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). In this paper, we refute this conjecture and show that this nullset is merely Σ 0 3 . Together with a result of Liang Yu, our result also implies that the exact Borel complexity of this set is Σ 0 3 . To do this proof, we develop the machinery of effective randomness and effective Solovay genericity, investigating the connections between those notions and effective domination properties.

Introduction

We will study in this paper the notion of forcing with closed sets of positive measure and several variants of it. This forcing is generally attributed to Solovay, who used it in [START_REF] Solovay | A model of set-theory in which every set of reals is Lebesgue measurable[END_REF] to produce a model of ZF + DC in which all sets of reals are Lebesgue measurable. Stronger and stronger genericity for this forcing coincides with stronger and stronger notions of randomness. It is actually possible to express most of the randomness definitions that have been made over the years by forcing over closed sets of positive measure. by a notion introduced by Jockusch in [START_REF] Jockusch | Simple proofs of some theorems on high degrees of unsolvability[END_REF] about effective genericity for Cohen forcing. This new definition will reveal itself to be interesting for its connections with effective domination properties. In the third section we will give a quick description of what we need of higher computability theory and higher randomness to approach the last section. Finally in the last section we give higher analogues of the Solovay genericity notions studied in section two, and we show again their connections with randomness and higher effective domination properties. This will allow us to conclude with the Borel complexity of the largest Π 1 1 nullset.

General Background

In this paper, we will work in the space of infinite sequences of 0's and 1's, called the Cantor space, denoted by 2 ω . We will call strings finite sequences of 0's and 1's, sequences elements of the Cantor space and sets the sets of sequences. For a string σ, we will denote the set of sequences extending σ by [σ].

The set of integers W e will denote the domain of the computable function Φ e , and [W e ] will denote σ∈We [σ], where W e is seen as a set of strings. We will denote by , a fixed computable pairing function from ω × ω to ω.

We will consider computable functionals (computable functions using sequences as oracles) as functions from the Cantor space to the Baire space. Then a computable functional Φ is considered define on X ∈ 2 ω if ∀n Φ X (n) ↓ and we denote by dom Φ the set {X | ∀n Φ X (n) ↓}. We say that a function f is computable relative to X or X-computable if there is a computable functional defined on X such that Φ X = f . The topology on Cantor space is generated by the basic intervals [σ] = {X ∈ 2 ω | X σ} for σ a string. For A ⊆ 2 ω Lebesgue-measurable, λ(A) will denote the Lebesgue measure of A, which is the unique Borel measure such that λ([σ]) = 2 -|σ| for all strings σ.

About the arithmetical complexity of sets

In the Cantor space, open sets can be described as countable unions of strings.

We call an open set effective if it can be described as the union of a computably enumerable set of strings, i.e. if it is equal to [W e ] for some e. Such a set is said to be Σ 0 1 . On the other hand, when it is open but not necessarily effectively open, the set is said to be Σ 0 1 . However, a non-effective open set is always effective relatively to some oracle. If X is such an oracle, we say that the set is Σ 0 1 (X). A closed set is called effective if its complement is an effective open set, in which case we say that the closed set is a Π 0 1 set. We can then continue to describe the effective Borel sets through the arithmetical hierarchy as effective unions of effective Borel set of lower complexity and as their complements. So a Σ 0 n+1 set will be an effective union of Π 0 n sets, and a Π 0 n+1 set will be the complement of a Σ 0 n+1 set. For example, a set A is Σ 0 4 if we have an integer e such that A =

m1∈We m2∈Wm 1 m3∈Wm 2 [W m3 ] c .
We have a canonical surjection from integers to Σ 0 1 sets (The one which associates to e the computably enumerable set [W e ]), but also from integers to Σ 0 n sets for a fixed n. In the above example, with n = 4 the integer e is associated to the Σ 0 4 set A. In this context e will be called an index for the set A.

Also for a computably enumerable set of integers W , we denote by W [t] the enumeration of W up to stage t. We extend this definition to effective open sets

: if O = [W ], then O[t] = [W [t]]. Similarly, if F = O c , F [t] = O[t] c .

About algorithmic randomness

In 1966, Martin-Löf gave in [START_REF] Martin-Löf | The definition of random sequences[END_REF] a definition capturing elements of the Cantor space that can be considered 'random'. Many nice properties of the Martin-Löf random sequences make this notion of randomness one of the most interesting and one of the most studied.

Intuitively a random sequence should not have any atypical property. A property is here considered atypical if the set of sequences having it is of measure 0. It also makes sense to consider only properties which can be described in some effective way (because any X has the property of being in the set {X} and thus nothing would be random).

Definition 1 An intersection of measurable sets n A n is said to be effectively of measure 0 if the function which to n associates the measure of A n is bounded by a decreasing computable function whose limit is 0. A Martin-Löf test is a Π 0 2 set n O n effectively of measure 0. We say that X ∈ 2 ω is Martin-Löf random if it is in no Martin-Löf test.

One can iterate this idea by considering Π 0 n sets effectively of measure 0 for any n ≥ 2. Martin-Löf randomness is also called 1-randomness, the use of Π 0 3 sets effectively of measure 0 gives us 2-randomness, Π 0 4 sets give us 3-randomness, and so on. The requirement for a Martin-Löf test to be effectively of measure 0 is important and leads to very nice properties. In particular there exists a universal Martin-Löf test, i.e. a test containing all the others (see [START_REF] Martin-Löf | The definition of random sequences[END_REF]). This is not the case anymore if we drop the 'effectively of measure 0' condition. Instead we get a notion known as weak-2-randomness.

Definition 2 We say that X ∈ 2 ω is weakly-2-random if it is in no Π 0 2 nullset.
As a randomness notion, weak-2-randomness is a strictly stronger than 1-randomness, but is strictly weaker than 2-randomness (see [START_REF] Nies | Computability and Randomness[END_REF] section 3.6).

Solovay genericity and its variants

Cohen introduced in [START_REF] Cohen | Set theory and the continuum hypothesis[END_REF] the general technique of forcing by forcing with all dense open sets of the Cantor space (with the usual topology) in a countable model of ZFC. The most basic effective version of this would be to say that X is generic if it belongs to all dense Σ 0 1 sets, a notion introduced by Kurtz in [START_REF] Kurtz | Randomness and genericity in the degrees of unsolvability[END_REF]. Jockusch introduced and studied in [START_REF] Jockusch | Simple proofs of some theorems on high degrees of unsolvability[END_REF] a slightly different notion.

Definition 3 (Kurtz, Jockusch) We say that X is weakly-1-generic if it belongs to all dense Σ 0 1 sets. We say that X is 1-generic if for any Σ 0 1 set U , either X belongs to U or X belongs to some other Σ 0 1 set U disjoint from U .

We will apply Jockusch's idea behind 1-genericity to forcing with Π 0 1 sets. First note that by definition, the weakly-2-randoms are exactly the sequences which are in all Σ 0 2 sets of measure 1. If we consider the topology generated by Π 0 1 sets of positive measure, because Σ 0 2 sets of measure 1 are then dense open sets for this topology, we also get in some sense a genericity notion. Definition 4 Let {G i } i∈ω be the collection of all Σ 0 2 sets which intersect all the Π 0 1 sets. We say that X is weakly-Π 0 1 -generic if it belongs to i G i .

As the next proposition shows, weak-Π 0 1 -genericity has nothing to do with randomness.

Proposition 1 No weakly-Π 0 1 -generic sequence is 2-random.

Proof We construct uniformly in n a Σ 0 2 set intersecting all Π 0 1 sets and with measure smaller than 2 -n . Let {F e } e∈ω be an enumeration of the Π 0 1 sets. For each e we initialize σ e to the first string (using lexicographic order) of length n + e + 1. Our Σ 0 2 set will consist of a computably enumerable set A of indices of Π 0 1 sets. We now describe the algorithm to enumerate elements of A: At stage t, for each substage e < t in increasing order, if the index of F e ∩ [σ e ] has not been enumerated yet into A, then enumerate it. After that, if (F e ∩ [σ e ])[t] = ∅ then reset σ e to be the string of length n + e + 1 following σ e in the lexicographic order. If σ e is already the last such string, leave it unchanged.

Let us prove that the measure of the Σ 0 2 set represented by A is smaller than 2 -n . For each e, if F e ∩[σ e ] = ∅ then by compactness (F e ∩[σ e ])[t] = ∅ for some t. Thus at most one string σ e of length n+e+1 such that F e ∩[σ e ] = ∅ has been enumerated into A, and the measure of A is bounded by e 2 -n-e-1 ≤ 2 -n . Now our Σ 0 2 set is dense because if F e is not empty then there exists a string σ e of length n + e + 1 such that F e ∩ [σ e ] is not empty and then A will intersect F e .

From this we can then construct a Π 0 3 set effectively of measure 0 and containing all the weakly-Π 0 1 -generic sequences.

Following Jockusch's 1-genericity idea we now define Π 0 1 -genericity:

Definition 5 A sequence X is Π 0 1 -generic if for all Σ 0 2 sets G, either X is in G or there is a Π 0 1 set F disjoint from G such that X is in F .
We now establish a simple but surprising connection with computability theory, which appears to be previously unknown. We say that a sequence X is computably dominated if for every total function f : ω → ω, computable relative to X, there exists a total computable function g such that g dominates

f (i.e. ∀n f (n) ≤ g(n)). Proposition 2 A set X is Π 0 1 -generic iff it is computably dominated.
Proof Suppose X is computably dominated and take any

Σ 0 2 set n F n . Sup- pose that X belongs to its complement, a Π 0 2 set n O n . Let us define the X-computable function f : ω → ω which to n associates the smallest t so that X ∈ O n [t]. As X is computably dominated, there is a computable function g which dominates f . Then X ∈ n O n [g(n)], an effectively closed set disjoint from n F n .
Conversely suppose that X is Π 0 1 -generic and consider a functional Φ, defined on X. We have that dom

Φ = {X | ∀n Φ X (n) ↓} is a Π 0 2 set containing X. But then as X is Π 0 1 -generic, it is contained in a Π 0 1 set F contained in the domain of Φ.
Let us now build 1 a computable function f such that ∀X ∈ F Φ X < f . To compute the value of f (n) we find the smallest pair m, t such that for all strings σ of size m with [σ] ⊆ F [t], the functional Φ halts on n in less than t steps with σ as an oracle (considering that if Φ needs to use bits of the oracle at positions bigger than |σ|, it does not halt). Then we set f (n) to the sum of all those values plus one. All we need to show is that f is total. Fix n and let us prove there is a m so that for all X ∈ F we have Φ X m (n) ↓. Suppose not, then for all m there is X ∈ F with Φ σm (n) ↑ where σ m = X m . As {σ m } m∈ω is infinite it has at least one limit sequence Y and as F is closed we have Y ∈ F . Also as Φ Y m (n) ↑ for all m we have that Φ is not defined on Y which contradicts the hypothesis. Thus for some t we have that F [t] is covered by a finite union i≤k [σ i ] such that Φ σi (n) ↓. It follows that for some t and some m we have that Φ σ (n) halts in less than t steps for all strings σ of size m such that

[σ] ⊆ F [t].
A direct computation shows that the set of computably dominated sequences is Π 0 4 . The above proposition lowers down the Borel complexity to Π 0 3 : if for every set A we denote by A • the interior of A for the topology generated by Π 0 1 sets, i.e. the union of all Π 0 1 sets included in A, then the set of computably dominated sequences is the intersection over all the Π 0 2 sets P , of P • ∪ P c . We will show later with Theorem 1 that this characterization is optimal: The set of computably dominated sequences is not Σ 0 3 .

3.2 Forcing with Π 0 1 sets of positive measure

We now introduce a notion of genericity which is a measure-theoretic variation of Π 0 1 -genericity defined in the previous section. The notion will be interesting for its counterpart in Higher computability. It will also help us to show that the set of computably dominated sequence is not Σ 0 3 . Let us consider the topology generated by Π 0 1 sets of positive measure. To obtain weak-2-randomness we consider only Σ 0 2 sets of measure 1. We now would like to consider all Σ 0 2 sets which intersect with positive measure every Π 0 1 set of positive measure. In order to keep a genericity notion, we would like to avoid asking explicitly for the intersection to be of positive measure. To do so, we can consider the topology generated by Π 0 1 sets containing only Martin-Löf randoms: such sets are necessarily of positive measure, and if they intersect other Π 0 1 sets, then also the intersection must be of positive measure. Definition 6 Let {G i } i∈ω be the collection of all Σ 0 2 sets A intersecting every Π 0 1 sets of Martin-Löf randoms. Then we say that X is weakly-Π 0 1 -Solovaygeneric if it belongs to i G i .

Definition 7

We say that X is Π 0 1 -Solovay-generic if for any Σ 0 2 set A, either X is in it or there exists a Π 0 1 set F of Martin-Löf randoms and disjoint from A such that X is in it.

Proposition 3 A set X is Π 0 1 -Solovay-generic iff it is weakly-2-random and computably dominated.

Proof Suppose that X is weakly-2-random and computably dominated. Take any Σ 0 2 set and suppose that X does not belong to it. By Proposition 2, as X is computably dominated, we have that X belongs to some Π 0 1 set disjoint from the Σ 0 2 set. Also as X is weakly-2-random it is in particular Martin-Löf random and thus it must belong to a Π 0 1 set containing only Martin-Löf randoms. But the intersection of these two Π 0 1 sets must contain only Martin-Löf randoms and is disjoint from the Σ 0 2 set. Conversely, suppose that X is Π 0 1 -Solovay-generic. It is weakly-2-random, because in particular it is in every Σ 0 2 set of measure 1. It is also by definition Π 0 1 -generic. Then by Proposition 2 we have that it is computably dominated.

We now use this notion of forcing with Π 0 1 sets of Martin-Löf randoms, in order to show that the set of computably dominated sequences is not Σ 0 3 . For this we adapt a technic that Liang Yu exposed in [START_REF] Yu | Descriptive set theoretical complexity of randomness notions[END_REF], in order to show that the Borel complexity of the weak-2-randoms is not Σ 0 3 . The proof we give is very similar and uses the same key lemma: Lemma 1 (Yu Liang [START_REF] Yu | Descriptive set theoretical complexity of randomness notions[END_REF]) For every Π 0 1 set P , there is a Π 0 2 set n V n of measure 0, such that for any string σ, if

P ∩ [σ] = ∅, then P ∩ [σ] ∩ n V n = ∅.
Theorem 1 The set of computably dominated sequences is not Σ 0 3 . Proof Suppose that a Π 0 2 set n U n contains only computably domibated sequences. Let

B = {T | T ∩ n U n = ∅ and T is a Π 0 1 set of Martin-Löf randoms}
Let us prove that the set B intersects any non-empty Π 0 1 set containing only Martin-Löf randoms. Take any non-empty Π 0 1 set P containing only Martin-Löf randoms. We claim that there must exists a string σ such that [σ] ∩ P = ∅ but such that [σ] ∩ P ∩ n U n = ∅. Suppose otherwise and consider n V n , the Π 0 2 set of measure 0 given by Lemma 1. Note that we can suppose that both n U n and n V n are decreasing intersections. Let σ 0 be such that [σ 0 ]∩P = ∅. By hypothesis on n V n and n U n , there must exists an extention σ 1 of σ 0 with [σ 1 ] ⊆ V 0 , [σ 1 ] ⊆ U 0 and such that [σ 1 ] ∩ P = 0. By iterating the same argument, we can build a sequence of strings

σ 0 ≺ σ 1 ≺ σ 2 ≺ . . . such that [σ i+1 ] ⊆ V i , [σ i+1 ] ⊆ U i and such that [σ i+1 ] ∩ P = ∅. It follows that the unique sequence Y ∈ n [σ n ] ∩ P also belongs to n V n and n U n . As Y ∈ n U n it must be computably dominated. As Y ∈ n V n it is not weakly- 2-random. But as Y ∈ P it is Martin-Löf random.
Also by a classical result of algoritmic randomness, if X is Martin-Löf random but not weakly-2-random, it is not computably dominated (see for instance Proposition 3.6.4 of [START_REF] Nies | Computability and Randomness[END_REF]), which gives a contradiction. Thus for every Π 0 1 set P containing only Martin-Löf randoms, there must exists some string σ such that [σ] ∩ P = ∅ but such that [σ] ∩ P ∩ n U n = ∅. Consequently B is dense for the topology generated by Π 0 1 sets of Martin-Löf randoms. Consider now any countable union of Π 0 2 sets n G n containing only computably dominated sequences. For each set G n we associate a set B n defined as above, which is dense for the topology generated by Π 0 1 sets of Martin-Löf randoms. From Proposition 3, if something is sufficiently generic for this topology, it is computably dominated (and weakly-2-random). Thus there is a computably dominated sequence in n B n . But we also have by design of the B n that n B n ∩ n G n = ∅, which contradicts the fact that n G n contains all the computably dominated sequences.

A separation for weak and non weak-genericity

We will now prove that weak-genericity is not enough to obtain computable domination. For this we shall adapt a proof of a theorem in [START_REF] Barmpalias | Jump inversions inside effectively closed sets and applications to randomness[END_REF] saying that for any function f , there is a weakly-2-random X and an X-computable function g not dominated by f . Here we want weak-Π 0 1 -Solovay-genericity instead of weak-2-randomness.

Theorem 2 For any function f : ω → ω there is an X weakly-Π 0 1 -Solovaygeneric computing a function g : ω → ω which is above f infinitely often.

Proof For this proof we will use the Kucěra-Gács theorem, saying that within any Π 0 1 set of positive measure, we can computably encode any real by some sequence of this Π 0 1 set. However for both the encoding and the decoding we need to know the same lower bound on the measure of the set. We give here the exact theorem that we use to do our proof: Theorem 3 (Kucěra-Gács) There is a computable function Φ such that uniformly in an integer n, a rational q and an index e for a Π 0 1 set F with λ(F ) > q, one can find, relatively to the halting problem, a string σ so that [σ] ∩ F is still of positive and so that the function Φ with σ as an oracle and applied to e, q , outputs n.

One can find a detailed proof of this theorem in section 3.3.2 of [START_REF] Nies | Computability and Randomness[END_REF]. Let us say that a Σ 0 2 set has the ( * ) property if it intersects with positive measure all Π 0 1 sets of positive measure. The weakly-Π 0 1 -Solovay-generic sequence X will be defined as the limit of a sequence of strings σ 0 ≺ σ 1 ≺ σ 2 ≺ . . . of longer and longer length. We first give a naive version of our argument: In the first Π 0 1 component F of the first Σ 0 2 set with the (*) property, we use the Kucěra-Gács theorem to encode f (0) + 1 using an index e for F and a lower bound q for the measure of F . It means that as specified in Theorem 3 we find a string σ 0 so that the function Φ with σ 0 as an oracle and applied to q, e will output f (0) + 1. As [σ 0 ] ∩ F still has positive measure there is a Π 0 1 set enumerated in the second Σ 0 2 set with the ( * ) property, which intersects [σ 0 ] ∩ F with positive measure. We then encode in this second Π 0 1 set the value f (1) + 1. We can continue like this for all Σ 0 2 sets with the (*) property. There are two obstacles here. During the decoding, we do not know what Π 0

1 sets and what lower bound on their measure have been used for the encoding. So we do not just encode in each Π 0 1 set the value f (n) + 1, but also the index of the next Σ 0 2 set with the ( * ) property. But even if we have the right Σ 0 2 set, we still do not know which of its Π 0 1 sets have been used. We fix this by doing something special in both the encoding and the decoding. Fix in advance an enumeration { n i , q i } i<ω where n i is an integer and q i a rational. During the encoding, pick the Π 0 1 set number n i such that the pair n i , q i is the first in the enumeration with the property that q i is a lower bound of its measure. During the decoding, we will pick Π 0 1 sets in the order given by the same enumeration. If at some point the measure goes below the corresponding rational we will know it in a finite time. Then we restart the decoding with the next Π 0 1 set in the enumeration. We know that at some point we will have the right one.

However, a last problem is that by the time we have the right Π 0 1 set, we might have decided a lot of values of the function f and maybe the one that we have coded is already taken. The trick is to design the encoding in a way that we know in advance the time it will take to reach the right Π 0 1 set. The value of f we encode has to be chosen accordingly. We now give the details.

The encoding:

Without loss of generality we can suppose f strictly increasing. Let {S i } i∈ω be an enumeration of all the Σ 0 2 sets. For each S i and each n let us define the Π 0 1 set F i,n so that S i = n F i,n . Now let {e i } i<ω be a list of indices for all the Σ 0 2 sets S ei having the ( * ) property. Let { n i , q i } i<ω be an effective list of all pairs of integers and rationals.

Let us define a string σ 0 = (the empty string), a Π 0 1 set T 0 = F e0,0 , and an integer representing time with t 0 = 0. Start by encoding f (0) + 1 and e 1 into T 0 ∩ [σ 0 ], assuming without loss of generality that it has measure bigger than some q that we will reuse in the decoding. Let σ 1 be the string encoding those values. Suppose now that for i ≤ k + 1 the strings σ i have been defined, and for i ≤ k the integers t i and the Π 0 1 sets T i have been defined. Let us define σ k+2 , t k+1 and T k+1 . Let i be the smallest integer such that λ(F e k+1 ,ni ∩ T k ∩ [σ k+1 ]) ≥ q i . Let t be the computational time necessary to decode the two values encoded in T k ∩ [σ k ], which is also the computational time necessary to find σ k+1 during the decoding, assuming we already know X, T k , σ k , and the lower bound on the measure of T k ∩ [σ k ] that has been used for the encoding. Let t be the smallest computational time s so that for all j < i we have λ(F e k+1 ,nj ∩ T k ∩ [σ k+1 ])[s] < q j , and let t k+1 = t k + t + t . let T k+1 be F e k+1 ,ni ∩ T k . Then we encode f (t k+1 + 1) + 1 and e k+2 into T k+1 ∩ σ k+1 , using q i as a lower bound. Finally let σ k+2 be the string encoding those values.

The decoding:

We set e 0 to be the same as the one used in the encoding, n 0 = 0, q 0 to be the measure used in the encoding of the first two values in T 0 ∩ [σ 0 ], and T 0 = F e0,n0 . For each k > 0 we initialize the Π 0 1 set T k = ∅, the integers e k = 0 and the pairs n k , q k to be the first element in the list { n i , q i } i<ω . Then we set for each k ≥ 0 the string σ k = .

At stage t for each substage k ≤ t in increasing order, if

T k = ∅ go to the stage t + 1. Otherwise check whether λ(T k ∩ [σ k ])[t] ≥ q k . Case 1 : λ(T k ∩ [σ k ])[t] ≥ q k .
Then perform the t first computation steps of the decoding with T k ∩ [σ k ] as the Π 0 1 set and q k as the lower bound on the measure. If in t steps or less we get two values a and b, set all the unassigned values of g(m) for m ≤ t to be a and set e k+1 to be b. Also set σ k+1 to be the prefix used in the decoding and T k+1 to be T k ∩ F e k+1 ,n k+1 . Then go to next substage, or next stage if it is the last substage.

Case 2 : λ(T k ∩ [σ k ])[t] < q k . Then move n k , q k to the next element in the list { n i , q i } i<ω . Set T k = T k-1 ∩ F e k ,
n k . Also for all k > k reset T k to be ∅ and n k , q k to the first element in the list { n i , q i } i<ω . Then restart at the same stage t and the same substage k.

Verification:

Let the stages t k be those that we defined during the encoding process. Let us prove that at stage t k and substage k of the decoding process we have the right Π 0 1 set T k , the right string σ k and the right value q k used for the encoding.

It is obviously true for t 0 . Suppose this is true up to k and let us show this is true for k + 1. Let i be the index so that n i , q i is the first pair in the enumeration with λ(F e k+1 ,ni ∩ T k ∩ [σ k+1 ])[t] ≥ q i . Recall that t k+1 = t k + t + t , where t is the smallest time such that for all j < i we have λ(F e k+1 ,nj ∩T k ∩[σ k+1 ])[t] < q j and where t is the computational time necessary to find σ k+1 during the decoding, assuming we already know T k , σ k and the lower bound on the measure of T k ∩ [σ k ] that have been used for the encoding. By the induction hypothesis we already have those three inputs at time t k . Then at time t k +t we know T k , σ k+1 , and using σ k+1 , we know e k+1 . Obviously by the time t k + t + t we could eliminate all the F e k+1 ,nj for j < i and then we have the right T k+1 . Now let us prove that g is infinitely often bigger than f . When we just moved to the right T k , no more values of g will be decided until the two values are decoded inside T k ∩ [σ k ]. The reason is that for all k > k the set T k is reset to ∅ in the algorithm. Then until this is done the values of g are decided at most up to t k . And once this is done we have the right value of f (t k + 1) + 1 that we will have assigned to some g(s) for at least one s ≤ t k + 1. As f is strictly increasing we have g(s) > f (s).

Using Theorem 2, we have some weakly-Π 0 1 -Solovay-generics which are not computably dominated and so not Π 0 1 -Solovay-generic. One can prove that weakly-Π 0 1 -Solovay-genericity implies weakly-Π 0 1 -genericity by showing that any Σ 0 2 set intersecting all the Π 0 1 sets also intersects with positive measure all Π 0 1 sets of positive measure. Take any Σ 0 2 set intersecting all the Π 0 1 sets. Take now a set F of positive measure and consider the Σ 0 2 set n F n of Martin-Löf randoms (the complement of the universal Martin-Löf test). As it has measure 1, there is some F n such that F ∩ F n has positive measure. But by hypothesis our Σ 0 2 set intersects F ∩F n . The intersection contains only Martin-Löf random sequences and thus is necessarily of positive measure. Thus there is also some weakly-Π 0 1 -generics which are not Π 0 1 -generics.

4 Background on higher computability and higher randomness

We now give a few definitions of higher computability and higher randomness. The Turing reductions are replaced by hyperarithmetical reductions. One intuitive way to understand a hyperarithmetical computation is to think of a standard Turing computation, but with an infinite-time Turing machine. For those machines the computational time is not an integer anymore, but an ordinal. Tapes are infinite and pre-filled with 0's, at a successor stage everything happens as in a regular Turing machine. At a limit stage, the machine changes to a special 'limit' state, the head comes back to the first cell of the first tape and if the value of a cell of a tape does not converge, it is reset to 0 (otherwise it is set to the limit of its previous values). The rest works as usual.

For example, we can build the ordinal time Turing machine which on a tape, at finite computation time t = s, e write 1 on the cell number e of this tape if the program number e halts in less than s steps. At ordinal time ω we then have the halting problem on this tape. Then stages ω + n can be used to compute what one could compute with the halting problem. This can be iterated to compute anything that could be computed in a finite jump. But we can even go beyond a finite jump and continue through the ordinal jumps. To formalize this properly we need to fix the notion of notation for computable ordinals.

Computable ordinals

More details about this section can be found in [START_REF] Sacks | Higher recursion theory[END_REF]. An ordinal is defined as the order type of a well-ordered set. When the ordinal is infinite and countable it can be the order-type of a well-ordered set with domain ω. We say that a countable ordinal α is computable if we have a relation R ⊆ ω × ω which is a well-founded linear order of a subset of ω of order-type α and if there is some e such that (n, m) ∈ R ↔ n, m ∈ W e . In this case we say that e codes for α and we write |e| = α. Let us denote by W the set of integers which code for computable ordinals and let us denote by W α the set of integers which code for computable ordinals strictly smaller than α.

As there are uncountably many countable ordinals, not all of them are computable. Moreover it is known that they form a strict initial segment of the countable ordinals. We denote by ω ck 1 the smallest non-computable ordinal. This notion can then be relativised. We say that e is an X-code for the ordinal α if we have a relation R ⊆ ω × ω which is a well-founded linear order of a subset of ω of order-type α and if (n, m) ∈ R ↔ n, m ∈ W X e . We then write |e| X = α. We denote by W X the set of X-codes for X-computable ordinals, and we denote by W X α the set of X-codes for X-computable ordinals strictly smaller than α. Finally, we call ω X 1 the smallest ordinal which is noncomputable relatively to X. Note that any countable ordinal is computable with a representation of itself as an oracle.

Second order definable sets

We say that a sequence X is hyperarithmetic if for some computable function f and some computable ordinal α we have n ∈ X ↔ f (n) ∈ W α . One can define the hyperarithmetic sequences equivalently as the sequences we can Turing-compute with sufficiently many successive effective joins and iterations of the jump, constructed by induction over the computable ordinals. Also coming back to the analogy with infinite-time Turing machines we have in [START_REF] Hamkins | Infinite time Turing machines[END_REF] a theorem saying that a sequence X is hyperarithmetic iff it can be computed by an infinite-time Turing-machine in a computable ordinal length of time.

Similarly we define what is hyperarithmetic for sets. We say that A ⊆ 2 ω is hyperarithmetic if there exists e and α computable such that X ∈ A ↔ e ∈ W X α .

We now define Π 1 1 sequences. While hyperarithmetic sequences can be considered to be the higher counterpart of computable sequences, Π 1 1 sequences can be considered to be the higher counterpart of computably enumerable sequences. They are the sequences one can define with a formula of arithmetic containing arbitrary many first order quantifications and only universal second order quantifications (with no negations in front of them). We have another equivalent

definition. A sequence X is Π 1 1 if for some computable function f we have n ∈ X ↔ ∃α < ω ck 1 f (n) ∈ W α .
Coming back to the analogy with infinite-time Turing machines, the Π 1 1 sequences also correspond to the sets of integers one can enumerate along computable ordinal length of time with such a machine (when we interpret sequences as sets of integers, considering that n in the set iff the n-th bit of the sequence is one). The Σ 1 1 sequences are their complements (again, when we see sequences as sets of integers), the higher equivalent of co-recursively enumerable sequences. Finally a set A is Π 1 1 if we have an integer e so that X ∈ A ↔ ∃α < ω 1 e ∈ W X α . We also have a canonical surjection from integers to Π 1 1 sets, so like the arithmetical sets, they can be indexed (in the above example, e is an index for the Π 1 1 set A).

A set is called ∆ 1 1 if it is both Σ 1 1 and Π 1 1
. By a theorem of Kleene (see chapter 2 in [START_REF] Sacks | Higher recursion theory[END_REF]) they are exactly the hyperarithmetical sets. An index for a ∆ 1 1 set will consist of a pair of two indices. One expressing it as a Π 1 1 predicate and one expressing its complement as a Π 1 1 predicate.

Note that for Π 1 1 sets, the existential quantification over the ordinals goes up to ω 1 . Indeed, if ω X 1 > ω ck 1 it is possible that X ∈ A is witnessed by some X-code e for α ≥ ω ck 1 . This leads us to a Π 1 1 set of great importance for this paper, the set {X | ω X 1 > ω ck 1 } (the proof that this set if Π 1 1 can be found in section 9.1 of [START_REF] Nies | Computability and Randomness[END_REF]). We now state two theorems that will be useful for the rest of the paper. Theorem 4 (Sacks [START_REF] Sacks | Higher recursion theory[END_REF]) Uniformly in ε and an index for a ∆ 1 1 set A, one can compute an index for a Σ 1 1 closed set F so that F ⊆ A and λ(A -F ) ≤ ε. Also one can uniformly from an index of a ∆ 1 1 set obtain an index for the ∆ 1 1 real being the measure of this set.

Theorem 5 (Spector [START_REF] Sacks | Higher recursion theory[END_REF]) If f : ω → W X is a total Π 1 1 (X) functional predicate then sup n |f (n)| < ω X 1 .

Higher randomness

We now introduce notions of randomness which are higher effective variations of the usual randomness notions.

Definition 8 (Sacks) We say that X ∈ 2 ω is ∆ 1 1 -random if it is in no ∆ 1 1 nullset.

Martin-Löf was actually the first to promote this notion (see [START_REF] Martin-Löf | On the notion of randomness[END_REF]), suggesting that it was the appropriate mathematical concept of randomness. Even if his first definition undoubtedly became the most successful over the years, this other definition got a second wind recently on the initiative of Hjorth and Nies who started to study the analogy between the usual notions of randomness and their higher counterparts. In order to do so they created in [START_REF] Hjorth | Randomness via effective descriptive set theory[END_REF] This definition is strictly stronger than ∆ 1 1 -randomness (see Corollary 9.3.5 in [START_REF] Nies | Computability and Randomness[END_REF]). The higher analogue of weak-2-randomness has also been studied (see [START_REF] Chong | Randomness in the higher setting[END_REF]).

Definition 10 We say that X is weakly-Π 1 1 -random if it belongs to no n O n with each O n open set Π 1 1 uniformly in n and with λ( n O n ) = 0.

Earlier, Sacks gave an even stronger definition, made possible by a theorem of Lusin saying that even though Π 1 1 sets are not necessarily Borel, they remain all measurable.

Definition 11 (Sacks) We say that X ∈ 2 ω is Π 1 1 -random if it is in no Π 1 1 nullset.

This last definition is of great importance. Kechris proved that there is a universal Π 1 1 nullset, in the sense that it contains all the others (see [START_REF] Kechris | The theory of countable analytical sets[END_REF]). Later, Hjorth and Nies gave in [START_REF] Hjorth | Randomness via effective descriptive set theory[END_REF] an explicit construction of this Π 1 1 nullset. Chong and Yu proved in [START_REF] Chong | Randomness in the higher setting[END_REF] that weakly-Π 1 1 -randomness is strictly stronger than Π 1 1 -Martin-Löf-randomness, but it is still unknown whether Π 1 1 -randomness coincides with weakly-Π 1 1 -randomness. To separate the two notions, the idea of showing they have different Borel complexity was promoted in [START_REF] Chong | Randomness in the higher setting[END_REF]. In the next section we show that this will not be possible, by proving that the biggest Π 1 1 nullset has the surprisingly small Borel complexity of Σ 0 3 . Using results of [START_REF] Yu | LogicBlog2013, Higher randomness[END_REF] we will conclude that the Borel complexity of both the weakly-2-randoms and the Π 1 1 -randoms, is strictly Π 0 3 . We now give some important results about higher randomness, that will be needed to achieve this: Theorem 6 (Sacks) The set {X | ω X 1 > ω ck 1 } has measure 0.

  a higher analogue of Martin-Löf randomness. Definition 9 (Hjorth, Nies) A Π 1 1 -Martin-Löf test is given by an effectively null intersection of open sets n O n , eachO n being Π 1 1 uniformly in n. A sequence X is Π 1 1 -ML-random if it is in no Π 1 1 -Martin-Löf test.

One can also directly deduce the existence of such a function f using the fact that the supremum of a computable function, over an effectively compact set, is right-ce.
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Thus no X such that ω X 1 > ω ck 1 is Π 1 1 -random. The following beautiful theorem of Chong, Yu and Nies (see [START_REF] Chong | Lowness of higher randomness notions[END_REF]) strengthens Sacks' theorem: Theorem 7 (Chong, Yu, Nies) A sequence X is Π 1 1 -random iff it is ∆ 1 1random and ω X 1 = ω ck 1 .

One could also define the randomness notion introduced by Σ 1 1 nullsets, but this turns out to be equivalent to ∆ 1 1 -randomness.

Theorem 8 (Sacks) A ∆ 1 1 -random sequence is in no Σ 1 1 nullset. Therefore Σ 1 1 -randomness coincides with ∆ 1 1 -randomness.

5 Higher Solovay genericity and its variants Definition 12 We say that X is weakly-Σ 1 1 -Solovay-generic if it belongs to all sets of the form n F n which intersect with positive measure all the Σ 1 1 closed sets of positive measure, where each F n is a Σ 1 1 closed set uniformly in n.

Definition 13

We say that X is Σ 1 1 -Solovay-generic if for any set of the form n F n where each

As in the lower case, one could drop the measure requirement in the definition of Σ 1 1 -Solovay-genericity and obtain interesting relations with domination properties. However we will focus in this paper only on (weakly-)Σ 1 1 -Solovaygenericity.

Unlike in the lower case, we have that the set of weakly-Σ 1 1 -Solovay-generics is of measure 1. We can actually prove easily that they coincide with the weakly-Π 1 1 -randoms. Let n F n be a uniform union of Σ 1 1 closed sets with measure strictly smaller than 1. Let n O n be its complement. As it is a Π 1 1 set, we have e such that X ∈ n O n ↔ ∃α < ω 1 e ∈ W X α . But by Theorem 6 we have that {X | ∃α ≥ ω ck 1 e ∈ W X α } ⊆ S is of measure 0. Thus for some computable α we have that {X | e ∈ W X α } has positive measure. As it is a ∆ 1 1 set, we can find using Theorem 4 a Σ 1 1 closed set of positive measure contained in it. Thus n F n does not intersect all Σ 1 1 closed sets of positive measure. Conversely a uniform union of Σ 1 1 closed sets of measure 1 intersects with positive measure any Σ 1 1 closed set of positive measure. Then the weakly-Σ 1 1 -Solovay-generics are exactly the weakly-Π 1 1 -randoms.

We will now prove that the notion of Σ 1 1 -Solovay-genericity is exactly the notion of Π 1 1 -randomness. As explained at the end of the section (after Theorem 10), one can also consider this equivalence as the higher counterpart of Proposition 3.

We already know from Theorem 7 that if X is weakly-Π 1 1 -random but not Π 1 1 -random, then ω X 1 > ω ck 1 . We will show that if X is Σ 1 1 -Solovay-generic then ω X 1 = ω ck 1 which will prove the difficult part of the equivalence. In order to prove this, we use a technique developed by Sacks and simplified by Greenberg, to show that the set of X with ω

In particular for each n we can uniformly restrain the relation coded by o to all elements smaller than n. If |o| X is a limit ordinal this gives a set of X-codes for ordinals smaller than |o| X but cofinal (i.e. unbounded) in |o| X . Thus if

The idea is the following. Suppose that for some X we have a computable function Φ e such that:

Suppose also that X is Σ 1 1 -Solovay-generic. Then we will show that the supremum of |Φ X e (n)| over n ∈ ω is strictly smaller than ω ck 1 . To show this we need an approximation lemma, which can be seen as an extension of Theorem 4. 1 predicate S o . The Π 1 1 index for it corresponds to the property : "There exists no bijection from |e| to a strict initial segment of |o| X ", and a Π 1 1 index for its complement is : "There exists no infinite backward sequence in |e|, and there exists no bijection from |o| X to an initial segment of |e|." Note that if o / ∈ W, the index is still well defined but does not correspond to anything specific.

Then uniformly in an index for S o and in n we can find using Theorem 4 a Σ 1 1 closed set

As an intersection of closed sets, the set F is closed. And as W is Π 1 1 and F o is Σ 1 1 uniformly in o, we have that F is Σ 1 1 . To conclude we also we have that:

We can now prove the desired theorem:

Proof Suppose that Y is Σ 1 1 -Solovay-generic. For any functionnal Φ, consider the set

From Lemma 2 we can find uniformly in n a uniform union of Σ 1 1 closed sets included in P c n with the same measure as P c n . From this we can find a uniform union of Σ 1 1 closed sets included in P c with the same measure as P c . Suppose that Y is in P , as it is Σ 1 1 -Solovay-generic we have a Σ 1 1 closed set F of positive measure containing Y which is disjoint from P c up to a set of measure 0, formally λ(F ∩ P c ) = 0. In particular for each n we have λ(F ∩ P c n ) = 0 and then λ(F c ∪ P n ) = 1. Then let f be the total function which to each pair n, m associates the smallest code o n,m ∈ W such that:

where F c α is the ∆ 1 1 set of strings which are witnessed to be in F c via an ordinal smaller than α. Using second part of Theorem 4 one can prove that f is Π 1 1 . Let α * = sup n,m |f (n, m)|. By Theorem 5 we have that α * < ω ck 1 . Then we have:

1 -Solovay-generic it is in particular weakly-Σ 1 1 -Solovay-generic and then weakly-Π 1 1 -random. Thus by Theorem 8 it belongs to no Σ 1 1 set of measure 0. Then as Fn α<α * P α,n is a Σ 1 1 set of measure 0 we have that X belongs to n α<α * P α,n and then sup n Φ X (n) ≤ α * < ω ck 1 .

We can now prove the equivalence:

Theorem 10 The set of Σ 1 1 -Solovay-generics is exactly the set of Π 1 1 -randoms.

Proof Using Theorem 7 we have that the Σ 1 1 -Solovay-generics are included in the Π 1 1 -randoms. We just have to prove the reverse inclusion. Suppose Y is not

1 and in this case there is a sequence of Σ 1 1 closed sets n F n of positive measure such that X is not in n F n and such that any Σ 1 1 closed set of positive measure which is disjoint from n F n does not contain Y . The complement of n F n is a Π 1 1 set P containing Y . Let e be so that P (X) ↔ ∃α < ω 1 e ∈ W X α . As ω Y 1 = ω ck 1 and P (Y ), we have that ∃α < ω ck 1 e ∈ W Y α . But then Y is in a ∆ 1 1 set that one can approximate using Theorem 4 by an effective union of Σ 1 1 closed sets of the same measure. Thus as X can be in none of them it is in a Π 1 1 set of measure 0 and then not Π 1 1 -random.

The previous theorem gives an interesting corollary, making a connection with another domination property. We say that a sequence X is hyp-dominated if for every total function f : ω → ω, ∆ 1 1 relative to X, there exists a total ∆ 1 1 function g such that g dominates f (i.e. ∀n f (n) ≤ g(n)). Chong, Yu and Nies proved in [START_REF] Chong | Lowness of higher randomness notions[END_REF] that all Π 1 1 -random sequences are hyp-dominated. It follows from that and from the previous theorem that a sequence X is Σ 1 1 -Solovay-generic iff it is weakly-2-random and hyp-dominated. This can be seen as the higher counterpart of Proposition 3.

We have a second corollary, giving a higher bound on the Borel complexity of the Π 1 1 -randoms, and then on the biggest Π 1 1 nullset.

Corollary 1 The set of Π 1 1 -randoms is Π 0 3 .

The Π 0 3 set is obtained exactly the same way we obtain the Π 0 3 set of computably dominated sequences. The following result of Liang Yu (see [START_REF] Yu | LogicBlog2013, Higher randomness[END_REF]) can be used to prove that the set of Π It follows that the set of weakly-Π 1 1 -randoms cannot be Σ 0 3 but also that the set of Π 1 1 -randoms cannot be Σ 0 3 . Indeed, suppose that the set of Π The author, together with Bienvenu and Greenberg separated recently in [START_REF] Bienvenu | Continuous higher randomness[END_REF] the notion of weakly-Solovay-Σ 1 1 -generic from the one of Solovay-Σ 1 1 -generic: There exists a weakly-Π 1 1 -random sequence which is not Π 1 1 -random.