
HAL Id: hal-01397246
https://hal.science/hal-01397246

Submitted on 17 Nov 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Algorithmic Identification of Probabilities Is Hard
Laurent Bienvenu, Benoit Monin, Alexander Shen

To cite this version:
Laurent Bienvenu, Benoit Monin, Alexander Shen. Algorithmic Identification of Probabilities Is Hard.
ALT: Algorithmic Learning Theory, Oct 2014, Bled, Slovenia. pp.85-95, �10.1007/978-3-319-11662-
4_7�. �hal-01397246�

https://hal.science/hal-01397246
https://hal.archives-ouvertes.fr

Algorithmic identification of probabilities is hard

Laurent Bienvenu1, Benôıt Monin2, and Alexander Shen3

1 Laboratoire Poncelet, laurent.bienvenu@computability.fr
2 LIAFA benoit.monin@liafa.univ-paris-diderot.fr

3 LIRMM alexander.shen@lirmm.fr; on leave from IITP RAS

Abstract. Suppose that we are given an infinite binary sequence which
is random for a Bernoulli measure of parameter p. By the law of large
numbers, the frequency of zeros in the sequence tends to p, and thus we
can get better and better approximations of p as we read the sequence.
We study in this paper a similar question, but from the viewpoint of
inductive inference. We suppose now that p is a computable real, and
one asks for more: as we are reading more and more bits of our random
sequence, we have to eventually guess the exact parameter p (in the form
of its Turing code). Can one do such a thing uniformly for all sequences
that are random for computable Bernoulli measures, or even for a ‘large
enough’ fraction of them? In this paper, we give a negative answer to this
question. In fact, we prove a very general negative result which extends
far beyond the class of Bernoulli measures.

1 Introduction

1.1 Learnability of sequences

The study of learnability of computable sequences is concerned with the following
problem. Suppose we have a black box that generates some infinite computable
sequence of bits X = X(0)X(1)X(2), . . . We do not know the program running
in the box, and want to guess it looking at finite prefixes

X �n = X(0) . . . X(n− 1)

for increasing n. There could be different programs that produce the same se-
quence, and it is enough to guess one of them (since there is no way to distinguish
between them looking at the output bits). The more bits we see, the more in-
formation we have about the sequence. For example, it is hard to say something
about a sequence seeing only its first bit 1, but looking at the prefix

110010010000111111011010101000

one may observe that this is a prefix of the binary expansion of π, and guess
that the machine inside the box does exactly that (though the machine may as
well produce the binary expansion of, say, 47627751/15160384).

The hope is that, as we gain access to more and more bits, we will eventually
figure out how the sequence X is generated. More precisely, we hope to have a
computable function A such that for every computable X, the sequence

A(X �1), A(X �2), A(X �3), . . .

converges to a program (=Turing machine) that computes X. This is referred
to as identification in the limit, and can be understood in two ways:

– Strong success: for every computable X, the above sequence converges to a
single program that produces X.

– Weak success: for every computable X, all but finitely many terms of the
above sequence are programs that produce X (may be, different ones).

The first type of success is often referred to as exact (EX) and the second
type as behaviorally correct (BC). Either way, such an algorithm A does not
exist in general. The main obstacle: certain machines are not total (produce
only finitely many bits), and distinguishing total machines from non-total ones
cannot be done computably. (If we restrict ourselves to some decidable class of
total machines, e.g., primitive recursive functions, then exact learning is possible:
let A(u) be the first machine in the class that is compatible with u.) We refer the
reader to [ZZ08] for a detailed survey of learnability of computable functions.

1.2 Learnability of probability measures

Recently, Vitanyi and Chater [VC13] proposed to study a related problem. Sup-
pose that instead of a total deterministic machine, the black box contains an
almost total probabilistic machine M . By “almost total” machine we mean a
randomized algorithm that produces an infinite sequence with probability 1.
The output distribution of such a machine is a computable probability measure
µM over the space 2ω of infinite binary sequences. Again, our ultimate goal is to
guess what machine is in the box, i.e., to give a reasonable explanation for the
observed sequence X. For example, observing the sequence

000111111110000110000000001111111111111

one may guess that M is a probabilistic machine that starts with 0 and then
chooses each output bit to be equal to the previous one with probability 4/5 (so
the change happens with probability 1/5), making all the choices independently.

What should count as a good guess for some observed sequence? Again there
is no hope to distinguish between some machine M and another machine M ′

that has the same output distribution µM ′ = µM . So our goal should be to
reconstruct the output distribution and not the specific machine.

But even this is too much to ask for. Assume that we have agreed that some
machine M is a plausible explanation for some sequence X. Consider another
machine M ′ that starts by tossing a coin and then (depending on the outcome)
either generates an infinite sequence of zeros or simulates M ′. If X is a plausible

2

output of M , then X is also a plausible output for M ′, because it may happen
(with probability 1/2) that M ′ simulates M .

A reasonable formalization of ‘good guess’ is provided by the theory of al-
gorithmic randomness. As Chater and Vitanyi recall, there is a widely accepted
formalization of “plausible outputs” for an almost total probabilistic machine
with output distribution µ: the notion of Martin-Löf random sequences with re-
spect to µ. These are the sequences which pass all effective statistical tests for
the measure µ, also known as µ-Martin-Löf tests. (We assume that the reader
is familiar with algorithmic randomness and Kolmogorov complexity. The most
useful references for our purposes are [Gác05] and [LV08].) Having this notion
in mind, one could look for an algorithm A with the following property:

for every almost total probabilistic machine M with output distribution
µM , for µM -almost all X, the sequence A(X � 1),A(X � 2),A(X � 3), ...
identifies in the limit an almost total probabilistic machine M ′ such that
X is µM ′-Martin-Löf random.

Note that this requirement uses two machines M and M ′ (more precisely, their
output distributions): the first one is used when we speak about “almost all”
X, and the second is used in the definition of Martin-Löf randomness. Here M ′

may differ from M and, moreover, may be different for different X.

Vitanyi and Chater suggest that this can be achieved in the strongest sense
(EX): the guesses A(X �n) converge to a single code of some machine M ′. The
main result of this paper says that even a much weaker goal cannot be achieved.

Let us consider a rather weak notion of success: A succeeds on X if there
exists c > 0 such that for all sufficiently large n the guess A(X � n) is a ma-
chine M ′ such that X is µM ′ -Martin-Löf random with randomness deficiency4

less than c. So the machines A(X � n) may be different, we only require that
X is Martin-Löf random (with bounded deficiency) for almost all of them. (If
almost all machines A(X �n) generate the same distribution and X is Martin-
Löf random with respect to this distribution, this condition is guaranteed to be
true.)

Moreover, we require A to be successful only with some positive probability
instead of probability 1, and only for machines from some class: for every ma-
chineM from this class of machines, A is required to succeed with µM -probability
at least δ > 0, for some δ independent of M .

Of course, this class should not be too narrow: if it contains only one ma-
chine M , the algorithm A can always produce a code for this machine. The exact
conditions on the class will be discussed in the next section.

The proof of this result is quite involved. In the rest of the paper, we spec-
ify which classes of machines are considered, present the proof and discuss the
consequences of this result.

4 See below about the version of the randomness deficiency function that we use.

3

2 Identifying measures

2.1 Background and notation

Let us start by providing some notation and background.

We denote by 2ω the set of infinite binary sequences and by 2<ω the set of
finite binary sequences (or strings). The length of a string σ is denoted by |σ|.
The n-th element of a sequence X(0), X(1), . . . is X(n − 1) (assuming that the
length of X is at least n); the string X �n = X(0)X(1) . . . X(n−1) is n-bit prefix
of X. We write σ � X if σ is a prefix of X (of some finite length).

The space 2ω is endowed with the distance d defined by

d(X,Y) = 2−min{n:X(n) 6=Y (n)}

This distance is compatible with the product topology generated by cylinders

[σ] = {X ∈ 2ω : σ � X}

A cylinder is both open and closed (= clopen). Thus, any finite union of cylinders
is also clopen. It is easy to see, by compactness, that the converse holds: every
clopen subset of 2ω is a finite union of cylinders. We say that a clopen set C
has granularity at most n if it can be written as a finite union of cylinders [σ]
with all σ’s of length at most n. We denote by Γn the family of clopen sets of
granularity at most n.

The space of Borel probability measures over 2ω is denoted by M(2ω). It
is equipped with the weak topology. Several classical distances are compatible
with this topology; for our purposes, it will be convenient to use the distance ρ,
constructed as follows: For µ, ν ∈ M(2ω), let ρn(µ, ν) (for an integer n) be the
quantity

ρn(µ, ν) = max
C∈Γn

|µ(C)− ν(C)|

and then set

ρ(µ, ν) =
∑
n

2−nρn(µ, ν)

The open (resp. closed) ball B of center µ and radius r is the set of measures ν
such that ρ(µ, ν) < r (resp. ρ(µ, ν) ≤ r). Note that for any ν in this open (resp.
closed) ball, if C is a clopen set of granularity at most n, then |µ(C)−ν(C)| < 2n r
(resp. ≤ 2n r). The distance ρ makesM(2ω) a computable compact metric space;
its computable points are called computable probability measures. A measure is
computable if and only if it is the output distribution of some almost total
probabilistic Turing machine (see, e.g., [Gác05]). Since M(2ω) is a computable
metric space, one can define partial computable functions from some discrete
space X (such as N) to M(2ω) via type-2 computability: a partial function
f :⊆ X →M(2ω) is partial computable if there is an algorithm g that for every

4

input x ∈ X enumerates a (finite or infinite) list of rational balls5 B1, B2,. . . in
M(2ω) such that Bi+1 ⊆ Bi, the radius of Bi is less than 2−i, and for every x
in the domain of f , the list of enumerated balls is infinite and their intersection
is the singleton {f(x)}. (We do not require any specific behavior outside the
domain of f .)

Let us introduce two non-standard, but important in this paper, pieces of
terminology: having fixed the algorithm g associated to f , we write err(f(x)) <
ε to mean that the list of balls produced by g on input x contains a ball of
radius less than ε (the justification for this notation is that when such a ball is
enumerated, should f(x) be defined, we know its value with error at most ε for
the distance ρ). When the algorithm g on input x enumerates an empty list of
balls, we say that g is null on input x.

We denote by K the prefix-free Kolmogorov complexity function. Given a
computable measure µ, we call randomness deficiency of X with respect to µ the
quantity

d(X|µ) = sup
n

[
log

1

µ([X �n])
−K(X �n)

]
It is known that X ∈ 2ω is µ-Martin-Löf random (or µ-random for short) if
d(X|µ) < ∞. This definition is slightly non-standard; to get a more standard
one, one has to add µ as the condition (with some precautions). However, the
above is enough for our purposes.

We say that two measures µ and ν are orthogonal if there is a set having
µ-measure 1 and ν-measure 0.

If B is a ball (open or closed) inM(2ω), with center µ and radius r, we define
the estimated deficiency of X relative to B by

ed(X|B) = sup
n

[
log

1

µ([X �n]) + 2n r
−K(X �n)

]
Note that ed(X|B) is a lower bound for d(X|ν) for every ν ∈ B: we know

that the value of ν([X �n]) does not exceed µ([X �n]) + 2n r for every ν in the
ball B. For a fixed pair (X,µ) we have limB→µ ed(X|B) = d(X|µ): if d(X|µ)
is large, one of the terms (for some n) is large, and the corresponding term in
ed(X|B) is close to it if B has small radius and contains µ.

Sometimes in the paper we will use the notation ed(X|A(σ)). By this we
mean the supremum of ed(X|B) over all balls B output by A on input σ.

The next lemma will be useful in the sequel.

Lemma 1 (Randomness deficiency lemma). Let B ⊆ M(2ω) be a ball of
center µ (rational measure) and rational radius not exceeding r, and let C be a
clopen set of granularity at most n. Then for all X ∈ C:

ed(X|B) ≥ log
µ(X �n)

µ(X �n) + 2nr
− logµ(C)−K(C, µ, r, n)−O(1)

5 We fix some natural dense set of finitely representable measures. Rational balls
are balls of rational radius with centers in this set. Such balls can also be finitely
represented.

5

Proof. Knowing C, µ, r, n, one can build a prefix-free machine which associates
to every string σ of length n such that [σ] ⊆ C a description of size − logµ(σ) +
logµ(C), so that indeed∑

σ

2−(− log µ(σ)+log µ(C)) =
1

µ(C)

∑
σ

µ(σ) = 1

where the sums are taken over those σ such that [σ] ⊆ C. This shows that for
every such σ of length n, K(σ) ≤ − logµ(σ) + logµ(C) + K(C, µ, r, n) − O(1).
Applying the definition of ed, we get, for all X ∈ C

ed(X|B) ≥ log
1

µ([X �n]) + 2n r
−K(X �n)

≥ log
1

µ(X �n) + 2n r
+ logµ(X �n)− logµ(C)−K(C, µ, r, n)−O(1)

≥ log
µ(X �n)

µ(X �n) + 2n r
− logµ(C)−K(C, µ, r, n)−O(1)

ut

2.2 The main theorem

Now we return to the formulation of our main result. The learning algorithm is
a partial computable function A :⊆ 2<ω → M(2ω); it gets the prefix X � n of
a sequence X and computes (in type-2 sense) some measure A(X �n). (Such a
computable function can be converted into an algorithm that, given an input
string, produces a program that computes the output measure, and vice versa.)
We say that A BC-succeeds on a sequence X ∈ 2ω if A(X � n) outputs the
same computable measure µ for all sufficiently large n, and X is Martin-Löf
random with respect to µ. This is a weaker requirement that exact (EX) success
mentioned above: the algorithm is obliged to produce the same measure (for
almost all n), but is not obliged to produce the same machine. Our main result,
in its weak form, says that this goal cannot be achieved for all sequences that
are random with respect to some computable measure:

Theorem 2. There is no algorithm A that BC-succeeds on every sequence X
which is random with respect to some computable measure.

As we have discussed, we prove a stronger version of this result—stronger in
three directions.

First, we require the learning algorithm to succeed only on sequences that
are random with respect to measures in some restricted class, for example, the
class of Bernoulli measures (the main particular case considered by Chater and
Vitanyi).

Second, for each measure µ in this class we do not require the algorithm to
succeed on all sequences X that are µ-Martin-Löf random: it is enough that it
succeeds with some fixed positive µ-probability (a weaker condition).

6

Finally, the notion of success on a sequence X is now weaker: we do not re-
quire that the algorithm produces (for all sufficiently long inputs) some specific
measure, asking only that it gives ‘good explanations’ for the observed sequence
from some point on. More specifically, we say that an algorithm A BD-succeeds
(BD stands for ‘bounded deficiency’) on some X, if for some c and for all suffi-
ciently large n the measure A(X �n) is defined and X is random with deficiency
at most c with respect to this measure. Clearly BC-success implies BD-success.
(Note that in our definition the randomness deficiency depends only on the mea-
sure but not on the algorithm that computes it.)

We now are ready to state our main result in its strong form.

Theorem 3. Let M0 be a subspace of M(2ω) with the following properties:

– M0 is effectively closed, i.e., one can enumerate a sequence of open balls in
M(2ω) whose union is the complement of M0.

– M0 is recursively enumerable, i.e., one can enumerate the open balls in
M(2ω) which intersect M0.

– every non-empty open subset of M0 (i.e., a non-empty intersection of an
open set in M(2ω) with M0) contains infinitely many pairwise orthogonal
computable measures.

and let δ > 0. Then there is no algorithm A such that for every computable
µ ∈M0, the µ-measure of sequences X on which A BD-succeeds is at least δ.

The notion of an recursively enumerable closed set is standard in computable
analysis, see [Wei00, Definition 5.1.1].

Note that the hypotheses on the class M0 are not very restrictive: many
standard classes of probability measures have these properties. Bernoulli mea-
sures Bp (independent trials with success probability p, where p is a parameter
in [0, 1]) are an obvious example; so there is no algorithm that can learn all
Bernoulli measures (not to speak about all Markov chains). Let us give another
interesting example: for every parameter p ∈ [0, 1], consider measure µp asso-
ciated to the stochastic process which generates a binary sequence bit-by-bit
as follows: the first bit is 1, and the conditional probability of 1 after σ10k is
p/(k + 1). The class M(2ω) = {µp : p ∈ [0, 1]} satisfies the hypotheses of the
theorem.

Note also that these hypotheses are not added for convenience: although they
might not be optimal, they cannot be outright removed. If we do not require
compactness, then the class of Bernoulli measures Bp with rational parameter
p would qualify, but it is easy to see that this class admits an algorithm which
correctly identifies each of the measures in the class with probability 1. The third
condition is important, too. Consider the measures B0 and B1 concentrated on
the sequences 0000 . . . and 1111 . . . respectively. Then the class M0 = {pB0 +
(1− p)B1 | p ∈ [0, 1]} is indeed effectively compact, but it is obvious that there
is an algorithm that succeeds with probability 1 for all measures of that class
(in the most strong sense: the first bit determines the entire sequence). For the
second condition we do not have a counterexample showing that it is really

7

needed, but it is true for all the natural classes (it is guaranteed to be true if
M0 has a computable dense sequence).

3 The proof of the main theorem

The rest of the paper is devoted to proving Theorem 3. Fix a subset M0 of
M(2ω) satisfying the hypotheses of the theorem, and some δ > 0. In the sequel,
by “success” we always mean BD-success.

For every algorithm A we consider the set of sequences on which it succeeds.
We say that A is δ-good if this success set has µ-probability at least δ for every
µ ∈M0. We need to show that δ-good algorithms do not exist.

Let us introduce some useful notation. First, let

Succ(A, c, n) =
{
X ∈ 2ω : (X �n) ∈ dom(A) ∧ d(X|A(X �n)) ≤ c

}
be the set of X on which A achieves “local success” on the prefix of length n for
randomness deficiency c. The success set is then

⋃
c

⋃
N

⋂
n≥N Succ(A, c, n).

According to our type-2 definition, the algorithm computing A produces (for
each input string) a finite or infinite sequence of balls (we assume that i-th ball
has radius at most 2−i). We will write ‘B ∈ A(σ)’ to signify that on input σ this
algorithm enumerates the ball B at some point. For any function f : 2<ω → [0, 1]
converging to 0, we define the set Prec(A, f, n) of points X which are ‘precise
enough’ in the sense that A(X �n) almost outputs a measure:

Prec(A, f, n) = {X ∈ 2ω : err(A(X �n)) < f(X �n)}

(notice that Prec(A, f, n) is a clopen set because the membership of X in
Prec(A, f, n) is determined fully by the first n bits of X). The specific choice
of f (how ‘precise’ should be the output measure) is discussed later.

In contrast to Prec, we define the following “nullity” sets:

Null(A, N) =
{
X ∈ 2ω : A(X �n) is null for every n ≥ N

}
.

Proposition 4 (Nullity amplification). Assume that A is a δ-good algo-
rithm, N is an integer, η ≥ 0 is a real number and B is an open ball intersecting
M0 such that µ(Null(A, N)) ≥ η for all µ ∈ B∩M0. Then there is a non-empty
ball B′ ⊆ B intersecting M0, an integer N ′ ≥ N and a δ-good algorithm A′ such
that µ(Null(A′, N ′)) ≥ η + δ/2 for all µ ∈ B′ ∩M0.

This proposition clearly shows that there can be no δ-good algorithm: if there
were one, one could construct by induction (taking for the base case η = 0, N =
0, and B = any ball intersecting M0) a sequence of δ-good algorithms Ai, a non-
increasing sequence of balls Bi intersecting M0, and a non-decreasing sequence
of integers Ni such that µ(Null(Ai, Ni)) ≥ i ·(δ/2) for every µ ∈ Bi∩M0, which
gives a contradiction for large i. Thus, all we need to do is prove this proposition.

8

Proof. Fix A, N , η and B as in the hypotheses of the proposition. For m ≥ N ,
define a decreasing sequence of effectively open sets Um by

Um = {µ | (∃n > m)
(
µ(Prec(A, f, n)) > 1− η − δ/2

)
}.

The first step of this proof consists in showing that if f is carefully chosen to
tend to 0 fast enough, then only finitely many of the Um can be dense in B∩M0.
The way we do this is by proving the following fact: if Um is dense in B∩M0 for
some m, then for every B′ ⊆ B intersectingM0, one can effectively find B′′ ⊆ B′
intersecting M0 such that for all µ ∈ B′′, µ(Succ(A, n, n)) < 7δ/8 for some
n ≥ m ≥ N .

This would yield a contradiction since this would allow us to construct a
computable sequence of decreasing balls Bm, all intersecting M0, where all µ ∈
Bm would be such that µ(Succ(A, n, n)) < 7δ/8 for some n ≥ m, and thus the
intersection of the Bm would be a computable measure µ∗ – belonging toM0 by
closedness ofM0 – for which the success set of A has µ∗-measure at most 7δ/8,
a contradiction.

The definition of f on strings of length n will depend on a “large enough”
parameter s = s(n) which we will define later as a computable function of n.
Suppose s has already been chosen. We shall first define in terms of s an impor-
tant auxiliary computable function L. It is computed as follows. For a given n,
let ε = min(2−n · δ/4, r) where r is the radius of B.

First, we effectively find k(ε) rational balls D1,D2, · · · Dk(ε), all intersecting
M0, whose union covers M0 and for any ball of radius at least ε, one of the
Di is contained in this ball. (To do this, enumerate all balls with rational center
and radius smaller than ε/3. By effective compactness of the space of measures
M(2ω) and sinceM0 is effectively closed, one can find a finite number of them,
call them D1,D2, . . . ,Dk(ε), which cover M0 entirely. Now, let A be a ball of
radius at least ε intersecting M0 and µ its center. Since µ is at distance ε/3 of
some measure ν ∈ M0. But the Di’s cover M0, so ν belongs to some ball Di,
and by the triangular inequality, every member of Di is at distance at most 2ε/3
of µ, hence Di is contained in A).

Then, inside each ball Di, we effectively find 2s rational measures ξ
(i)
1 , . . . , ξ

(i)
2s

and pairwise disjoint clopen sets V
(i)
1 , . . . , V

(i)
2s such that ξ

(i)
j (V

(i)
j) > 1− δ/8.

To see that this can be done, observe that the conditions ‘ξ1, . . . , ξs ∈ B’, ‘the
Vi are disjoint’, and ‘ξi(Vi) > 1− ε for all i’ are all Σ0

1 -conditions. Therefore, all
we need to argue is that such measures and clopen sets exist. By our assumption
on M0, let ξ1, . . . , ξs be pairwise orthogonal measures inside B. By definition,
this means that for every pair (i, j) with i 6= j, there exists a set Si,j ⊆ 2ω such
that ξi(Si,j) = 1 and ξj(Si,j) = 0. For each i, let Si =

⋂
j 6=i Si,j . One can easily

check that ξi(Si) = 1 for all i and ξi(Sj) = 0 when i 6= j. The measure of a
set is the infimum of the measures of open sets covering it. Therefore, for each i
there is an open set Ui covering Si such that ξj(Ui) ≤ 2−s−1ε for i 6= j (and of
course, ξi(Ui) = 1 for all i). Now we use the fact that the measure of an open
set is the supremum of the measures of the clopen sets it contains. Therefore,
for each i there exists a clopen set U ′i ⊆ Ui such that ξi(U

′
i) ≥ 1 − ε/2 (and of

9

course ξi(U
′
j) ≤ 2−s−1ε for i 6= j). Now Vi = U ′i \

⋃
j 6=i U

′
j for each i is a clopen

set of ξi-measure at least 1− ε/2− 2s · 2−s−1ε = 1− ε. The pairwise disjointness
of the Vi is clear from their definition.

Compute the maximum of the granularities of all the clopen sets V
(i)
j for

i ≤ k(ε) and j ≤ 2s and denote this maximum by L(n).

Suppose now that for every non-empty B′ ⊆ B intersecting M0, there exists
some µ ∈ B′ and some n,

µ(Prec(A, f, n)) > 1− η − δ/2

for some measure µ ∈ B and some n ≥ N . Set again ε = min(2−n · δ/4, r) and
compute a family D1,D2, · · · Dk(ε) intersectingM0 and whose union coversM0

so that for any ball B of radius at least ε, there is some Di ⊆ B.

Recall that Prec(A, f, n) is a clopen set of granularity n. Thus, if ρ(ν, µ) <
2−n ·δ/4, then ν(Prec(A, f, n)) > 1−η−δ/2−δ/4 = 1−η−3δ/4. And thus, by
definition of the Di, there exists i such that for all ν ∈ Di, ν(Prec(A, f, n)) >
1−η−3δ/4. Moreover, such an i can be found effectively knowing Prec(A, f, n)
and δ. Fix such an i and set D = Di.

Now consider the behaviour of the algorithm A on all possible strings σ of
length n. On some of these strings, the algorithm does not achieve precision
f(σ); we ignore such strings. On some others, A(σ) achieves precision f(σ) and
thus returns a sequence containing some ball A of radius less than f(σ). Call
A1, ...,At all such balls (obtained by some A(σ) with σ of length n). Note that
t ≤ 2n. Let α1, ..., αt be the centers of these balls, and consider their average
β = (1/t)

∑
i≤t αi. Since the Vi are disjoint and there are 2s-many of them, by

the pigeonhole principle, there exists some j such that β(Vj) ≤ 2−s, and thus
αi(Vj) ≤ t · 2−s ≤ 2n−s for all i. Fix such a j and set V = Vj , and ξ = ξj .

Recalling that the granularity of V is at most L(n), we can apply the ran-
domness deficiency lemma, we have for all X ∈ V :

ed(X|A(X �n)) ≥ log
αi(X �L(n))

αi(X �L(n)) + 2L(n) f(X �n)
− logαi(V)

−K(V, n, s(n))−O(1)

where αi is the center of the ball of radius f(X � n) enumerated by A(X � n).
And this finally tells us how the function f should be defined: we require that
2L(n)f(X � n) is smaller than αi(X � L(n)), so as to make constant the first
term of the right-hand-side. It seems to be a circular definition, but it is not
the case: we can define f(σ) to be the first rational q we find such that A(σ)
enumerates a ball of radius at most q and such that the center α of this ball is
such that α(σ) > 2L(|σ|)q. This makes f a partial computable function, which
is fine for our construction. Note also that f(σ) can be undefined if A(σ) is a
measure γ such that γ(σ) = 0, but we need not worry about this case because

10

it automatically makes the algorithm fail on σ (because the γ-deficiency of any
extension of σ is infinite).

It remains to evaluate the Kolmogorov complexity of V . What we need to ob-
serve that K(V) can be computed from Prec(A, f, n), which, being a clopen set
of granularity at most n, has complexity at most 2n+O(1). Indeed, knowing this
set, one can compute the open set of measures ν such that ν(Prec(A, f, n)) >
1−η−3δ/4 and effectively find a ball D as above. Then, from D, the sequence of
clopen sets V1, . . . , V2s can be effectively computed. Moreover, to choose the V
as above, we need to know β, hence the sequence of measures α1, . . . αt. But
these can also be found knowing Prec(A, f, n), by definition of the latter. Thus
we have established that K(V) ≤ 2n+O(1).

Plugging all these complexity estimates in the above expression, we get

ed(X|A(X �n)) ≥ s(n)− n−K(s(n))−O(1) (1)

≥ s(n)− 2 log(s(n))− n−O(1) (2)

Thus, by taking s(n) = 2n+ d for some large enough constant d, we get that

ed(X|A(X �n)) > n

for all X ∈ V . But the clopen set V has ξ-measure at least 1 − δ/8, so by
definition of the Ai, A returns a ξ-inconsistent answer for deficiency level n on
a set of ξ-measure at least 1 − η − 3δ/4 − δ/8 of strings of length n. Note that
this is a Σ0

1 -property of ξ, so we can in fact effectively find a ball B′′ intersecting
M0 on which this happens. For every ν ∈ B′′, A(σ) is null on a set of strings of
ν-measure at least η (by assumption) and is inconsistent on a set of measure at
least 1 − η − 7δ/8, so Succ(A, n, n) has a ν-measure of at most 7δ/8, which is
the contradiction we wanted.

Now, we have reached our first goal which was to show that some UN ′ is
not dense in B ∩M0 for some N ′. Note that the Um are non-increasing so this
further means that there is a ball B′ ⊆ B such that B ∩M0 does not intersect
any of the Um for m ≥ N ′. By definition, this means that on any measure ν of
that ball B′, the algorithm does not reach precision f(σ) on a set of strings σ of
ν-measure at least η + δ/2. Thus, it suffices to consider the algorithm A′ which
on any input σ does the following: it runs A(σ) until A(σ) reaches precision f(σ).
If this never happens, A′(σ) remains null. If it does, then A′(σ) returns the same
list of balls as A(σ). Clearly the algorithm A′ is δ-good since for every σ in the
domain of A, A′(σ) = A(σ). But by construction our new algorithm A′ is such
that ν(Null(A′, N ′)) ≥ η + δ/2 for all ν ∈ B′. This finishes the proof. ut

Acknowledgements. This publication was made possible through the support
of a grant from the John Templeton Foundation. The opinions expressed in this
publication are those of the authors and do not necessarily reflect the views of
the John Templeton Foundation.

11

References

[Gác05] Peter Gács. Uniform test of algorithmic randomness over a general space.
Theoretical Computer Science, 341(1-3):91–137, 2005.

[LV08] Ming Li and Paul Vitányi. An introduction to Kolmogorov complexity and
its applications. Texts in Computer Science. Springer-Verlag, New York, 3rd
edition, 2008.

[VC13] Paul Vitanyi and Nick Chater. Algorithmic identification of probabilities.
http://arxiv.org/abs/1311.7385, 2013.

[Wei00] Klaus Weihrauch. Computable analysis. Springer, Berlin, 2000.
[ZZ08] Thomas Zeugmann and Sandra Zilles. Learning recursive functions: a survey.

Theoretical Computer Science, 397:4–56, 2008.

12

