Φe such that:

∀n ∃α < ωck1 ΦXe (n) ∈ WX
α

Suppose also that X is Σ1
1 -Solovay-generic. Then we will show that the supre-

mum of |ΦXe (n)| over n ∈ ω is strictly smaller than ωck1 . To show this we need
an approximation lemma, which can be seen as an extension of Theorem 4.

Lemma 2 For a Σ1
1 predicate S(X) ↔ ∀α < ωck1 e /∈ WX

α , uniformly in e
and n one can find a Σ1

1 closed set F ⊆ S with λ(S − F ) ≤ 2−n.

Proof One can equivalently write S(X) ↔ ∀o ∈ W e /∈ WX
|o|. Let So be the

predicate e /∈ WX
|o|. If o ∈ W one can uniformly in o and e obtain an index for

the ∆1
1 predicate So. The Π1

1 index for it corresponds to the property : ”There
exists no bijection from |e| to a strict initial segment of |o|X”, and a Π1

1 index
for its complement is : ”There exists no infinite backward sequence in |e|, and
there exists no bijection from |o|X to an initial segment of |e|.” Note that if
o /∈ W, the index is still well defined but does not correspond to anything
specific.

Then uniformly in an index for So and in n we can find using Theorem 4
a Σ1

1 closed set Fo such that Fo ⊆ So with λ(So − Fo) ≤ 2−o2−n. Now let us
define F (X) ↔ ∀o ∈ W X ∈ Fo. As an intersection of closed sets, the set F
is closed. And as W is Π1

1 and Fo is Σ1
1 uniformly in o, we have that F is Σ1

1 .
To conclude we also we have that:

λ(S − F ) = λ(
⋃
o∈W S − Fo)

≤ λ(
⋃
o∈W So − Fo)

≤
∑
o∈W λ(So − Fo) ≤ 2−n.

We can now prove the desired theorem:

Theorem 9 If Y is Σ1
1 -Solovay-generic then ωY1 = ωck1 .

Proof Suppose that Y is Σ1
1 -Solovay-generic. For any functionnal Φ, consider

the set
P = {X | ∀n ∃α < ωck1 ΦX(n) ∈ WX

α }.

Let Pn = {X | ∃α < ωck1 ΦX(n) ∈ WX
α } and Pn,α = {X | ΦX(n) ∈ WX

α }, so
P =

⋂
n Pn and Pn =

⋃
α<ωck

1
Pn,α.
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From Lemma 2 we can find uniformly in n a uniform union of Σ1
1 closed

sets included in P cn with the same measure as P cn. From this we can find a
uniform union of Σ1

1 closed sets included in P c with the same measure as P c.
Suppose that Y is in P , as it is Σ1

1 -Solovay-generic we have a Σ1
1 closed set F of

positive measure containing Y which is disjoint from P c up to a set of measure
0, formally λ(F ∩ P c) = 0. In particular for each n we have λ(F ∩ P cn) = 0
and then λ(F c ∪ Pn) = 1. Then let f be the total function which to each pair
〈n,m〉 associates the smallest code on,m ∈ W such that:

λ(F c|on,m| ∪ Pn,|on,m|) > 1− 2−m

where F cα is the ∆1
1 set of strings which are witnessed to be in F c via an ordinal

smaller than α. Using second part of Theorem 4 one can prove that f is Π1
1 .

Let α∗ = supn,m |f(n,m)|. By Theorem 5 we have that α∗ < ωck1 . Then we
have:

∀n λ(F cα∗ ∪
⋃
α<α∗ Pα,n) = 1

→ ∀n λ(Fα∗ ∩
⋂
α<α∗ P

c
α,n) = 0

→ ∀n λ(F −
⋃
α<α∗ Pα,n) = 0

→ λ(F −
⋂
n

⋃
α<α∗ Pα,n) = 0

As X is Σ1
1 -Solovay-generic it is in particular weakly-Σ1

1 -Solovay-generic
and then weakly-Π1

1 -random. Thus by Theorem 8 it belongs to no Σ1
1 set of

measure 0. Then as F −
⋂
n

⋃
α<α∗ Pα,n is a Σ1

1 set of measure 0 we have that

X belongs to
⋂
n

⋃
α<α∗ Pα,n and then supn Φ

X(n) ≤ α∗ < ωck1 .

We can now prove the equivalence:

Theorem 10 The set of Σ1
1 -Solovay-generics is exactly the set of Π1

1 -randoms.

Proof Using Theorem 7 we have that the Σ1
1 -Solovay-generics are included in

the Π1
1 -randoms. We just have to prove the reverse inclusion.

Suppose Y is not Σ1
1 -Solovay-generic. If ωY1 > ωck1 then Y is not Π1

1 -
random. Otherwise ωY1 = ωck1 and in this case there is a sequence of Σ1

1 closed
sets

⋃
n Fn of positive measure such that X is not in

⋃
n Fn and such that

any Σ1
1 closed set of positive measure which is disjoint from

⋃
n Fn does not

contain Y . The complement of
⋃
n Fn is a Π1

1 set P containing Y . Let e be
so that P (X) ↔ ∃α < ω1 e ∈ WX

α . As ωY1 = ωck1 and P (Y ), we have that
∃α < ωck1 e ∈ WY

α . But then Y is in a ∆1
1 set that one can approximate using

Theorem 4 by an effective union of Σ1
1 closed sets of the same measure. Thus

as X can be in none of them it is in a Π1
1 set of measure 0 and then not

Π1
1 -random.

The previous theorem gives an interesting corollary, making a connection
with another domination property. We say that a sequence X is hyp-dominated
if for every total function f : ω → ω, ∆1

1 relative to X, there exists a total ∆1
1

function g such that g dominates f (i.e. ∀n f(n) ≤ g(n)). Chong, Yu and Nies
proved in [3] that all Π1

1 -random sequences are hyp-dominated. It follows from
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that and from the previous theorem that a sequence X is Σ1
1 -Solovay-generic

iff it is weakly-2-random and hyp-dominated. This can be seen as the higher
counterpart of Proposition 3.

We have a second corollary, giving a higher bound on the Borel complexity
of the Π1

1 -randoms, and then on the biggest Π1
1 nullset.

Corollary 1 The set of Π1
1 -randoms is Π0

3.

The Π0
3 set is obtained exactly the same way we obtain the Π0

3 set of
computably dominated sequences. The following result of Liang Yu (see [17])
can be used to prove that the set of Π1

1 -randoms is not Σ0
3.

Theorem 11 (Liang Yu) Let
⋂
nOn be a Π0

2 sets contaning only weakly-
Π1

1 -randoms. Then the set {F | F is a Σ1
1 closed set and

⋂
nOn ∩ F = ∅}

intersects with positive measure any Σ1
1 closed sets of positive measure.

It follows that the set of weakly-Π1
1 -randoms cannot be Σ0

3 but also that
the set of Π1

1 -randoms cannot be Σ0
3. Indeed, suppose that the set of Π1

1 -
randoms is equal to

⋃
n

⋂
mOn,m each On,m being open. For each n let An =

{F | F is a Σ1
1 closed set and

⋂
mOn,m ∩ F = ∅}. We have⋂

n

An ∩
⋃
n

⋂
m

On,m = ∅

and from Theorem 11 we have that
⋂
nAn contains some Solovay-Σ1

1 -generic
elements, which contradicts that

⋃
n

⋂
mOn,m contains all of them.

The author, together with Bienvenu and Greenberg separated recently in [2]
the notion of weakly-Solovay-Σ1

1 -generic from the one of Solovay-Σ1
1 -generic:

There exists a weakly-Π1
1 -random sequence which is not Π1

1 -random.
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