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In the context of sediment characterization, layer interface roughnesses may be responsible for

sound-speed profile measurement uncertainties. To study the roughness influence, a three-

dimensional (3D) modeling of a layered seafloor with rough interfaces is necessary. Although

roughness scattering has an abundant literature, 3D modeling of spherical wave reflection on rough

interfaces is generally limited to a single interface (using Kirchhoff-Helmholtz integral) or compu-

tationally expensive techniques (finite difference or finite element method). In this work, it is dem-

onstrated that the wave reflection over a layered medium with irregular interfaces can be modeled

as a sum of integrals over each interface. The main approximations of the method are the tangent-

plane approximation, the Born approximation (multiple reflection between interfaces are neglected)

and flat-interface approximation for the transmitted waves into the sediment. The integration over

layer interfaces results in a method with reasonable computation cost. VC 2016 Acoustical Society of
America. [http://dx.doi.org/10.1121/1.4961000]

[JFL] Pages: 1108–1115

I. INTRODUCTION

In the context of sediment characterization, the seafloor

is generally assumed to be made of a stack of layers with flat

interfaces. A recently developed method for sediment sound-

speed profile characterization is the image source method

(ISM).1 This technique is based on the analysis of the sea-

floor reflected acoustic wave as a collection of image sources

whose positions are linked with the thicknesses and the

sound speed of the sediment stack. In Ref. 1, the ISM is

applied to experimental data acquired by the NATO

Undersea Research Center in 2009 during the Clutter’09

experiment. The equipment consisted of an autonomous

undersea vehicle towing a 1600–3500 Hz frequency band

source and a 32 m horizontal line array of 32 hydrophones at

12 m above the seabed. Under the assumption of locally

range independent seabed properties, the moving horizontal

array provided successive range independent sediment

sound-speed profiles along a track to obtain the range and

depth dependent structure of the seafloor. From this study, it

was observed that the sound-speed profiles obtained by the

ISM are subject to important instabilities from one measure-

ment to another. It is suspected that interface roughnesses

might play an important role in those instabilities. To study

roughness influence on sound-speed profile measurement it

is necessary to simulate wave reflection on a layered medium

with rough interfaces so that every parameter can be con-

trolled carefully. Also, the three-dimensional (3D) effect in

interface roughness scattering has to be taken into account.

Although roughness scattering has an abundant literature,

most of the existing models for wave reflection in layered media

with rough interfaces are statistical and used to evaluate the

scattering strength (or scattering cross section).2–7 To simulate a

deterministic signal, 3D modeling of spherical wave reflection

on rough interfaces is generally limited to a single interface

(using the Kirchhoff approximation of the Kirchhoff-Helmholtz

integral)8,9 or computationally expensive (using the finite-

difference method).10 For wave propagation in range dependent

layered media, ray theory can be used for wave propagation

through the medium and combined with the Kirchhoff approxi-

mation for the interface reflection modeling.11 In this work, a

similar approach is adopted. The method uses three approxima-

tions: the tangent-plane approximation, the Born approximation

(multiple reflections between interfaces are neglected), and flat-

interface approximation for the transmitted waves.

In Sec. II, the environmental configuration for the syn-

thetic data is first described before detailing the 3D data

modeling in Sec. III. Finally in Sec. IV the results obtained

from simulated signals are presented.

II. ENVIRONMENTAL CONFIGURATION

The configuration of the numerical experiment consists of a

layered medium modeled as a three layer stack with geoacoustic

parameters defined in Table I. A semi-infinite water layer is con-

sidered so that the sea-surface reflections are not included in the

model. In the method described in Sec. III, the model geometry

is defined by the layer’s interfaces. Their mean planes are paral-

lel, 120 m wide and 150 m long (Fig. 1). The spatial sampling

used to define the roughness height is set to 2.5 cm.

Interface roughnesses between layers are generated such

that the spatial power spectrum has a “von Karman” spec-

trum form12

W2 kx; kyð Þ ¼
w2

k2
x þ k2

y þ 1=L2
� �c2=2

; (1)
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where kx and ky are the horizontal wavenumbers, 2pL is the

roughness correlation length, c2 the spectral exponent, and

w2 is the spectral strength. Values for L and c2 are fixed,

respectively, to 10 m and 3, and the spectral strength is set to

w2 ¼ 3:18� 10�4. With these parameters, the root mean

square (rms) roughness height is frms ¼ 14 cm. The rms

roughness height frms is given by

f2
rms ¼

2pw2

c2 � 2ð ÞL� c2�2ð Þ : (2)

The rms roughness height is smaller than the wave-

length at the central frequency (1.5 m in water) but important

enough to play a significant role on interface wave

reflections.

The source and the receiver are 20 m apart and 10 m

above the first interface. The source signal has a Gaussian

envelope with a 1 kHz central frequency and a bandwidth of

600 Hz. Thus, the pulse duration corresponds to a 4 m length

in water that provides a layer thickness resolution of about

2 m. In the time domain, the emitted pulse maximum ampli-

tude is set to 1 at 1 m from the source. The sampling fre-

quency is set to 12 kHz.

III. THREE-DIMENSIONAL MODELING OF SPHERICAL
WAVE REFLECTION IN LAYERED MEDIA WITH
ROUGH INTERFACES

A. Wave equation in inhomogeneous media

In the inhomogeneous medium presented in Fig. 2, the

harmonic acoustic pressure PðrÞ at coordinate r ¼ ðx; y; zÞ
and frequency x obeys the wave equation

q rð Þr 1

q rð ÞrP rð Þ þ x
c rð Þ

� �2

P rð Þ ¼ �Sd r� rAð Þ;

(3)

where S is the source amplitude at frequency x and rA 2 D0

is the source coordinate. The inhomogeneous medium is

composed of the homogeneous domains D0 to DL separated

by the interfaces S1 to SL (Fig. 2).

The density qðrÞ and the sound speed cðrÞ are constant

inside the layers, i.e., qðrÞ ¼ ql and cðrÞ ¼ cl for r 2 Dl. As in

Refs. 5 and 13, a Green function is defined for each volumeDl,

DGl r0; rð Þ þ x
cl

� �2

Gl r0; rð Þ ¼ �d r0 � rð Þ; (4)

for which the 3D solution is the Green’s function for the infi-

nite, homogeneous medium,

Gl r0; rð Þ ¼ eikljr0�rj

4pjr0 � rj ; (5)

where r; r0 2 Dl and kl ¼ x=cl.

Then Eq. (3) and Eq. (4) are multiplied by Glðr0; rÞ and

PðrÞ, respectively, subtracted, integrated over the volume

Dl, and the Green’s theorem is applied. This results in the

set of integral equations as follows:

Pðr0Þ ¼ SG0ðr0; r0Þþ
ð

S1

½G0ðr0; rÞrnPðrÞ

� PðrÞrnG0ðr0; rÞ�dr; (6)

for r0 2 D0 and

Pðr0Þ ¼
ð

Sl[Slþ1

½Glðr0; rÞrnPðrÞ � PðrÞrnGlðr0; rÞ�dr;

(7)

TABLE I. Layered media parameters.

Layer thickness Sound speed (m/s) Density (kg/m3) Absorption (dB/m/kHz)

Water 1500 1000 0

3 m 1490 1100 0.1

7 m 1550 1300 0.5

10 m 1600 1500 0.5

Basement 1700 1700 0.3

FIG. 1. (Color online) Example of a roughness realization for the four inter-

faces. The color scale corresponds to the roughness height relative to the

interface mean plane (in cm).

FIG. 2. Geometry of the problem.
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for r0 2 Dl; l 6¼ 0; dr is the surface element, rn is the nor-

mal derivative on the interface, and n ¼ ðnx; ny; nzÞ is the

normal vector to the interface at point r.

Integrals over S0, SLþ1, and the layer sides vanish

because of the free field Sommerfeld radiation condition.

B. Kirchhoff and Born approximation in layered media

In a configuration with a single interface sufficiently

smooth and if the incident wave from the source can be con-

sidered as locally plane, one can use the Kirchhoff approxima-

tion (also called tangent plane approximation).15 Thus, the

pressure on the interface is PðrÞ � PiðrÞ þ PrðrÞ where PiðrÞ
is the incident wave from the source and PrðrÞ is the locally

reflected wave. To account for the scattered wave from below

the interface, the approximation for PðrÞ in Eq. (6) is

P0ðrÞ � Pi
0ðrÞ þ Pr

0ðrÞ þ Pt
0ðrÞ; (8)

where the subscript 0 in P0ðrÞ has been added to refer to the

volume D0 in which the pressure is evaluated, Pr
0ðrÞ

¼ R01Pi
0ðrÞ is the reflected pressure in D0, R01 is the local

reflection coefficient from D0 on the interface S1, and

Pt
0ðrÞ ¼ T10Ps

1ðrÞ is the transmitted wave through the inter-

face S1. Ps
1ðrÞ is the scattered field below the interface S1,

and T10 is the transmission coefficient from D1 to D0. To be

strict, the scattered field below the interface Ps
1ðrÞ should be

decomposed into a sum of locally plane waves, each one

having its own transmission coefficient. Nevertheless, the

term T10Ps
1ðrÞ is used for the sake of clarity. Then, the pres-

sure and its normal derivative in Eq. (6) are

P0ðrS1Þ � Pi
0ðrS1Þ þ R01Pi

0ðrS1Þ þ T10Ps
1ðrS1Þ; (9)

rnPðrS1Þ � rnPi
0ðrS1Þ � R01rnPi

0ðrS1Þ
þ T10rnPs

1ðrS1Þ: (10)

Using this approximation, Eq. (6) for a receiver at the

coordinate rB becomes

P0ðrBÞ ¼ 4pSG0ðrB; rAÞ þ IðrBÞ þ I S1ðrBÞ þ I s
S1ðrBÞ;

(11)

with

IðrBÞ ¼
ð

S1

½G0ðrB; rS1ÞrnPi
0ðrS1Þ

�Pi
0ðrS1ÞrnG0ðrB; rS1Þ�drS1 ¼ 0; (12)

I S1ðrBÞ ¼ �
ð

S1

½G0ðrB; rS1ÞR01rnPi
0ðrS1Þ

þR01Pi
0ðrS1ÞrnG0ðrB; rS1Þ�drS1; (13)

I s
S1ðrBÞ ¼

ð
S1

½G0ðrB; rS1ÞT10rnPs
1ðrS1Þ

�T10Ps
1ðrS1ÞrnG0ðrB; rS1Þ�drS1: (14)

The integral IðrBÞ [Eq. (11)] is null because it corre-

sponds to the wave field solution in absence of the reflector.

The integral IS1ðrBÞ is known as the Kirchhoff approxima-

tion for the reflected wave from the interface S1 and the inte-

gral I s
S1ðrBÞ represents the scattered field from below the

interface S1 and is a function of the pressure Ps
1ðrÞ in D1.

If the reflection on S1 of the up-going wave inside D1 is

neglected, one can approximate Eq. (7) for the scattered

pressure in D1 by

Ps
1ðrS1Þ ¼

ð
S2

½G1ðrS1; rS2ÞrnP1ðrS2Þ

�P1ðrS2ÞrnG1ðrS1; rS2Þ�drS2; (15)

where rS1 2 S1 and rS2 2 S2.

Neglecting the up-going wave reflections on the upper

interface inside the layers is, in other words, neglecting the

multiple reflections inside the layers. For that reason this

approximation is referred as the Born approximation.

As for interface S1 the approximation P1ðrS2Þ
� Pi

1ðrS2Þ þ Pr
1ðrS2Þ þ Pt

1ðrS2Þ on S2 is used. Thus the pres-

sure Ps
1 in D1 is

Ps
1ðrS1Þ ¼ �

ð
S2

½G1ðrS1; rS2ÞR12rnPi
1ðrS2Þ

þR12Pi
1ðrS2ÞrnG1ðrS1; rS2Þ�drS2

þ
ð

S2

½G1ðrS1; rS2ÞT21rnPs
2ðrS2Þ

�T21Ps
2ðrS2ÞrnG1ðrS1; rS2Þ�drS2; (16)

where Ps
2ðrS2Þ is the scattered field from below the interface

S2. Now, one can replace Ps
1ðrS1Þ in I s

S1ðrBÞ by its expres-

sion in Eq. (16). After rearranging the terms inside the inte-

grals over S1 and S2, one can write I s
S1ðrBÞ in the following

form:

I s
S1ðrBÞ ¼ I S2ðrBÞ þ I s

S2ðrBÞ; (17)

with

I S2ðrBÞ ¼ �
ð

S2

½G1!0ðrB; rS2ÞR12rnPi
1ðrS2Þ

þR12Pi
1ðrS2ÞrnG1!0ðrB; rS2Þ�drS2; (18)

I s
S2ðrBÞ ¼

ð
S2

½G1!0ðrB; rS2ÞT21rnPs
2ðrS2Þ

�T21Ps
2ðrS2ÞrnG1!0ðrB; rS2Þ�drS2; (19)

where

G1!0ðrB; rS2Þ ¼
ð

S1

½G0ðrB; rS1ÞT10rnG1ðrS1; rS2Þ

�T10G1ðrS1; rS2ÞrnG0ðrS1; rS2Þ�drS1

(20)

is defined as the Green’s function from D1 to D0. Similarly,

the incident pressure in D1 is given by

Pi
1ðrS2Þ ¼ 4pSG0!1ðrS2; rAÞ; (21)
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where

G0!1ðrS2; rAÞ ¼
ð

S1

½G1ðrS2; rS1ÞT01rnG0ðrS1; rAÞ

�T01G0ðrS1; rAÞrnG1ðrS2; rS1Þ�drS1:

(22)

Using the same reasoning for all interfaces, the recorded

pressure at the coordinate rB can be modeled as a sum of

integrals over each interface,

P0ðrBÞ ¼ 4pSG0ðrB; rAÞ þ
XL

l¼1

ISlðrBÞ; (23)

with

I SlðrBÞ ¼ �4pS

ð
Sl

½Gl�1!0ðrB; rSlÞ

� Rl�1lrnG0!l�1ðrSl; rAÞ
þRl�1lG0!l�1ðrSl; rAÞ
� rnG1�1!0ðrB; rSlÞ�drSl; (24)

where the Green’s function between a point r 2 Dq and the

receiver point rB 2 D0 for q � 1 is obtained by the recur-

rence relation

Gq!0ðrB; rÞ ¼
ð

Sq

½Gq�1!0ðrB; rSqÞTqq�1rnGqðr; rSqÞ

�Tqq�1Gqðr; rSqÞrnGq�1!0ðrB; rSqÞ�drSq;

(25)

as well as the Green’s function between the source point

rA 2 D0 and the point r 2 Dq,

G0!qðr; rAÞ ¼
ð

Sq

½Gqðr; rSqÞTq�1qrnG0!q�1ðrSq; rAÞ

�Tq�1qG0!q�1ðrSq; rAÞrnGqðr; rSqÞ�drSq:

(26)

Equation (23) is an important intermediary result.

Starting from the wave equation in inhomogeneous media,

under the tangent-plane approximation and neglecting the

multiple reflections inside a layer (Kirchhoff and Born

approximation), it has been shown that the reflected wave

from a layered medium can be understood as a sum of the

reflections from each interface.

C. Ray approximation

Equations (20) and (22) for G1!0ðrA; rS2Þ and

G0!1ðrS2; rAÞ can be recognized as the Kirchhoff approxima-

tion for transmitted waves between two fluids separated by a

moderately rough interface.9,17 Rewriting Eq. (22) using the

high frequency approximation, we obtain

G0!1 rS2; rAð Þ �
ð

S1

ixT01

n � u0=c0 þ n � u1=c1ð Þ
4pR04pR1

� eix s0þs1ð ÞdrS1; (27)

where “�” is the scalar product, s0 ¼ jrS1 � rAj=c0 and s1

¼ jrS2 � rS1j=c1 are the travel times in D0 and D1; u0

¼ ðrS1 � rAÞ=jrS1 � rAj and u1 ¼ ðrS2 � rS1Þ=jrS2 � rS1j are

the unit vector of incidence in D0 and D1; R0 ¼ jrS1 � rAj
and R1 ¼ jrS2 � rS1j.

The transmitted wave through a moderately rough inter-

face is mainly affected by the roughness at high angle of

incidence (or low grazing angle).9,17 Otherwise, one can

approximate the integral in Eq. (27) with the flat interface

corresponding to the mean plane �S1. Then, the stationary

phase evaluation of the integral gives16

G0!1 rS2; rAð Þ � ~T01

1

4p
rn~s0 �rn~s1ð Þ

~R0
~R1

1

2
ffiffiffiffiffiffiffi
jHj

p eix ~s0þ~s1ð Þ;

(28)

where the tilde over the variables stands for their values at

the stationary phase path, jHj ¼ jrS1 � ðrS1ð~s0 þ ~s1ÞÞTj is

the determinant of the Hessian matrix andrS1 is the gradient

in the interface �S1.

This result may be difficult to generalize in the recurrence

relation of Eqs. (25) and (26) for an arbitrary number of inter-

faces. So the ray path of stationary phase will be considered

and the ray amplitudes and delays are calculated using the ray

theory. Considering that the wave is transmitted through the

flat mean planes �Sl, the function G0!qðr; rAÞ [Eqs. (26) and

(25)] between a point r 2 Dq and the point rA 2 D0 are calcu-

lated using Langston’s method.18 It consists of multiplying

the geometric divergence of the ray,19 the product of the trans-

mission coefficient through each interface and the phase term

G0!qðr; rAÞ � Aðr; rAÞeixs? ; (29)

with

A r; rAð Þ �
cqJ rAð Þ
c0J rð Þ

����
����
1=2

�
Yq

p¼1

Tp�1p; (30)

where JðrAÞ ¼ 1 and the Jacobian of the ray is19

J rð Þ ¼

@x

@s

@x

@h0

@x

@w0

@y

@s

@y

@h0

@y

@w0

@z

@s

@z

@h0

@z

@w0

�������������

�������������

; (31)

h0 and w0 are the ray incidence angle and the ray azimuth at

the origin rA, respectively.

To include absorption, the complex sound speed c?l
¼ cl=ð1þ iblÞ is used (the symbol ? indicates a complex val-

ued parameter). The parameter bl can be obtained from the

absorption coefficient al in dB/m/kHz by20

bl ¼ al �
cl

1000 2pð Þ20 log10e
: (32)

Thus, the travel time s? in Eq. (29) is complex and can

be calculated from the eikonal equation,
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s? ¼
ð

1

c? sð Þ
ds

¼
ð

1

c sð Þ
dsþ i

ð
b sð Þ
c sð Þ

ds; (33)

where s is the coordinate along the ray path between r and rA.

Integrals in Eq. (23) for the scattered field can then be

simplified using the high frequency approximation,

rnG0!qðr0; rÞ � ikquq � nG0!qðr0; rÞ; (34)

where uq is the incident unit vector in Dq.

Applying this approximation in Eq. (24) and using Eq.

(29), we obtain

I SlðrBÞ � �4pS

ð
Sl

Rl�1lðikl�1ui � nþ ikl�1ur � nÞ

� AðrSl; rAÞAðrB; rSlÞeixðsiþsrÞdrSl; (35)

where ui and ur are the unit vector of the ray from rA and rB

on rSl, si is the travel time between rA and rSl, and sr is the

travel time between rSl and rB (superscript i and r stand for

incident and reflected, respectively).

By convention, vectors u and n are pointing downward

and upward, respectively, in Eq. (38). When ui � n > 0 or

ur � n > 0, the surface element drSl is in a shadow. The ampli-

tudes for those shadowed elements is set to 0 to improve the

range of validity of the Kirchhoff approximation.21

The roughness height f and its normal on every point of

the surface are a known input of the problem. As a small

roughness is assumed, the incident unit vector on the rough

interface u is almost equal to the incident unit vector �u on

the mean plane Sl (Fig. 3). Thus, we can also approximate

the complex travel time by

s? ¼ s? � fuz=cl�1; (36)

where s? is the complex travel time to the mean plane �Sl.

One can show that the surface element drSl ¼ drSl=nz

where drSl is the surface element of the mean plane.

Eventually, if we neglect the roughness in the geometric

divergence in A, Eq. (35) can be written by

I Sl rBð Þ � �4pS

ð
Sl

Rl�1lA rSl ; rAð ÞA rB; rSlð Þ

� ikl�1ui � nþ ikl�1ur � n
� �

� exp ix si? þ sr? � fui
z þ fur

z

cl�1

� �� 	
drSl

nz
;

(37)

where the plane wave reflection and transmission coefficient

are given by14

Rl�1l ¼
m cos h�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 � sin2 h
p

m cos hþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 � sin2 h
p ;

Tp�1p ¼
2m cos h

m cos hþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 � sin2 h
p ; (38)

with m ¼ ql=ql�1; n ¼ c?l�1=c?l and cos h ¼ jul�1 � nj is the

cosine of the incidence angle above the interface. For the

transmission coefficient, the normal n is taken from the

mean plane.

The expression for AðrB; rÞ is similar to Eq. (30) with

the upgoing wave transmission coefficient Tpp�1 instead of

Tp�1p.

D. Numerical evaluation

Equation (37) has a convenient form for numerical eval-

uation. One can calculate the ray paths, geometric diver-

gence and transmission coefficient through previous

interfaces from the source and the receiver to the mean

plane, and apply a correction factor in the travel times to

include the roughness. All these quantities are frequency

independent so that they can be calculated before the inte-

gration at a given frequency. Then, integration is performed

for each frequency component of the signal to be simulated

and the time-domain simulated signal at coordinate rB is

obtained using the inverse Fourier transform,

p0 rB; tð Þ ¼
1

2p

ð
P0 rB;xð Þeixtdx: (39)

To calculate the ray paths, the method described by

Langston18 consists of the following steps:

(1) Send a ray parameterized by the angles h0 and w0 from

the source and receiver location.

(2) Calculate its intersection coordinate on next interface.

(3) Calculate the transmission coefficient and the Snell’s ray

refraction.

(4) Iterate 2 and 3 to the last interface.

(5) Calculate reflection coefficient Rl�1l for the ray coming

from the source rA.

For a given ray with parameters ðh0;w0Þ, two other rays

have to be sent with parameters ðh0 þ dh;w0Þ and ðh0;w0

þdwÞ in order to evaluate numerically the derivatives in the

Jacobian [Eq. (31)].

Note that, using Langston’s method, interface mean

planes do not have to be parallel to each other.

At this step an issue needing to be addressed remains.

For a given ray parameterized by the angles h0 and w0, it is

difficult to define where the ray intersects the interface for

which the roughness is predefined on a regular mesh. Figure

4 illustrates the issue. The lines represent many rays sent

FIG. 3. (Color online) Zoom on the ray intersection with the rough interface

and its mean plane.
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from the source or receiver to the interface, and the dots rep-

resent the regular mesh for which the roughness has been

generated.

This issue is solved by noticing that quantities related to

the mean plane in Eq. (37) vary smoothly. So one can send

many rays to the mean plane and then interpolate all the ray

parameters (travel time to the mean plane, incidence unit vec-

tor, transmission coefficients and geometric divergence) in Eq.

(37) on the predefined roughness mesh. Then, f and n being

known, one can apply the travel time correction fuz=cl�1 due

to the roughness and calculate the local reflection coefficient.

Figure 5 illustrates the interpolation for the ray geometric

divergence from the receiver on the fourth interface of the

configuration described in Sec. II. In this case, rays are sent to

cover the predefined mean plane with a 50 cm sample length

in x and y. Ray parameters h0 and w0 are calculated to reach

that grid as if there were no ray refraction. Of course, due to

ray refraction, rays do not reach those points and leak from

the grid but it is sufficient to cover the predefined roughness

grid and interpolate the values (the boundary of the roughness

mesh is displayed by the black rectangle in Fig. 5).

IV. RESULTS

A. Flat interface case

First, a signal is simulated with flat interfaces and the lay-

ered medium properties described in Sec. II [Fig. 6(a)]. One

can see the four reflections of the four interfaces and a weak

backscattering after t¼ 80 ms. This backscattering comes

from the diffraction at the interface boundaries. For compari-

son, another signal is calculated by a numerical evaluation of

the Sommerfeld integral, the exact analytical solution of the

reflection of a spherical wave in layered media,22,23

Pr
0ðrB; rA;xÞ ¼ ik

ðp=2�i1

0

J0ðkrB � rAkk sin hÞRðh;xÞ

� eikðzAþzBÞ cos h sin hdh; (40)

where r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
, h is the angle of incidence, k the wave

number and J0 is the zeroth order Bessel function of the first

kind. Because this integral is the result of plane wave

decomposition, the term Rðh;xÞ is the plane wave reflection

coefficient and can be computed for an arbitrary layering of

fluid or elastic media.14

The simulated signals from the two models are almost

equal so the analysis is done on their difference in Fig. 6(b)

[the vertical scale is exaggerated by a factor of 20 compared

to Fig. 6(a)]. The small differences between the two models

are mainly explained by the presence of multiple reflections

present in the simulation from the Sommerfeld integral sim-

ulation. Also it appears that interface echoes themselves (at

times t¼ 19, 22, 30, and 41 ms) present some small differ-

ences. Note that multiple reflections are very weak in ampli-

tude. Indeed, the order of magnitude of the reflection

coefficients from one layer to another is Oð0:1Þ so the order

of magnitude of the first multiple reflection is Oð10�3Þ, i.e.,

�40 dB lower than direct echoes.

FIG. 4. (Color online) Rays sent from the source and the receiver to the

interface. Dots represent the regular mesh for which the roughness has been

generated.

FIG. 5. (Color online) Geometric divergence of rays sent from the receiver

to cover the fourth interface mean plane of the configuration described in

Sec. II. The black rectangle represents the boundary of the predefined rough-

ness grid where ray parameters have to be interpolated.

FIG. 6. (a) Simulated signal with flat interfaces. (b) Difference between the

simulated signal and the numerical evaluation of the Sommerfeld integral

(the vertical scale is exaggerated by a factor of 20).
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B. Two-dimensional case

Signals obtained by a two dimensional version of the

method with rough interfaces are compared to data com-

puted by specfem2D,24 a spectral element code developed to

simulate propagation of seismic waves at the Earth scale.25

This software has been applied to underwater acoustics prob-

lems26 and to T-wave generation and propagation model-

ing.27 Absorption is not included in those simulations.

Interfaces are 140 m long with a 10 cm spatial sampling.

The first 2D simulation is performed with a sufficiently

smooth roughness compatible with the Kirchhoff approxima-

tion. For that purpose, a Gaussian spatial power spectrum is

used to generate the rough interfaces,

W1 kxð Þ ¼
Lf2

rms

2
ffiffiffi
p
p e�k2

x L2=4; (41)

with a correlation length L¼ 10 m and a rms roughness

height frms ¼ 14 cm.

The 2D simulated signal is plotted in Fig. 7(a). The direct

path between source and receiver has been included in this

simulation (echo at t¼ 13 ms). The result fits well with the

specfem2D simulation, the difference between the two models

is plotted in Fig. 7(b) [the vertical scale is exaggerated by a

factor of 10 compared to Fig. 7(a)]. Interface echo differences

(at times t¼ 19, 22, 30, and 41 ms) are comparable in ampli-

tude with the multiple reflections between interfaces.

A second 2D simulation is performed with a roughness

having a von Karman spatial power spectrum for a better

understanding of the model behavior in the presence of high

spatial frequency components. The von Karman spectrum is

given by12

W1 kxð Þ ¼
w1

k2
x þ 1=L2

� �c1=2
; (42)

where c1 is the spectral exponent, and w1 is the spectral

strength. Values for L and c1 are fixed to 10 m and 2, respec-

tively, and the spectral strength is set to w1 ¼ 6:36� 10�4.

With these parameters, the roughness is equivalent to the 3D

case presented in Sec. II.

The simulated signal is plotted in gray in Fig. 8(a) and

the specfem2D simulation is plotted in black. Interface echoes

fit well in amplitude and travel times, but visible differences

appear between and after these echoes. Those differences

reveal the limitations of the Kirchhoff approximation for the

modeling of the incoherent part of the signal. Model errors are

more clear in Fig. 8(b) where the difference between the two

models is plotted (vertical scale exaggerated by a factor of

10). Nevertheless, the differences are not significant when the

interest is in the specular reflections. Moreover the computa-

tion cost is about a thousand time lower.

C. Three-dimensional case

The results from simulations with the rough interfaces

described in Sec. II are shown in Fig. 9 for two different

realizations of the roughness. One can identify three inter-

face echoes and the fourth interface echo is hidden in the

FIG. 7. (a) 2D simulated signal with rough interfaces having a Gaussian

power spectrum. (b) Difference between the simulated signal and the result

computed by specfem2D (the vertical scale is exaggerated by a factor of 10).

FIG. 8. (a) Gray curve: 2D simulated signal with rough interfaces having a

von Karman power spectrum. Black curve: data computed by specfem2D.

(b) Difference between the simulated signal and the result computed by

specfem2D (the vertical scale is exaggerated by a factor of 10).
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roughness backscattering. Also, echo amplitudes are affected

by the roughness. The cause of these amplitude variations is

probably a focusing/defocusing effect from large scale

roughness oscillations. Moreover, one can see the incoherent

backscattering between and after the interface echoes. From

the 2D case, it is reasonable to be confident in echo ampli-

tudes and arrival times but the incoherent backscattering is

likely to be over estimated.

V. CONCLUSION

A 3D modeling of spherical wave reflection in layered

media with rough interfaces has been developed. The method

uses three approximations: the tangent-plane approximation,

the Born approximation (multiple reflections between interfa-

ces are neglected) and the flat-interface approximation for the

transmitted waves. Also, it has been shown that a wave reflec-

tion on a layered medium with rough interfaces can be written

as a sum of integrals over each interface. In future work, this

model will be used to study the roughness influence in sedi-

ment sound-speed profile measurement when using a source

and an array of hydrophones.
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