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Abstract—The Gamma question was formulated by Andrews
et al. in “Asymptotic density, computable traceability and
1-randomness” (2013, available at http://www.math.wisc.edu/
∼lempp/papers/traceable.pdf). It is related to the recent notion of
coarse computability which stems from complexity theory. The
Gamma value of an oracle set measures to what extent each
set computable with the oracle is approximable in the sense of
density by a computable set. The closer to 1 this value is, the
closer the oracle is to being computable. The Gamma question
asks whether this value can be strictly in between 0 and 1/2.

We say that an oracle is weakly Schnorr engulfing if it
computes a Schnorr test that succeeds on all computable reals.
We show that each non weakly Schnorr engulfing oracle has
a Gamma value of at least 1/2. Together with a recent result
of Kjos-Hanssen, Stephan, and Terwijn, this establishes new
examples of such oracles. We also give a unifying approach to
oracles with Gamma value 0. We say that an oracle is infinitely
often equal with bound h if it computes a function that agrees
infinitely often with each computable function bounded by h. We
show that every oracle which is infinitely equal with bound 2d

n

for d > 1, has a Gamma value of 0. This provides new examples
of such oracles as well.

We present a combinatorial characterization of being weakly
Schnorr engulfing via traces, which is inspired by the study of
cardinal characteristics in set theory.

I. INTRODUCTION

Generic-case complexity is a subfield of computational
complexity. It started with the observation that some problems
that are difficult to solve in full are easy to solve on “most
inputs”, namely on a set of inputs of density 1. This notion
was introduced by Kapovich et al. [11]. They showed among
other things that for a large class of finitely generated groups,
the generic case complexity of the word problem is linear.

This notion has recently been extended by Jockusch and
Schupp [10]. The authors identify two notions that can be
proved to be incomparable. The first is generic computability,
where one must always give the right answer, without having
to provide an answer for a small set of input. The second is
coarse computability, for which one always have to provide
an answer, with the right of being wrong on a small set of
inputs. In both cases, a set of inputs is considered small if it
is of density 0; this will be made precise in the paper.

Then Andrew et al. [1] assign a value γ to each set of
natural numbers. They use this to assign a value Γ to each
Turing degree. They prove that the Gamma values of 0, 1/2
and 1 can be realized. If a Turing degree has a Gamma value
strictly larger than 1/2, then it is computable and its Gamma

value in fact equals 1. They ask whether a Turing degree can
have a Gamma value strictly in between 0 and 1/2.

We provide a unifying approach to this question. Among
the non-computable degrees, the members of two kinds of
degree classes are known to have a Gamma value of 1/2: the
computably traceable degrees, and the computably dominated
random degrees. The proofs suggest that in the two cases
this holds for very different reasons. We show here that at
the contrary, they are both contained in a common class that
implies a Gamma value of 1/2: being not weakly Schnorr
engulfing. Together with recent, yet unpublished work of Kjos-
Hanssen, Stephan, and Terwijn, this establishes new examples
of such degrees.

We also unify the examples of degrees with a Gamma value
of 0, by relating them with a property of degrees we call H-
infinitely often equal for an appropriate computable bound H .
We end the paper by giving a combinatorial characterization of
being weakly Schnorr engulfing, close to the notion of being
H-infinitely often equal.

II. PRELIMINARIES AND NOTATIONS

In this paper, we work in the space of infinite sequences of
0’s and 1’s, the Cantor space, denoted by 2ω . We call strings
finite sequences of 0’s and 1’s, sequences elements of the
Cantor space and sets the sets of sequences. We sometimes
also use the word sequence to denote sequences of various
objects (typically integers), and when we do so we will always
specify it to avoid any ambiguity. We also sometimes view a
sequence X as the subset of ω containing n iff X(n) = 1
without necessarily specify it. For a string σ, we denote the
set of sequences extending σ by [σ] and we call those sets
cylinders. We denote by λ the unique probability measure on
2ω such that λ([σ]) = 2−|σ| for any string σ, where |σ| denotes
the length of σ.

The Cantor space is endowed with the product topology,
for which a set is clopen iff it is a finite union of cylinders,
and open iff it is a countable union of cylinders. A set
U is effectively open, or Σ0

1, if there exists a computably
enumerable sequence of strings {σi}i∈ω such that U =

⋃
i[σi].

A set U is effectively closed, or Π0
1, if it is the complement of

a Σ0
1 set. Finally we denote by 〈n,m〉 a computable bijection

from ω × ω to ω.
We now introduce notations which are less standard than

those of the previous paragraphs. They will be convenient
to expose the work of this paper, especially for results of



Section V. For a sequence X ∈ 2ω and a finite interval I ⊂ ω,
we denote by X �I the string X(I(0))ˆ . . . ˆX(I(m − 1)),
where m is the length of I . For a string σ and a finite interval
I we write [σ]I to denote the set of sequences extending σ,
that is, {X ∈ 2ω : X �I= σ}. For a finite interval I ⊂ ω we
write J ⊆ 2I for a clopen set J ⊆ 2ω if there exists a set of
strings σ0, . . . , σk of length |I| such that J =

⋃
i≤k[σi]I .

In this paper we will be interested in having a canonical
coding between sequences and functions f : ω → ω which are
strictly bounded by some H : ω → ω. Such a function H will
generally be an order function, that is, a computable function
H such that H(n) ≤ H(n + 1) and limnH(n) = +∞. To
make the coding work nicely we will consider that the bound
H is always of the form 2H̃(n). Given a sequence X and such
a bound H(n) = 2H̃(n), we denote by fX the function cor-
responding to X . Formally we define H ′(n) =

∑
m<n H̃(m)

(with H ′(n) = 0), and fX(n) to be the integer smaller than
2H̃(n) which is encoded by the string X �[H′(n),H′(n+1)).
Conversely, given f with f(n) < H(n) = 2H̃(n), we write
Xf to denotes the sequence X such that fX = f .

A. Preliminaries on coarse computability

The notion of coarse computability received quite a lot of
recent attention by various authors (see for example [1] and
[9]).

Definition II.1. A sequence A is coarsly computable if there
is a computable sequence X such that the lim inf of the
frequency of positions n on which A(n) = X(n), equals 1.
More formally, let us introduce the function:

ρ(Z) = lim inf
n

|Z ∩ [0, n]|
n

The sequence A is coarsly computable if for some com-
putable sequence X we have ρ(A↔ X) = 1, where A↔ X
denotes the sequence which seen as a subset of ω contains n
iff A(n) = X(n).

A real number can naturally be assigned to non coarsly
computable objects. This number can be seen as an indication
of how far the object is from being coarsly computable. It is
defined by:

γ(A) = sup
X computable

ρ(A↔ X)

We will refer to this as the gamma value of A. Andrews,
Cai, Diamondstone, Jockush and Lempp [1] had the interesting
idea to define a similar value for Turing degrees, which
indicates how far a degree is from being computable:

Γ(d) = inf{γ(A) : A ∈ 2ω is of degree d}

This will be referred to in this paper as the Gamma value of
d (with a capital ‘G’). In practice we will often write Γ(A) for
a set A ∈ 2ω to mean Γ(d) where d is the Turing degree of A.
It is easy to see that one can equivalently consider Γ(A) to be
the infinium over tha values γ(B) for every B ≤T A, rather
than just every B ≡T A. The reason is that given any B <T A,

we can add to the sequence B all the information about A at
some very sparse computable set of positions, giving a new
set Turing equivalent to A, with the same gamma value as
B’s.

The Gamma question is: which real numbers can be realized
by the Gamma value of a degree? In [1] Andrews et al. proved
that Γ(A) > 1/2 iff Γ(A) = 1 iff A is computable. They
also gave examples of sequences A with Γ(A) = 1/2 and
examples of sequences A with Γ(A) = 0. These examples
will be detailed in Section III. It is unkown whether some
sequence has a Gamma value strictly between 0 and 1/2.

B. Preliminaries on algorithmic randomness

Algorithmic randomness uses the tools of computability
theory to give a formal definition of the notion of a random
infinite binary sequence, a sequence we would expect be the
result of independent coin tosses. The reader can refer to [18]
or [8] for a background on algorithmic randomness. We briefly
discuss the notions important for this paper.

1) Martin-Löf randomness: The first satisfactory definition
of randomness was given by Martin-Löf in [16]:

Definition II.2. A Martin-Löf test is given by a uniform
intersection

⋂
n Un of effectively open sets such that the

function n 7→ λ(Un) is bounded by a decreasing computable
function with limit 0. We say that a sequence X is Martin-Löf
random if it belongs to no Martin-Löf test.

Note that one can analogously define sequences which are
Martin-Löf random for any computable probability measure
µ, by simply replacing λ by µ in the above definition. Such
notions will be discussed at the end of Section III-A.

2) Schnorr randomness: The notion of Schnorr randomness
was introduced by Schnorr [22], who was aiming at a concept
that is more constructive than the one of Martin-Löf.

Definition II.3. A Schnorr test is given by a uniform inter-
section

⋂
n Un of effectively open sets such that the function

n 7→ λ(Un) is computable and decreasing with limit 0. We
say that a sequence X is Schnorr random if it belongs to no
Schnorr test.

It is well known that Schnorr randomness is strictly weaker
than Martin-Löf randomness. Downey and Griffiths gave in
[7] another characterization of Schnorr randomness that can
be seen as an effective version of the Borel Cantelli lemma:

Definition II.4. A Schnorr-Solovay test is a computable se-
quence {Cn}n∈ω of clopen sets such that

∑
n λ(Cn) is finite

and computable. A sequence X is captured by a Schnorr-
Solovay test {Cn}n∈ω if X is in infinitely many sets Cn, that
is, X ∈

⋂
n

⋃
m≥n Cm.

The term “Schnorr-Solovay test” comes from the analogous
notion of “Solovay test”, which characterizes Martin-Löf ran-
domness. Downey and Griffiths proved that Schnorr-Solovay



tests (referred to as total Solovay test in [7]) characterize
Schnorr randomness.

Proposition II.5 (Downey/Griffiths [7]). A sequence X is
Schnorr random iff it is no captured by any Schnorr-Solovay
test.

Definition II.6. A Schnorr-Solovay test {Cn}n∈ω is called
independent if the sequence {Cn}n∈ω is independent in the
usual sense of probability theory: λ(

⋂
r∈F Cr) =

∏
r∈F λ(Cr)

for each finite set F .

As we will see in Section V, each non Schnorr random is
captured by an independent Schnorr-Solovay of a very special
kind:

Definition II.7. An interval test is given by a uniformly
computable sequence of pairs {In,Jn}n∈ω where the In are
pairwise disjoint increasing finite intervals (i.e., max(In) <
min(In+1)), each Jn ⊆ 2In is a clopen set uniformly
computable in n, and

∑
n λ(Jn) is finite and computable.

3) Higher randomness: Randomness has recently been
studied from the viewpoint of higher computability. The
reader may refer to [21] or [17] for background on higher
computability, and to [18] or [17] for background on higher
randomness. Here we summarise the main notions used in the
paper.

A set of sequences or of integers is Π1
1 if it can be defined

by a second order formula of arithmetic where we can have
any quantifier over integers, but only universal quantifiers over
infinite objects (sequences or functions). A set of sequences or
of integers is Σ1

1 if it can be defined by a formula of arithmetic
with only existential quantifiers over infinite objects. Finally
a set sequences or of integers is ∆1

1 if it is both Π1
1 and Σ1

1.

Definition II.8. A sequence X is ∆1
1-random if it belongs to

no ∆1
1 set A ⊆ 2ω with λ(A) = 0. A sequence X is Π1

1-
random if it belongs to no Π1

1 set A ⊆ 2ω with λ(A) = 0.

The Gandy-Spector theorem gives a powerful analogy be-
tween the notions of computable/recursively enumerable sets
of integers and ∆1

1/ Π1
1 sets of integers. Informally one can

picture a Π1
1 set of integers as being effectively enumerable,

but along some “ordinal stages of computation” α < ωck1
rather than just finite stages of computation, where ωck1 is
defined as the smallest non computable ordinal, that is, the
smallest ordinal α such that there is no c.e. relation R ⊆ ω×ω
which is a well order of order-type α. Similarly, one can
informally picture a ∆1

1 set of integers as being effectively
enumerable along some “ordinal stages of computation”, but
bounded by some α < ωck1 .

One set of particular interest in higher randomness is the set
of sequences X such that the smallest non-computable ordinal
relatively to X , namely ωX1 , is larger than ωck1 : {X ∈ 2ω :
ωX1 > ωck1 }. We have the following theorem:

Theorem II.9 (Chong, Nies, Yu [4]). A sequence X is Π1
1-

random iff it is ∆1
1-random and ωX1 = ωck1 .

There exists in higher computability a version of the halting
problem. This is the set called Kleene’s O, defined as the set
of all the codes e such that the binary c.e. relation coded by e
is a total well-order of the integers1. Every Π1

1 set is many-one
reducible to Kleene’s O.

Theorem II.10. For a sequence X we have ωX1 > ωck1 iff
Klenne’s O is ∆1

1(X).

Finally we state here what is known as the van Lambalgen
theorem for Π1

1-randomness. The sequence X ⊕ Y is defined
by (X ⊕ Y )(2n) = X(n) and (X ⊕ Y )(2n+ 1) = Y (n).

Theorem II.11. For sequences X,Y we have that X ⊕ Y is
Π1

1-random iff X is Π1
1-random and Y is Π1

1(X)-random.

In particular, if a Π1
1-random sequence X is in a Π1

1(Y )
nullset then Y is in a Π1

1(X) nullset.

C. Preliminaries on weakly Schnorr engulfing and traces

It is well known that unlike the case of Martin-Löf random-
ness, there exists no universal Schnorr test, that is, no Schnorr
test covering all the others. One can prove this by showing
that every Π0

1 set of computable positive measure contains a
computable sequence, so that no Schnorr test contains every
computable sequence (see for instance Fact 3.5.9 in [18]). We
are interested in oracles that strengthen the power of Schnorr
tests, in that some Schnorr test relative to the oracle captures
all the computable sequences.

Definition II.12. A sequence A is weakly Schnorr engulfing
if there exists an A-Schnorr test containing all the computable
sequences.

A weaker property of oracles has already been proved
equivalent to a tracing property: some Schnorr test relative
to the oracle is not covered by any plain Schnorr test. We first
define the tracing property.

Definition II.13 (Terwijn and Zambella [23]). A computable
trace is a uniform sequence {Tn}n∈ω of finite sets of integers
given by strong indices. Formally Tn = Dp(n) where p : ω →
ω is a computable function and Dn is the set containing m
iff there is a 1 at position m of the binary encoding of n. An
oracle A is computably traceable if there exists a computable
bound H : ω → ω such that for every function f ≤T A, there
exists a computable trace {Tn}n∈ω such that |Tn| < H(n)
and such that f(n) ∈ Tn for every n.

Intuitively, an oracle is computably traceable if every func-
tion f it computes is ‘close to computable’, in that one can
compute a small set of values f(n) belongs to. By a result
Terwijn and Zambella [23] together with Kjos-Hanssen, Nies
and Stephan [13] we have:

Theorem II.14. For an oracle A the following are equivalent:
• A is not computably traceable.

1The definition of Kleene is actually more complex in order to ease effective
definitions by induction over elements of this set. For our purpose the above
definition is enough.



• There is an A-Schnorr test covered by no Schnorr test.
• There is an A-Schnorr test containing a Schnorr random.

Oracles failing any of these properties are said to be low
for Schnorr randomness. We will show the connection between
being weak Schnorr engulfing and the Gamma question. We
shall also give in Section V a combinatorial characterization of
being weakly Schnorr engulfing, by showing its equivalence
with another tracing property.

D. Preliminaries on hyperimmune sequences

The following is central notion of computability theory.

Definition II.15. An oracle X is computably dominated if for
every function f ≤T X , there exists a computable function g
such that f ≤ g, that is, f(n) ≤ g(n) for every n. An oracle
X is of hyperimmune degree, or simply hyperimmune if it is
not computably dominated.

Kurtz proved in [15] that a sequence is hyperimmune iff
it Turing computes a weakly-1-generic sequence, that is, a
sequence which is in every dense Σ0

1 subset of 2ω . We state
here a less famous, though interesting, third equivalent notion:

Definition II.16. A function f : ω 7→ ω if infinitely often
equal (or i.o.e.) if it is equal infinitely often to every com-
putable function. A sequence A is of i.o.e. degree if it Turing
computes an i.o.e. function.

For completeness’ sake we include a proof of the well-
known equivalence between being of hyperimmune degree and
being of i.o.e. degree:

Proposition II.17. For a sequence A the following are equiv-
alent:
• A is of hyperimmune degree.
• A is of i.o.e degree.

Proof. If f : ω 7→ ω is an i.o.e. function, then f + 1
is clearly dominated by no computable function. Conversely
suppose that g : ω 7→ ω is a function bounded by no
computable function. Let {Φe}e∈ω be an effective list of the
partial computable functions and {Re}e∈ω a list of Boolean
values initialized to false. At stage n, we define f(n) to be
Φk(n)[g(n)] where k is the least integer smaller than n such
that Φk(n)[g(n)] halts and such that Rk is false (if no such k
exists we let f(n) = 0). Then set Rk to true. Note first that
a function f is i.o.e. iff it is equal once to every computable
function (using the finite-change closure property of the set
of computable functions). If Φe is total then the function
n 7→ min{t : Φe(n)[t] halts} is total and computable, thus it
is dominated by g infinitely often. It is easily to check now
that f is equal at least once to every computable function.

In this paper, we will be interested in hyperimmune se-
quences through their i.o.e. characterization. We will also
be interested in computably dominated sequences that are
random. It is well known that while the set of computably
dominated elements has measure 0, some of them are still
Schnorr random. It is also well known that each computably

dominated Schnorr random is actually Martin-Löf random. So
we will refer to them simply as the computably dominated
randoms.

III. THE GAMMA VALUES

A. Gamma value of 1/2 and being weakly Schnorr engulfing

The only two known examples of sequences with a Gamma
value of 1/2 are the (non-computable ) computably traceable
sequences and the computably dominated random sequences
[1]. They are quite different from each other: While the
sequences of first kind are close to computable, the sequences
of second kind are far from computable (as they are random).

We identify here a third property of an oracle implied by
both, which suffices to get a gamma value of 1/2: being not
weakly Schnorr engulfing. As computably traceable sequences
are low for Schnorr randomness, they are not weakly Schnorr
engulfing (see Theorem II.14). Rupprecht [20] proved that
computably dominated random sequences are not weakly
Schnorr engulfing. It remains to prove that any non weakly
Schnorr engulfing sequences has a gamma value of 1/2 (or of
1 in case it is computable).

Theorem III.1. Let A be not weakly Schnorr engulfing. Then
Γ(A) ≥ 1/2.

Proof. Let d ∈ N. For each B ≤T A we will define a Schnorr-
Solovay test (Gk)k∈N relative to A such that ρ(B ↔ R) ≥
1/2− 1/d for each sequence R not captured by this test. For
each d some computable sequence R passes the test, so this
will show that γ(B) ≥ 1/2.

Let Ik be defined inductively as the set of k consecutive
integers following Ik−1: I0 = ∅, I1 = {1}, I2 = {2, 3}, . . . .
Given k let

Gk = {Z : Z(i) 6= B(i) for a ratio of bits in Ik of at least
1/2 + 1/d}

which is a clopen set computed uniformly in k from A. By
the usual Chernoff bounds we have λGk ≤ e−

2k
d2 . Clearly∫∞

r
e−

2x
d2 dx ≥

∑∞
k=r+1 e

− 2k
d2 . Since

∫∞
r
e−

2x
d2 dx = d2e−

2r
d2

effectively converges to 0 as r → ∞, the real
∑
k λGk is

computable in A. Thus (Gk)k∈N is a Schnorr-Solovay test
relative to A as required.

In [1] it is proved that any sequence which is computably
dominated and random with respect to a computable measure
has a Gamma value of 1/2 (unless it is computable, which can
happen if it is an atom of the measure). Rupprecht’s proof
in [20] can be modified to show that no sequence which is
computably dominated and random for a computable measure
is weakly Schnorr engulfing. It is natural to wonder if there
are other sequences with Gamma values of 1/2. In very recent
work related to the authors through personal communication,
Kjos-Hanssen, Stephan, and Terwijn constructed a sequence
which is not weakly Schnorr engulfing, not computably domi-
nated, and not DNC (see e.g. [18, Ch. 4] for the definition
of DNC, which abbreviates ”diagonally non-computable”).



A non-DNC sequence cannot be random for any atomless
computable measure. (For instance, use Demuth’s result [6]
that any Martin-Löf random with respect to an atomless
computable measure Turing computes a Martin-Löf random
with respect to λ, together with the fact that every Martin-
Löf random is DNC.) Thus, together with the result of Kjos-
Hanssen et al., we have obtained new examples of sequences
with a Gamma value of 1/2.

B. Gamma value of 0 and infinite equality
The two known examples of sequences with a Gamma

value of 0 are the sequences of hyperimmune degree, and the
sequences of PA degree. These latter are the sequences which
Turing compute a complete extension of Peano arithmetic. It
is well known that they are also the sequences which Turing
compute a member of any non-empty Π0

1 set, uniformly in a
code for this set. It is also well known that some of them are
computably dominated. These two types of sequences seem
to have a Gamma value of 0 for quite different reasons, when
one looks at the respective proofs in [1]. We identify here a
third notion implied by both, which already suffices to get a
Gamma value of 0. This notion is a weakening of being i.o.e.,
where one introduces a bound on the functions.

Definition III.2. Given a computable bound H : ω 7→ ω we
say that f : ω 7→ ω is H-infinitely often equal (or H-i.o.e.)
if f equals infinitely often every computable function strictly
bounded by H . A sequence A is of H-i.o.e. degree if A Turing
computes an H-i.o.e. function.

Recall that Proposition II.17 showed that sequences of
hyperimmune degree are of i.o.e. degree (with no bound).

Theorem III.3. Any PA degree is H-i.o.e. for any computable
bound H of the form 2H̃ .

Proof. For any A of PA degree, there exists an A-computable
list {Xe}e∈ω of sequences that contains all the computable
ones. To see that, recall that A is of PA degree iff A uniformly
Turing computes a member of any non-empty Π0

1 set. Apply
that uniformly in a partial computable function Φ to the Π0

1

set

{X : ∀n ∀t [Φe(n)[t] ↑ or Φe(n)[t] = X(n)]}.

Now given such a list and any total computable function
H̃ , define H ′(n) =

∑
m<n H̃(m) (with H ′(n) = 0). We

then simply define the A-computable function f which to
n associates the natual number corresponding to the string
Xn �[H′(n),H′(n+1)). If is clear that f is H-i.o.e. where
H(n) = 2H̃(n).

We now prove that being of H-i.o.e. degree for H suffi-
ciently fast growing implies having a Gamma value of 0.

Theorem III.4. Let d > 1 be a real. If A is of 2(dn)-i.o.e.
degree, then Γ(A) = 0.

Proof. We first prove that if A is of 2(an)-i.o.e. degree for a
natural number a > 1, then γ(A) ≤ 1/a. Consider a 2(an)-
i.o.e. function f that we can bound without loss of generality

by 2(an). Let H(n) =
∑
m<n a

m (with H(n) = 0). We define
the f -computable set Bf such that Bf �[H(n),H(n+1)) is equal
to the string corresponding to the n-th value of f . Consider
now any computable sequence X and its bitwise complement
X , together with the function fX which to n associates
the integer corresponding to the string X �[H(n),H(n+1)). In
particular as f is infinitely often equal to fX , there are
infinitely many n such that from position H(n) to H(n+1)−1,
sequences X and B disagree all the time, which implies

|(B ↔ X) ∩ [0, H(n+ 1))|
H(n+ 1)

≤ H(n)

H(n+ 1)

And as we have an = (a−1)H(n)−1 we have H(n+1) =
H(n) + (a− 1)H(n)− 1 and we then have a ratio of at most
H(n)/(aH(n) − 1) bits which are guessed correctly by X
on the initial segment of length H(n + 1). As this happens
infinitely often and for every computable sequence X , we then
have γ(B) ≤ 1/a and hence γ(A) ≤ 1/a.

We shall now prove that if A is of 2(dn)-i.o.e. degree for
any real d > 1, then A is of 2(an)-degree for any natural
number a > 1. To do so we first argue that if f is H-i.o.e. for
some function H , then the function n 7→ f(2n) is H(2n)-
i.o.e. or the function n 7→ f(2n + 1) is H(2n + 1)-i.o.e.
Indeed suppose that some computable function g1 bounded
by H(2n) is such that g1(n) 6= f(2n) for every n and that
some computable function g2 bounded by H(2 + 1) is such
that g2(n) 6= f(2n + 1) for every n. Then the computable
function g such that g(2n) = g1(n) and g(2n+ 1) = g2(n) is
never equal to f , which is a contradiction.

Given a 2(dn)-i.o.e. function f and any integer a > 1,
let k be such that 2(dk×n) ≥ 2(an) (a value k bigger than
logd(a) suffices). By repeating the operation described above
sufficiently often, we easily see how to compute from f a
function f ′ which is 2(dk×n)-i.o.e. and hence 2(an)-i.o.e. It
follows that Γ(A) = 0.

Rupprecht [20] constructed a sequence which is weakly
Schnorr engulfing, computably dominated and not DNC. His
proof can be slightly modified to construct a sequence which is
for any given computable function H̃ , of 2H̃(n)-i.o.e. degree,
and both computably dominated and not DNC. As every PA
degree is DNC, this provides new examples of sequences with
a Gamma value of 0.

C. Gamma values with respect to bases other than 2

We consider here the Gamma value for real numbers ex-
pressed in different bases. For an integer b ≥ 2 we denote the
space of infinite sequences of elements in {0, . . . , b − 1} by
bω . For A ∈ bω we define the value γb(A) as before, except
we now consider a supremum over computable elements of
bω . The definition of Γb(A) is also as before, except we now
consider an infimum over elements of bω which are Turing
equivalent to A. Finally for a (non rational) real r ∈ R
we define Γb(r) to be Γb(A) for A ∈ bω the canonical
representation of r in base b.

Let us argue that for any base b ≥ 2 and any real r we
have Γb+1(r) ≤ Γb(r). Indeed for every sequence A ∈ bω we



obviously have γb(A) = γb+1(A). As every elements of bω

is also an element of (b + 1)ω , the infimum in the definition
of Γb+1(r) is done over more elements than in the definition
of Γb(r). In particular if γ2(r) = 0 then γb(r) = 0 for any
b ≥ 2.

By straightforward modifications of the proof of Theo-
rem III.1, any sequence A ∈ bω which is not weakly Schnorr
engulfing has a Gamma value of 1/b. What is really of
interest here is the proof that any sequence A ∈ bω such that
Γb(A) > 1/b is computable: The proof of this in [1] for the
case b = 2 uses a “majority vote” technique, that cannot be
used directly for larger bases. This will be made clear in what
follows.

Definition III.5. For any sequence A ∈ 2ω , seen as a subset
of ω, we denote by #A

c : ωc → ω the function which on
x1, . . . , xc returns |A ∩ {x1, . . . , xc}|.

Note that #A
c can take at most c+1 distinct values. Kummer

[14] proved that if A is not computable, one cannot trace #A
c

by a c.e. trace containing strictly less than c + 1 values. The
proof was later simplified by Owings [19]:

Theorem III.6. [Kummer] Let c ≥ 2. Suppose A is an oracle
such that #A

c is traceable via some trace {Tn}n∈ω , where each
Tn is c.e. uniformly in n and |Tn| ≤ c. Then A is computable.

We will use this in the proof of the following theorem:

Theorem III.7. Let A ∈ bω . If Γb(A) > 1/b then A is
computable.

Proof. Let Ã ∈ 2ω be some binary encoding of A. The
sequence #Ã

b−1 belongs to bω . We perform a majority vote
trick as in [1], except that we now do not need an absolute
majority to win. Consider a sequence B ∈ bω which encodes
each bit of #Ã

b−1 with many repetitions. Formally, we define
inductively intervals In by I0 = {0} and In+1 = {k :
an < k ≤ (n + 1) × sn} where an is the last position in
the interval In and sn the sum of the length of the intervals
I0 to In. For any k ∈ In we define B(k) = #Ã

b−1(n). As
B is Turing computable from A, we must have γb(B) > 1/b,
there is then a computable sequence C such that lim infn |B ↔
C∩[0, n]|/n > 1/b. We now claim that for any n large enough,
the percentage of positions k in In such that C(k) = #Ã

b−1(n)
is strictly greater than 1/b. Suppose otherwise. In particular,
for arbitrarily large n we have less than or equal to 1/b
positions in In which are guessed correctly by C. Recall sn−1

is the number of positions before In. As there are n more
positions in In than in all the previous intervals together, we
have at most

sn−1 + (nsn−1)/b

sn−1 + nsn−1
=

1 + n/b

1 + n

many positions guessed correctly. This expression has limit
1/b as n goes to infinity. It then follows that

lim inf
n
|B ↔ C ∩ [0, n]|/n ≤ 1/b,

which is a contradiction.

Therefore for n large enough, the sequence C must guess in
the interval In strictly more than 1/b of the bits correctly. Also
they can be at most b− 1 values which are given by C with a
ratio strictly bigger than 1/b. By building the computable trace
with all these values, we have a trace for #Ã

b−1, which implies
by Theorem III.6 that Ã, and then A, is computable.

Question III.8. Let r ∈ [0, 1] be non-computable. Do we have
for all integers b, c ≥ 2 that Γb(r) = 1/b iff Γc(r) = 1/c?

D. The Gamma value in the higher setting

In this section we study a notion analogous to being weakly
Schnorr engulfing in the setting of higher computability.
Thereafter we discuss a higher version of the Gamma question.

Definition III.9. A sequence A is weakly ∆1
1 engulfing if there

is a ∆1
1(A) nullset containing every ∆1

1 sequence.

For an A-computable ordinal α, we write A(α) to denote
the α-th jump of A. There are several equivalent ways to
concretely define this set, for example via H-sets, as initially
done by Kleene and Spector (see [21]), or as the set of codes
for A-c.e. binary relations coding for total orders of order-type
strictly smaller than some ordinal, as in [17]. The important
point is that A(α) should be a Σ0

α(A)-complete set.
It is well known (see for example [5] or Proposition 4.2.5

in [17]) that if A is ∆1
1-random, then it is GLα for every

computable ordinal α, that is, A(α) ≡T A⊕ ∅(α). Using this,
we prove the following theorem about Π1

1-random sequences:

Theorem III.10. Suppose A is Π1
1 random. Then A is not

weakly ∆1
1 engulfing.

Proof. Consider a ∆1
1(A) nullset S. As ωA1 = ωck1 we have

some computable ordinal α such that S is a Σ0
α(A) set. By the

effective regularity of Lebesgue measure relativized to A, we
can approximate S from above by a uniform intersection of
∆1

1(A) open sets
⋂
n Un with λ(Un) ≤ 2−n, and still because

ωA1 = ωck1 we have a computable ordinal α such that each Un
is Σ0

1(A(α)) uniformly in n. Now because A is ∆1
1 random it

is GLα and then each Un is also Σ0
1(A⊕∅(α)) uniformly in n.

Let e be an index for the Π0
2(A⊕∅(α)) set

⋂
n Un. We can now

transform e such that for any oracle X we have λ(UXn ) ≤ 2−n,
without changing Un on oracle for which we already have
λ(UXn ) ≤ 2−n (in particular on the oracle A⊕ ∅(α)). For any
X consider now the ∆1

1(X) set:

NX = {Z : X ∈
⋂
n

UZ⊕∅
(α)

n }

and consider the ∆1
1 set:

N = {X : λ(NX) > 0}

We claim that N contains every ∆1
1 sequence belonging to⋂

n UA⊕∅
(α)

n and that λ(N ) = 0. If X is ∆1
1 and belongs to⋂

n UA⊕∅
(α)

n we clearly have A ∈ NX . But as NX is ∆1
1 and

as A is ∆1
1 random, we must have λ(NX) > 0. Thus every

∆1
1 sequence contained in

⋂
n UA⊕∅

(α)

n is also contained in N .



To prove λ(N ) = 0 it suffices to prove that N contains no
Π1

1 random sequence. This is clear using the van Lambalgen
theorem for Π1

1-randomness (Theorem II.11). Suppose that Y
is Π1

1-random in order to prove Y /∈ N . Suppose for some Z
we have Y ∈

⋂
n UZ⊕∅

(α)

n . In particular as Y is not Π1
1(Z)-

random Z is not Π1
1(Y )-random. Then NY is included in the

set of sequences which are not Π1
1(Y )-random. As this is a set

of measure 0 we have λ(NY ) = 0. Hence Y is not in N .

We now define counterparts of γ and Γ in the higher setting:

γh(A) = sup
X∈∆1

1

ρ(A↔ X)

Γh(A) = inf{γh(B) : B is ∆1
1(A)}

As in the setting of computability, Γh(A) > 1/2 iff A is
∆1

1. To show this, one follows the same proof as the one of
Proposition 1.4. in [1], using a “majority vote” technique.

Still as in the setting of computability, and following the
same proof as the one of Theorem III.1, if A is not weakly
∆1

1 engulfing then Γh(A) = 1/2. In particular:

Theorem III.11. Every Π1
1-random sequence Z satisfies

Γh(Z) = 1/2.

Consequently, for Γ, the situation is quite different in the
higher setting: The set of sequences with a Gamma value of
1/2 has measure 1, whereas it has measure 0 in the lower
setting.

A notion of being infinitely often equal also makes sense
in the higher setting.

Definition III.12. Let H : ω 7→ ω be a ∆1
1 bound. A function

f : ω 7→ ω is higher H-i.o.e. if it is infinitely often equal to
every ∆1

1 function bounded by H . A sequence A is of H-i.o.e.
hyperdegree if there is some higher H-i.o.e. function which is
∆1

1(A).

It is clear that the proof of Theorem III.4 can be adapted
to the higher setting to obtain for any real d > 1 that any A
of 2d

n

-i.o.e. hyperdegree has a higher Gamma value of 0. In
particular, if ωX1 > ωck1 then Γh(X) = 0.

A difference with the lower setting is that we don’t have
an analogue of the fact that every hyperimmune function
computes an infinitely often equal function (see II.17). Kihara
[12] has shown that there is a sequence X such that there
exists a ∆1

1(X) function f bounded by no ∆1
1 function, but

such that there exists no ∆1
1(X) infinitely often equal function.

IV. INFINITE EQUALITY

We have seen that both being weakly Schnorr engulfing and
the Gamma question are connected to the notion of infinite
equality. We study this notion on its own right in some more
detail.

It is clear that the two implications of Fig. 1 hold. We should
also argue that they are strict. First let us prove the left part of
Fig. 1. It is obvious that being of 2-i.o.e. degree is equivalent
to being computable, but for c > 2 some more complicated

c-i.o.e. for c ≥ 2 H(n)-i.o.e with H computable
order function s.t.

∑
n

1
H(n) =∞

not computable H(n)-i.o.e with H computable
order function s.t.

∑
n

1
H(n) <∞

Fig. 1. Known implications for i.o.e. degrees

argument is required. Here again, we can use the function #A
c

of Definition III.5 and Theorem III.6 to deduce the following:

Theorem IV.1. Suppose A is not c-i.o.e. for some integer
c ≥ 2. Then A is computable.

Proof. The function g(〈x1, . . . , xc−1〉) = #A
c (x1, . . . , xc−1)

is clearly A-computable and always strictly less than c. Sup-
pose it is always different from some computable function
f strictly bounded by c. Then we can capture g (and hence
#A
c ) with the computable trace {Tn}n∈ω such that Tn contains

every value less than c different from f(n). It follows from
Theorem III.6 that A is computable.

By the following proposition, the first implication is strict:
there exists a non-computable sequence which is not of H-
i.o.e. degree for any order function H .

Proposition IV.2. Suppose A computably traceable. For any
order function H and any function f ≤T A, there exists a
computable function g < H such that f is always different
from g.

Proof. Suppose f < H is Turing below some computably
traceable set A. As proved in [23], for any computable order
function H ′, as slowly growing as we want, the function f
can be traced via a computable trace {Tn}n∈ω bounded by
H ′. We simply take H ′ < H . To compute g(n) we can then
take any value smaller than H(n) and not in Tn.

Let us now prove that the second implication is strict: for
any order function H there exists a sequence of H(n)-i.o.e.
degree such that

∑
n 1/H(n) = ∞, but not of H(n)-i.o.e.

degree for any order function H such that
∑
n 1/H(n) <∞.

This is done via a computably dominated random. For the next
proposition, we use the very weak notion of Kurtz randomness,
which is defined by not being in any Π0

1 set of measure 0.

Proposition IV.3. Suppose A Kurtz random. Then A is of
H(n)-i.o.e. degree for any order function H = 2H̃ such that∑
n 1/H(n) =∞.

Proof. Consider a computable function f < H . Let H ′(n) =∑
m<n H̃(m) (with H ′(0) = 0). Let In = [H ′(n), H ′(n+1)),

then we have by hypothesis that
∑
n λ([f(n)]In) =∞ (where



f(n) is seen as a string of length In). Also as the In are
pariwise disjoint, by Borel-Cantelli we have

λ

⋂
n

⋃
m≥n

[f(m)]Im

 = 1

and then for each n we have λ(
⋃
m≥n[f(m)]Im) = 1. It

follows that if X is Kurtz random there are infintely many
n such that X �In= f(n), where X �In is seen as an
integer smaller than 2|In|. Also this is true for any computable
function f , and it then follows that the X-computable function
g(n) = X �In is H(n)-i.o.e.

It is easy to prove that if a sequence is of H(n)-i.o.e. degree
for an order function H such that

∑
n 1/H(n) < ∞, then it

is weakly Schnorr engulfing. A more general statement will
actually be proved in the next section (see Proposition V.3). It
follows that any computably dominated random is of H(n)-
i.o.e. degree for any order function H such that

∑
n 1/H(n) =

∞, but not of H(n)-i.o.e. degree for any computable order
function H such that

∑
n 1/H(n) <∞. For instance, such a

sequence is of 2log(n)-i.o.e. degree and not of 22 log(n)-i.o.e.
degree.

Question IV.4. Is there some X of 2n-i.o.e degree that is not
of f(n)-i.o.e degree for some computable f(n) >> 2n? If
yes, can f(n) be taken to be 22n?

V. WEAKLY SCHNORR ENGULFING AND TRACING

The notions of being weakly Schnorr engulfing and being
H-infinitely often equal for H sufficiently fast growing are
both related to the Gamma question. At first sight these notions
seems unrelated. We give here a combinatorial characteriza-
tion of being weakly Schnorr engulfing, using traces whose
members are bounded by some computable function. This will
bring it closer to the notion of being of H-i.o.e. degree for
some H . We note that both infinitely equal and the tracing
property that turns out to be equivalent to weakly Schnorr
engulfing were introduced in search of computability theoretic
analogues of similar combinatorial notions from set theory
used to analyse cardinal characteristics (see [3]).

Definition V.1. For a computable function H : ω 7→ ω of
the form 2H̃(n), we say that a computable trace {Tn}n∈ω is a
computable H-trace if for each n, elements of Tn are strictly
bounded by H(n). If furthermore

∑
n |Tn|/H(n) is finite and

computable, the trace {Tn}n∈ω is called a small computable
H-trace. We say that a function f < H is captured by a
computable H-trace {Tn}n∈ω if for infinitely many n we have
f(n) ∈ Tn.

Note that a computable H-trace can be small only for
functions H such that

∑
n 1/H(n) <∞. The idea underlying

small traces is to have
∑
n λ([Tn]H(n)) finite and computable,

where [Tn]H(n) is the set of strings of length H̃(n) corre-
sponding to elements of Tn.

We shall see that a sequence is weakly Schnorr engulfing iff
it computes some small H-trace capturing every computable

function bounded by H . In order to conduct the proof, the
notion of an interval test (see Definition II.7) plays a key
role: still via some coding between strings of length H̃(n) and
integers smaller than H(n), we can view any small computable
H-trace as an interval test, and vice-versa. The goal of this
section if to prove the following theorem:

Theorem V.2. A sequence A is weakly Schnorr engulfing iff
for some computable function H , there is an A-computable
small H-trace capturing every computable function bounded
by H .

We start by proving the easy implication of Theorem V.2:

Proposition V.3 (Theorem V.2 ⇐). If A Turing computes a
small H-trace capturing every computable function bounded
by H , then A is weakly Schnorr engulfing.

Proof. Let H = 2H̃ be computable, together with an
A-computable sequence {Tn}n∈ω of finite sets, such that∑
n |Tn|/H(n) is an A-computable real and such that

{Tn}n∈ω captures every computable functions bounded by H .

We define an interval test {In,Jn}n∈ω simply by viewing
each member of Tn as a string σ of length H̃(n). Formally
let H ′(n) =

∑
m<n H̃(m) (with H ′(0) = 0). Then each In

is equal to [H ′(n), H ′(n + 1)) and each Jn is equal to the
union of all the sets [σ][H′(n),H′(n+1)) for every member of
Tn encoding a string σ of length H̃(n).

It is clear that {In,Jn}n∈ω is an A-computable interval test
capturing every computable sequence.

For the converse, the idea is to try to cover any A-
computable Schnorr test by an A-computable interval test. In
order to do so we effectivize here some work of Bartoszynski
from set theory, but closely related to what we deal with.
In particular, some proof of Bartoszynski [2] (see also [3]
Theorem 2.5.11) implies that it is not possible in general to
cover a Schnorr test by a single interval test 2. We can however
always cover a Schnorr test by two interval tests, the proof we
give here being similar to the one of Theorem 2.5.7 of [3]:

Lemma V.4. Given a Schnorr test and a computable sequence
of positive rationals {εn}n∈ω , there exists a computable
sequence of integers n0 < m0 < n1 < m1 < . . . and
two computable sequences of clopen sets {J1,n}n∈ω and
{J2,n}n∈ω such that:

• J1,k ⊆ 2[nk,nk+1) and J2,k ⊆ 2[mk,mk+1)

• λ(J1,k) ≤ εk and λ(J2,k) ≤ εk
• Any sequence captured by the Schnorr test is in⋂

n

⋃
m≥n J1,m or in

⋂
n

⋃
m≥n J2,m.

Furthermore the proposition can be relativized in the obvious
way to any oracle A.

2We don’t know if every Schnorr test can be covered by a single indepen-
dent Schnorr-Solovay test



Proof. We can suppose without loss of generality that each
clopen set of Schnorr-Solovay test consists only of one cylin-
der [σ]. It is then presented by a sequence of stings {σn}n∈ω .
We will define an auxiliary computable sequence of integers
p0 < q0 < p1 < q1 < . . . such that J1,k will depend on the
strings σi for qk ≤ i < pk+1. and J2,k will depend on the
strings σi for pk+1 ≤ i < qk+1. The idea is the following: once
we’ve put the first p strings σi in the first component of our
first interval test, we remember the maximal length n of those
strings, we then put the next q strings in the first component
of our second interval test for q sufficiently large such that the
sum of the measure of each remaining string is smaller ε×2−n.
In particular we then know that the sum of the measure of each
remaining string to which we remove the n first bits, is still
small enough. We then repeat the operation, this time making
sure that the measure of what remains to put in the second trace
is small enough, and so on, alternating everytime between the
two traces. Fig. 2 and Fig. 3 illustrate how this works. Fig. 2
illustrates the choice of pk < qk < pk+1 < qk+1 < . . . . Fig. 3
illustrates the choice of nk < mk < nk+1 < mk+1 < . . . .

We now give the formal construction. Let n0 = 0 and p0 =
0. Let q0 > 0 be the least integer such that

∑
n≥q0 2−|σn| ≤

ε0. Let m0 be the maximal value between 1 and the length of
the longest string σi for i < q0. Suppose pk, nk and qk,mk

have been defined. Let us define pk+1 and nk+1. Let pk+1 >
qk be the least integer such that∑

n≥pk+1

2−|σn| ≤ 2−mkεk

and nk+1 the maximal value between mk + 1 and the length
of the longest string σi for qk ≤ i < pk+1. Finally let J1,k

be the clopen set equal to the union of [σi �[nk,nk+1)][nk,nk+1)

for any qk ≤ i < pk+1.

Suppose qk,mk and pk+1, nk+1 have been defined. Let us
define qk+1 and mk+1. Let qk+1 > pk+1 be the least integer
such that ∑

n≥qk+1

2−|σn| ≤ 2−nk+1εk+1

and let mk+1 be the maximal value between nk+1 + 1 and
the length of the longest string σi for pk+1 ≤ i < qk+1.
Finally let J2,k be the clopen set equal to the union of
[σi �[mk,mk+1)][mk,mk+1) for any pk+1 ≤ i < qk+1.

It is clear that n0 < m0 < n1 < m1 < . . . is a computable
sequence of integers. It follows that J1,k ⊆ 2[nk,nk+1) and
J2,k ⊆ 2[mk,mk+1) are computable clopen sets, uniformly
in k. It is also clear that if {σn}n∈ω contains infinitely
many prefixes of X , then X is in

⋂
n

⋃
m≥n J1,m or in⋂

n

⋃
m≥n J2,m. Also note that for any k we have by choice

of qk that ∑
i≥qk

2−|σi| < 2−nkεk

Note also that by definition of J1,k we have

λ(J1,k) ≤ 2nk
∑
i≥qk

2−|σi|

It follows that λ(J1,k) ≤ εk. The argument to show λ(J2,k) ≤
εk is similar.

In order to obtain Theorem V.2 we would need to merge
the two interval tests covering a Schnorr test into a single
interval test. As we mentioned it already, Bartoszynski proved
that this is not possible. It would be enough, given an A-
Schnorr test

⋂
n Un covering every computable sequence,

to mix the two interval A-Schnorr-Solovay tests obtained
with Lemma V.4 into a single interval A-Schnorr-Solovay
test that also captures every computable sequence, without
necessarily covering

⋂
n Un. This is what we achieve now,

adapting the proof of Theorem 2.5.12 of [3]. To do so, we
need to modify a little bit Lemma V.4, so the sequence
n0 < m0 < n1 < m1 < . . . is not just A-computable
(once we relativize the lemma to A) but computable. Also
in order to achieve this, we need to restrict ourselves to
computably dominated oracles A. Fortunately this is not a
problem to prove Theorem V.2 in full generality. Indeed, we
argued already in Proposition II.17 that if A is hyperimmune,
it is of i.o.e. degree, and then it certainly computes a small
H-trace capturing every computable function.

Lemma V.5. Suppose A computably dominated. Given an A-
Schnorr test and a computable sequence of positive rational
{εn}n∈ω , there exists a computable sequence of integer n0 <
m0 < n1 < m1 < . . . and A-computable sequences of clopen
sets {J1,n}n∈ω and {J2,n}n∈ω such that:
• J1,k ⊆ 2[nk,nk+1) and J2,k ⊆ 2[mk,mk+1),
• λ(J1,k) ≤ εk and λ(J2,k) ≤ εk
• Any sequence captured by the A-Schnorr test is in⋂

n

⋃
m≥n J1,m or in

⋂
n

⋃
m≥n J2,m.

Proof. The proof is very similar to the one of Lemma V.4. Let
{σn}n∈ω be a A-Schnorr-Solovay test. Similarly we define the
sequence of integer p0 < q0 < p1 < q1 < . . . such that J1,k

will depend on the strings σi for qk ≤ i < pk+1, whereas
J2,k will depend on the strings σi for pk+1 ≤ i < qk+1. The
difference is that the sequence p0 < q0 < p1 < q1 < . . . now
has to be computable and not just A-computable.

To make those sequences computable, we define FA :
ω × Q → ω be the A-computable function which to (p, ε)
associates the least integer q > p such that

∑
n≥q 2−|σn| ≤ ε.

Note that FA is A-computable because
∑
n 2−|σn| is A-

computable. We also define GA : ω × ω × ω → ω be the A-
computable function which to (p, q, n) associates the maximal
value between n + 1 and the length of the longest string σi
for p ≤ i < q. As A is computably dominated, both FA and
GA are bounded by some computable functions F and G.

Let n0 = 0 and p0 = 0. Let q0 be the result of
computing F (0, ε0). Let m0 be the result of computing



p0 = 0 q0 p1 qk pk+1 qk+1. . .|σi| = m0 |σi| = n1 |σi| = nk+1 |σi| = mk+1
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Fig. 2. The choice of pk < qk < pk+1 < qk+1 < . . .
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J2,k−1 ⊆ 2[mk−1,mk) J2,k ⊆ 2[mk,mk+1)

J1,k ⊆ 2[nk,nk+1)

Fig. 3. The choice of nk < mk < nk+1 < mk+1 < . . .

G(0, q0, 0). Suppose pk, nk and qk,mk have been defined.
Let us define pk+1 and nk+1. Let pk+1 be the result of
computing F (qk, 2

−mkεk) and nk+1 the result of computing
G(qk, pk+1,mk). Finally let J1,k be the clopen set equal to
the union of [σi �[nk,nk+1)][nk,nk+1) for any qk ≤ i < pk+1.

Suppose qk,mk and pk+1, nk+1 have been defined. Let us
define qk+1 and mk+1. Let qk+1 be the result of computing
F (pk+1, 2

−nk+1εk+1) and let mk+1 be the result of computing
G(pk+1, qk+1, nk+1). Finally let J2,k be the clopen set equal
to the union of [σi �[mk,mk+1)][mk,mk+1) for any pk+1 ≤ i <
qk+1.

It is clear that n0 < m0 < n1 < m1 < . . . is a computable
sequence of integers. It follows that J1,k ⊆ 2[nk,nk+1) and
J2,k ⊆ 2[mk,mk+1) are A-computable clopen sets, uniformly
in k. The rest of the verification is as in Lemma V.4.

We are now ready to mix the two interval A-Schnorr-
Solovay tests into one interval A-Schnorr-Solovay test cap-
turing every computable sequence:

Theorem V.6. Let A be weakly Schnorr engulfing. There
exists {In,Jn}n∈ω interval tests relative to A capturing every
computable sequence. Moreover, the sequence {In}n∈ω is
computable.

Proof. We already argued the case A not computably
dominated. We can then suppose A computably dominated.
Fix a decreasing computable sequence of positive rationals
{εn}n∈ω such that

∑
n εn × 2n+1 < ∞. By the previous

lemma, we can assume that we have a computable sequence
of integers n0 < m0 < n1 < m1 < . . . , together with
two A-computable sequences of clopen sets {J1,n}n∈ω and

{J2,n}n∈ω such that:

• J1,k ⊆ 2[nk,nk+1) and J2,k ⊆ 2[mk,mk+1)

• λ(J1,k) ≤ εk and λ(J2,k) ≤ εk
• Any computable sequence is in

⋂
n

⋃
m≥n J1,m or in⋂

n

⋃
m≥n J2,m

We are going to create relative to A an interval
test {[nk+1, nk+2),Rk}k∈ω by mixing {J1,k}k∈ ω and
{J2,k}k∈ ω . Then assuming that a computable sequence X
is not in

⋂
n

⋃
m≥nRm we are going to create, using X , an-

other interval A-Schnorr-Solovay test {[mk+1, nk+2), Tk}k∈ω
such that every computable sequence is necessarily in⋂
n

⋃
m≥n Tm. To help the understanding of the construction,

the reader can refer to Fig. 4.
For k > 0, Let S1,k be the union of [σ][nk,mk) for every

strings σ of length mk − nk such that there are at least
2nk+1−mk−k many strings τ with [σˆτ ][nk,nk+1) ⊆ J1,k. We
have λ([S1,k]≺)2−k ≤ λ(J1,k) and then λ([S1,k]≺) ≤ 2kεk ≤
2kεk−1.

For k > 0, let S2,k be the union of [σ][nk,mk) for every
string σ of length mk − nk such that there are at least
2nk−mk−1−k many strings τ with [τ ˆσ][mk−1,mk) ⊆ J2,k−1.
We have λ([S2,k]≺)2−k ≤ λ(J2,k−1) and then λ([S2,k]≺) ≤
2kεk−1.

Let Rk = [S1,k+1]≺ ∪ [S2,k+1]≺. By the choice of the εk
we clearly have that {[nk+1, nk+2),Rk}k∈ω is an interval A-
Schnorr-Solovay test. If every computable sequence belongs to⋂
n

⋃
m≥nRm we are done. Otherwise there is a computable

sequence X such that X �[nk+1,nk+2) never belongs to Rk for
any k.

For k > 0 let T1,k be the union of [τ ][mk,nk+1) for any string
τ of length nk+1 −mk such that [X �[nk,mk) ˆτ ][nk,nk+1) ⊆
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X �[nk,mk) Y �[mk,nk+1) X �[nk+1,mk+1)

Fig. 4. Construction for Theorem V.6

J1,k and let T2,k be the union of [τ ][mk,nk+1) for any string τ
of length nk+1−mk such that [τ ˆX �[nk+1,mk+1)][mk,mk+1) ⊆
J2,k.

As X must be in
⋂
n

⋃
m≥n J1,m or in

⋂
n

⋃
m≥n J2,m

and as no prefix of X belongs to Rk for any k, it implies
by definition of S1,k that there are at most 2nk+1−mk−k many
[τ ][mk,nk+1) in T1,k and by definition of S2,k+1 that there are
at most 2nk+1−mk−k−1 many [τ ][mk,nk+1) in T2,k.

In particular the clopen set Tk defined to be T1,k+1 ∪
T2,k+1, has measure smaller than 2−k+1. Also the set
{[mk+1, nk+2), Tk}k∈ω is an A -interval test.

We now use the fact that the sequence n0 < m0 <
n1 < m1 < . . . is computable in order to prove that⋂
n

⋃
m≥n Tm contains every computable sequence. Suppose

otherwise, that is, some computable sequence Y is in no set
Tk for any k. Then the sequence Z = X �[n0,m0) ˆY �[m0,n1)

ˆ . . . ˆX �[nk,mk) ˆY �[mk,nk+1) is computable. Also we
easily see that Z is not in

⋂
n

⋃
m≥n J1,m as otherwise

by definition of T1,k the sequence Y would be captured
by {[mk+1, nk+2), Tk}k∈ω . Similarly we see that Z is not
in

⋂
n

⋃
m≥n J2,m as otherwise by definition of T2,k the

sequence Y would be captured {[mk+1, nk+2), Tk}k∈ω . This
then contradicts that

⋂
n

⋃
m≥n Tm does not contain every

computable sequence.

Finally we can prove the hard direction of Theorem V.2:

Theorem V.2 ⇒. Given a sequence A weakly Schnorr engulf-
ing, we have an interval A-Schnorr-Solovay test {In,Jn}n∈ω
capturing every computable sequence with in addition that
{In}n∈ω is computable. We define the computable function
H(n) = 2|In| and the small A-computable H-trace {Tn}n∈ω
to be the set of each integer encoded by each strings σ
such that [σ]In ⊆ Jn. Suppose that a computable function
f : ω → ω bounded by H is not captured by {Tn}n∈ω , then
also the computable sequence X such that X �In is equal to
the string of length |In| corresponding to f(n) and such that

X(i) = 0 for i not in any In, is not captured by {In,Jn}n∈ω
which is a contradiction.

We end the section with an interesting curiosity: In some
sense, among the weakly Schnorr engulfing sequences, those
which are computably dominated have more capturing power
than those which are not. Recall that a sequence is ∆0

2 iff it is
computable from the halting problem, ∅′, iff it is the pointwise
limit of a uniform list of computable sequences.

Proposition V.7. Suppose A is a computably dominated,
weakly Schnorr engulfing oracle. Then the set of ∆0

2 sequences
is contained in an A-Schnorr null set.

Proof. We shall prove that any A-Schnorr-Solovay test
{In,Jn}n∈ω , with each In computable uniformly in n, cap-
turing every computable sequence, also captures every ∆0

2

sequence. Consider a ∆0
2 sequence X , given as the pointwise

limit of a list {Xs}s∈ω where each Xs ∈ 2ω is computable
uniformly in s.

Suppose X is not captured by our A-Schnorr-Solovay test,
without loss of generality we can suppose that for every n we
have X �In /∈ Jn. Let us define the A-computable function f
which to the pair (t, n) associate the smallest s ≥ t such that
Xs �In /∈ Jn. As A is computably dominated, the function f
is bounded by some computable function g : ω × ω 7→ ω.

We then define a computable sequence Y such that Y �In /∈
Jn for each n. Fix some n and compute successive values of
g(s, n) for every s starting from 0, until every value Xt �In
is identical for s ≤ t ≤ g(s, n). As the sequence {Xt �In}t∈ω
converges, we know that this will happen eventually. Define
then Y �In to be Xg(s,n) �In and Y be 0 on positions which
are in no In.

It is then clear that Y �In /∈ Jn for every n, because we
have Xf(s,n) �In /∈ Jn and as s ≤ f(s, n) ≤ g(s, n) we have
by the choice of s that Xg(s,n) �In= Xf(s,n) �In .

Proposition V.7 does not work if A is hyperimmune. We can
simply with A = ∅′ consider the fact that no A-Schnorr test



contains every A-computable element. It is worth mentioning
that the following analogue of Proposition V.7 is true with a
similar proof: If f is computably dominated and H-i.o.e., then
also f is equal infinitely often to every ∆0

2 function bounded
by H .
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tion, Université Paris Diderot, http://www.liafa.univ-paris-diderot.fr/
∼benoitm/ressources/misc/Thesis report benoit monin v1.7.pdf, 2014.

[18] A. Nies, Computability and randomness, ser. Oxford Logic Guides.
Oxford: Oxford University Press, 2009, vol. 51. [Online]. Available:
http://dx.doi.org/10.1093/acprof:oso/9780199230761.001.0001

[19] J. C. Owings, “A cardinality version of Beigel’s Nonspeedup Theorem,”
J. Symbolic Logic, vol. 54, no. 3, pp. 761–767, 1989.

[20] N. Rupprecht, “Relativized Schnorr tests with universal behavior,” Arch.
Math. Logic, vol. 49, no. 5, pp. 555–570, 2010. [Online]. Available:
http://dx.doi.org.ezproxy.auckland.ac.nz/10.1007/s00153-010-0187-6

[21] G. Sacks, Higher Recursion Theory, ser. Perspectives in Mathematical
Logic. Heidelberg: Springer–Verlag, 1990.

[22] C. Schnorr, Zufälligkeit und Wahrscheinlichkeit. Eine algorithmische
Begründung der Wahrscheinlichkeitstheorie. Berlin: Springer-Verlag,
1971, lecture Notes in Mathematics, Vol. 218.

[23] S. Terwijn and D. Zambella, “Algorithmic randomness and lowness,” J.
Symbolic Logic, vol. 66, pp. 1199–1205, 2001.


