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Approximate Capacity Region of the Two-User
Gaussian Interference Channel with Noisy
Channel-Output Feedback

Victor Quintero, Samir M. Perlaza, Ifnaki Esnaola, and Jean-Marie Gorce

Abstract—In this paper, the capacity region of the linear deter-
ministic interference channel with noisy channel-output feedback
(LD-IC-NF) is fully characterized. The proof of achievability is
based on random coding arguments and rate splitting; block-
Markov superposition coding; and backward decoding. The
proof of converse reuses some of the existing outer bounds and
includes new ones obtained using genie-aided models. Following
the insight gained from the analysis of the LD-IC-NF, an achiev-
ability region and a converse region for the two-user Gaussian
interference channel with noisy channel-output feedback (G-
IC-NF) are presented. Finally, the achievability region and the
converse region are proven to approximate the capacity region
of the G-IC-NF to within 4.4 bits.

Index Terms—Linear Deterministic Interference Channel,
Gaussian Interference Channel, Feedback and Capacity.

I. INTRODUCTION

Recently, perfect feedback (PF) from the receivers to the
corresponding transmitters has been shown to bring an un-
precedented gain on the number of generalized degrees of
freedom (GDoF) with respect to the case without feedback in
the Gaussian interference channel (IC) [3]. Let C (sﬁ, INR)
denote a set containing all achievable rates of a symmetric
Gaussian IC (G-IC) with parameters Sﬁ (signal to noise ratio
in the forward link) and INR (interference to noise ratio). The
number of GDoF [4] is:

sup {R :(R,R) € C’(Sﬁ7 Sﬁ")} X
log (SNR) -

GDoF(«) :_ll:%m
SNR— 0O
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log(INR)

log(SNR)~
is plotted as a function of o when C(Sﬁi, INR) is calcu-
lated without feedback [5]; and with PF from each receiver
to their corresponding transmitters [3]. Note that with PF,
GDoF(«) — oo when a@ — oo, which implies an arbitrarily
large increment. Surprisingly, using only one PF link from one
of the receivers to the corresponding transmitter provides the
same sum-capacity as having four PF links from both receivers
to both transmitters [6]-[8] in certain interference regimes.
These benefits rely on the fact that feedback provides relevant
information about the interference. Hence, such information
can be retransmitted to: (a) perform interference cancellation
at the intended receiver or (b) provide an alternative com-
munication path between the other transmitter-receiver pair.
These promising results are also observed when the system is
decentralized, i.e., when each transmitter seeks to unilaterally
maximize its own individual information rate [9], [10].

The capacity region of the G-IC with PF has been approx-
imated to within two bits in [3]. The achievability scheme
presented therein is based on three well-known techniques:
rate splitting [11], [12], block-Markov superposition coding
[13], and backward decoding [14], [15]. The converse in [3] is
obtained following classical tools among cut-set bounds and
genie-aided models. Other achievability schemes have been
presented in [16] and [17] using rate-splitting, block-Markov
superposition coding, backward decoding, and binning/dirty
paper coding in the context of a more general channel, i.e.,
G-IC with generalized feedback (IC-GF).

From a system analysis perspective, PF might be an ex-
ceptionally optimistic model to study the benefits of feedback
in the G-IC. Denote by Y = (71,72,...,71\/) a given
sequence of N channel outputs at a given receiver. A more
realistic model of channel-output feedback is to consider that
the feedback signal, denoted by Y, satisfies ? =g (7)
(random transformation in R”"). Hence, a relevant question is:
what is a realistic assumption on ¢? This question has been
solved aiming to highlight different impairments that feedback
signals might go through. Some of these answers are discussed
in the following sections.

where o = In Figure 1, the number of GDoF

A. Rate-Limited Feedback:

Consider that the receiver produces the feedback signal
using a deterministic transformation g, such that for a large
N, a positive finite C € R and for all ¥ € RY:

Y =g(J)eDCRY, )



such that for all § > 0,
|D| < 2N(Cr+d), (3)

This model is known in literature as rate limited feedback
(RLF) [18]-[20], where C'r is the capacity of the feedback
link. The choice of the deterministic transformation g subject
to (3) is part of the coding scheme, i.e., the transformation g
takes the N channel outputs observed during block ¢ > 0 and
chooses a codeword in the codebook D. Such a codeword
is sent back to the transmitter during block ¢ 4+ 1. From
this standpoint, this model highlights the signal impairments
derived from transmitting a signal with continuous support via
a channel with finite-capacity. Note that if C'r = oo, then g
can be the identity function and thus,

Y=9¥)=7, @)

which is the case of PF [3]. When Cr = 0, then [D| = 1
and thus, no information can be conveyed through the feed-
back links, which is the case studied in [5], [12], [21]. The
main result in [18] is twofold: first, given a fixed Cp, the
authors provide a deterministic transformation g using lattice
coding [22] and a particular power assignment such that
partial or complete decoding of the interference is possible
at the transmitter. An achievable region is presented using
random coding arguments with rate splitting, block-Markov
superposition coding, and backward decoding. Second, the
authors provide outer bounds that hold for any g in (2). This
result induces a converse region whose sum-rate is shown to
be at a constant gap of the achievable sum-rate, at least in the
symmetric case. These results are generalized for the K-user
G-IC with RLF in the symmetric case in [19], [20], where the
analysis focuses on the fundamental limit of the symmetric
rate. The main novelty on the extension to K > 2 users lies
in the joint use of interference alignment and lattice codes for
the proof of the achievability. The proof of converse remains
an open problem when K > 2, even for the symmetric case.

B. Intermittent Feedback

Assume that for all n € {1,2..., N}, the random transfor-
mation g is such that given a channel output 7n,

7.

where x represents an erasure and p € [0,1]. Note that
the random transformation ¢ is fully determined by the
parameters of the channels, e.g., the probability p. Thus, as
opposed to the RLF, the transformation g cannot be optimized
as part of the receiver design. This model emphasizes the
fact that the usage of the feedback link might be available
only during certain channel uses, not necessarily known
by the receivers with anticipation. This model is referred
to as intermittent feedback (IF) [23]. The main result in
[23] is an approximation of the capacity region to within a
constant gap. The achievability scheme relies upon random
coding arguments with forward decoding and a quantize-map-
and-foward strategy to retransmit the information obtained
through feedback. This is because erasures might constrain

* with probability 1—p

Y with probability p, ©)

either partial or complete decoding of the interference at
the transmitter. Nonetheless, even a quantized version of the
interference might be useful for interference cancellation or
for providing an alternative path.

C. Noisy Feedback

Assume that for all n € {1,2..., N}, the random transfor-
mation g is such that given a channel output 771

V=00 + 2, ©)

where ﬁ € Ry is a parameter of the channel and Z,, is
a real Gaussian random variable with zero mean and unit
variance. This model is known in literature as noisy feedback
(NF) or partial feedback [24]-[26]. Note that the receiver does
not apply any processing to the channel output and sends a
re-scaled copy to the transmitter via a noisy channel. From
this point of view, as opposed to RLF, this model does not
focus on the constraint on the number of codewords that can
be used to perform feedback, but rather on the fact that the
feedback channel might be noisy. Essentially, the codebook
used to perform feedback in NF is R™V. In [25], the capacity
of the G-IC with NF has been approximated to within a
constant gap for the symmetric case. The achievable scheme
in [25] is a particular case of a more general achievability
scheme presented in [16], [17]. An outer bound using the
Hekstra-Willems dependence-balance arguments [27] has been
introduced in [24]. In the G-IC, these results suggest that
feedback loses its efficacy on increasing the capacity region
roughly when the noise variance on the feedback link is larger
than on the forward link. Similar results have been reported in
the fully decentralized IC with NF [10], [28]-[30]. Inner and
outer bounds on the sum-capacity of the G-IC with PF using
the existing connections between channel-output feedback and
conferencing transmitters have been presented in [31]. More
general channel models, for instance when channel-outputs are
fed back to both receivers, have been studied in [7], [32]-[34].

D. A Comparison Between Feedback Models

In both IF and NF, the feedback signal is obtained via a
random transformation. In particular, IF models the feedback
link as an erasure-channel, whereas NF models the feedback
link as an additive white Gaussian noise (AWGN) channel.
Alternatively in RLF, the feedback signal is obtained via a
deterministic transformation. Let SNR be the SNR in each
of the feedback links from the receiver to the corresponding
transmitters in the symmetric G-IC with NF (G-IC-NF) men-
tioned above. Let also 3 and 3’ be

7log (%)
" log (SNﬁ)

(7a)

and

’_ Cr
710g (SNﬁ) ' 70
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Fig. 1. Number of generalized degrees of freedom (GDoF) of a symmetric two-user G-IC; (a) case with NF with 8 € {0.6,0.8,1.2}; (b) case with RLF
with 8 € {0.125,0.2,0.5}; and (c) case with IF with p € {0.125,0.25,0.5}.



These parameters approximate the ratio between the capac-
ity of the feedback link and the capacity of the forward link in
the NF and RLF case, respectively. Hence, a fair comparison
of RLF and NF must be made with 3 = (3’. The number
of GDOF is plotted as a function of a when C (Sﬁ, INR) is
calculated with NF for several values of g in Figure 1(a); with
RLF for different values of 5’ in Figure 1(b); and with IF for
several values of p in Figure 1(c).

The most pessimistic channel-output feedback model be-
tween NF and RLF, in terms of the number of GDoF when
B =p',is NF. When a € (0, ) or o € (2, 00), RLF increases
the number of GDoF for all 3/ > 0. Note that RLF with
g = % achieves the same performance as PF, for all « € [0, 3].
In the case of NF, there does not exist any benefit in terms
of the number of GDoF for all 0 < § < % A noticeable
effect of NF occurs when o € (0, %), for all 3 > ; and
when o € (2,00), for all > 1. This observation can be
explained from the fact that in RLF, receivers extract relevant
information about interference and send it via a noiseless
channel. Alternatively, NF requires sending to the transmitter
an exact copy of the channel output via an AWGN channel.
Hence with 3 = 8/ > 0, the transmitters are always able to
obtain information about the interference in RLF, whereas the
same is not always true for NF. Finally, note that in both NF
and RLF, the number of GDoF is not monotonically increasing
with « in the interval [2, 00). Instead, it is upper-bounded by
min (§,3) in NF and by min (§,1+ ) in RLF.

The most optimistic model in terms of the number of GDoF,
aside from PF, is IF. In particular because for any value of
p > 0, there always exists an improvement of the number of
GDoF for all & € (0,2) and a € (2,00). Note that, with
p = %, IF provides the same number of GDoF as PF. Note
also that the number of GDoF remains being monotonically
increasing with « in the interval [2, 00) for any positive value
of p in (5), which implies an arbitrarily large increment in the
number of GDoF.

E. Contributions

In this paper, the capacity of the G-IC-NF is approximated
to within 4.4 bits by a new achievable region and a new
converse region. These results generalize the approximate
capacity region of the G-IC-NF presented in [25], [26] for the
symmetric case. The gap between the new achievable region
and the new converse region is slightly improved with respect
to the one obtained in [25].

The methodology is the same used in [3], [5], [9], [23], [25],
among others, i.e., a linear deterministic (LD) approximation
[35] to the G-IC, referred to as LD-IC, is studied to gain
insight on the construction of both inner and outer bounds.
From this perspective, a byproduct of the main results is the
full characterization of the capacity region of the LD-IC with
NF (LD-IC-NF).

The achievability scheme presented in this paper as well as
the one in [25] use a four-layer block-Markov superposition
coding and backward decoding. Note that the achievability
scheme used in [25] is obtained as a special case of the one
presented in [16], [17]. The achievability scheme presented

in this paper is developed independently. The main difference
between these achievability schemes lies on the choice of the
random variables used to generate the codewords of each of
the layers of the codebook. Another difference is the power
optimization made to obtain the corresponding achievable
regions.

The converse region presented in this paper uses existing
bounds from the case of PF in [3] and new bounds that
generalize those in [25]. The proof of converse presented in
[25] uses standard techniques including cut-set bounds and
genie-aided channels, which are the same techniques used in
this paper. Nonetheless, such generalization is far from trivial,
as suggested in [25, Section IV-D].

F. Organization of the paper

Section II introduces the notation used in this paper.
Section III describes the two-user G-IC-NF and LD-IC-NF.
Section IV describes the exact capacity region of the LD-
IC-NF. Section V introduces the main results, essentially, an
achievable region and a converse region for the G-IC-NF. Sec-
tion VI describes the connections between the IC-NF and an IC
with conferencing transmitters (IC-CT). Finally, Section VII
concludes this work and highlights some extensions.

II. NOTATION

Throughout this paper, sets are denoted with uppercase cal-
ligraphic letters, e.g., X. Random variables are denoted by up-
percase letters, e.g., X, whereas their realizations are denoted
by the corresponding lower case letter, e.g., x. The probability
distribution of X over the set X is denoted Px. Whenever a
second random variable Y is involved, Px y and Py‘ x denote
respectively the joint probability distribution of (X, Y") and the
conditional probability distribution of Y given X. Let N be
a fixed natural number. An N-dimensional vector of random
variables is denoted by X = (X1, Xs,..., Xx)" and a corre-
sponding realization is denoted by x = (z1,29,...,xn)" €
XN, Given X = (X, Xs,...,Xn)" and (a,b) € IN?, with
a < b< N, the (b — a+ 1)-dimensional vector of random
variables formed by the components a to b of X is denoted
by Xa:p) = (Xa, Xay1,- - , X3)". The notation (-)* denotes
the positive part operator, i.e., () = max(-,0) and Ex[]
denotes the expectation with respect to the distribution Px of
the random variable X. The logarithm function log is assumed
to be base 2.

III. PROBLEM FORMULATION

Consider the two-user G-IC-NF depicted in Figure 2. Trans-
mitter 4, with ¢ € {1,2}, communicates with receiver 4
subject to the interference produced by transmitter j, with
j € {1,2}\{i}. There are two independent and uniformly
distributed messages, W; € W;, with W; = {1,2,... 2N},
where N € IN denotes the block-length in channel uses and
R; > 0 is the transmission rate in bits per channel use. For
transmitting a message index W;, transmitter ¢ sends a given
codeword denoted by X; = (X;1,X;2,... ,XLN)T € RV,
The channel coefficient from transmitter j to receiver ¢ is
denoted by h;;; the channel coefficient from transmitter ¢ to
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Fig. 2. Gaussian interference channel with noisy channel-output feedback

at channel use n.

receiver ¢ is denoted by 7”, and the channel coefficient from
channel-output ¢ to transmitter ¢ is denoted by & ;;. All channel
coefficients are assumed to be non-negative real numbers. At
a given channel use n € {1,2,..., N}, the channel output
at receiver ¢ is denoted by ?m During channel use n, the
input-output relation of the channel model is given by

7i,n:ﬁiiXi,n +hi; Xjn+ 71’,7“ (8)
where 7”1 is a real Gaussian random variable with zero mean
and unit variance that represents the noise at the input of
receiver i. Let d > 0 be the finite feedback delay measured
in channe%uses. At the end of channel use n, transmitter @
observes Y ; ,, which consists of a scaled and noisy version
of ?i,n_d. More specifically,

?‘ _ ?m forne {1,2,...,d} ©)
n %ii?i,n—d‘F?Ln for ne {d+1,d+2, . ,N},

where %Zn is a real Gaussian random variable with zero mean
and unit variance that represents the noise in the feedback
link of transmitter-receiver pair 7. The random variables

and Z,, are assumed to be independent. In the following,
without loss of generality, the feedback delay is assumed to
be equal to one channel use, i.e., d = 1. The encoder of
transmitter ¢ is defined by a set of deterministic functions

{ O @, f(N)}, with £ © W, — R and for all

ne {2,3,...,N}, fi(") : W; x R"~! — R, such that
Xia=f (W;) and (10a)
Xi,n:fi(n) (Wu 371‘,1, ?1,2, ce ?i,n—l) . (10b)

The components of the input vector X; are real numbers
subject to an average power constraint:

ZEXM [X2,] (11)

x{ X T
T X x® i
na 7y, X x e x{!)
l l X x® e x®
xi X{he X3
TT X0 XW,W_
niz Xézii X(l) X(Z)
L X 0 X0
1o xo X0 l
Xii X o x{2
—Signal - --»Interference [l Feedback

Fig. 3. Two-user linear deterministic interference channel with noisy channel-
output feedback at channel use n.

The decoder of receiver ¢ is defined by a deterministic
function wl(N) : RN — W. At the end of the communication,

T
receiver ¢ uses the vector ?Ll’ 71‘,2, A ?”V) to obtain
an estimate of the message index:

—~

szwl(N) (?i,la 7i,27 e 71N> )

where Wl is an estimate of the message index W,. The
decoding error probability in the two-user G-IC-NF of a
codebook of block-length N, denoted by P.(N), is given by

(12)

P.(N)=max <Pr [Vv\l # Wi, Pr [17[72 # Wy > (13)

The definition of an achievable rate pair (R, R2) € R? is
given below.
Definition 1 (Achievable Rate Pairs): A

rate  pair

(R1,R2) € R2 is achievable if there exist encoding
functions f(l) f(2) - fi(N) and decoding functions 1/)1(1),
¢(2) . 1/1 for all i € {1,2} such that the decoding

error probability P.(N) can be made arbitrarily small by
letting the block-length N grow to infinity.

In the next sections, it is shown that the capacity region of
the two-user G-IC-NF in Figure 2 can be described by six
parameters: SNR;, SNR;, and INR;;, with ¢ € {1,2} and
j € {1,2}\{4}, which are defined as follows:

SNE,=h2

i (14)
INR;;=h ”, and (15)
SNR=h% (W2 +2W ahis + b2 +1). (16)

IV. LINEAR DETERMINISTIC CHANNELS

This section describes the two-user LD-IC-NF and its exact
capacity region. The relevance of this result is that it provides
the main insight used to obtain the approximate capacity of
the G-IC-NF in Section V.



A. Two-User Linear Deterministic Interference Channel with
Noisy Feedback

Consider the two-user LD-IC-NF depicted in Figure 3. For
all 7+ € {1,2}, with j € {1,2} \ {7}, the number of bit-pipes
between transmitter 4 and its intended receiver is denoted by
7 4;; the number of bit-pipes between transmitter ¢ and its
non-intended receiver is denoted by n;;; and the number of
bit-pipes between receiver ¢ and its corresponding transmitter
is denoted by W“

At transmitter ¢, the channel-input X; ,, at channel use n,
with n € {1,2,...,N}, is a g-dimensional binary vector

!
Xin= (X0 X%, X)) with

im < imo

-
q =max (1711, M 22,n12,M21) , 17

and N the block-length. At receiver i, the channel-output
i,n at channel use 7 is also a g-dimensional binary vector

?i,n = (?(1) 77(22” oo 7(-q))T. The input-output relation

i,n’ ’ i,m
during channel use n is given by

V=S5 X, + STX (18)

where, S is a ¢ x ¢ lower shift matrix.
The feedback signal ?ln available at transmitter ¢ at the
end of channel use n satisfies

AT
((07 ...,0), 37“1> :S(max(ﬁihni‘i)_(ﬁii)‘*’ 7i7n,d, (19)

where d is a finite delay, additions and multiplications are
defined over the binary field. The dimension of the vector
(0,...,0) in (19) is ¢ — min (%7;;, max(7;;,n;;)) and the
in represents the min (%ii,max(ﬁii,nij)) least
L . max (T as.ms ) — s, ) T

significant bits of S( (7 ii i) =) ?i,nfd-

The feedback delay is assumed to be equal to one channel
use, i.e., d = 1. The encoding and decoding operations are
performed analogously to those in the G-IC case.

The decoding error probability is calculated following (13).
Similarly, a rate pair (R, Ro) € R? is said to be achievable
if it satisfies Definition 1.

vector

B. Capacity Region of the Two-User Linear Deterministic
Interference Channel with Noisy Channel-Output Feedback

Denote by C(Wll, 722,7112,”21, %11,%22) the capacity
region of the LD-IC-NF with parameters ﬁn, 29, N12, N21,
%11, and %22. Theorem 1 (in the top of next page) fully
characterizes this capacity region. The proof of Theorem 1
is divided into two parts. The first part describes the proof
of the achievability and is presented in Appendix A. The
second part describes the proof of converse and is presented
in Appendix B.

1) Comments on the Achievability Scheme: Let the channel
input of transmitter ¢ during channel use n be X;, =

T
(Xi(yln),Xi(i), . ,Xi(zl)) € {0,1}%. The achievability scheme
is a sequel to the following observation: feedback allows
the transmitters to obtain information about the interference
produced by its counterpart at the intended receiver. This

information could be retransmitted aiming either at performing

interference cancellation at the intended receiver or at provid-
ing an alternative communication path to the other transmitter-
receiver pair [3], [9], [25]. From this standpoint, there are three
types of bit-pipes that start at transmitter ¢ that are particularly
relevant:

(¢) the set of bit-pipes that are observed above the noise level
by both receiver j and transmitter 7, i.e.,

Uin= (X0, X2 X.(qi’l)>T 1)
where,
+
Gi=(nyi — (max (7 55,m;0) = 75,)7) 5 22)

(ii) the set of bit-pipes that are observed above the noise
level by receiver ;7 and below the (feedback) noise level by
transmitter 7, i.e.,

) T
X(Q7,,1+qz,2)) , (23)

M en

(gi,1+1) (gi,1+2)
Vin = (X000 X[ 00
where,

qi72:min (nji, (max (WJ], nji) — %jj)Jr) ) and (24)

(7i1) the set of bit-pipes that are exclusively observed above
the noise level by receiver i, i.e.,

T
(gi,1+qi,2+1) (qi,1+qi2+2) (qi,1+qi,2+q:.3)
Xi,P,nZ(Xm X! D ¢

’ (25)
where,
qld:(ﬁu - 7”Lji)+ . (26)
Note that
Qi1+ qi2+qi3= max(ﬁihnji) < g, 27)
and thus,
<X_(q7:,1+q71,2+q7:,3+1) _(qi,1+q1‘,,2+q1,3+2) o X(q)) _ (0 o 0)
Hence, for all n € {1,2,..., N},
T
Xin= (UL V], X]p,.0,...,0) (28)

An example of the concatenation of U, ,,, V;, and X; p,
to form the input symbol X; ,, is presented in Figure 4. Note
that the vector (0,...,0) exists only when (27) holds with
strict inequality.

Within this context, some key observations are worth high-
lighting:
(a) The interference produced by the bits U, on X, at
receiver ¢ can be eliminated in two cases: when U ; ,, consists
of bits previously transmitted by transmitter ¢; or when the bits
U ., are retransmitted by transmitter ¢ at a later channel use
such that they can be reliably decoded by receiver 7. In both
cases, receiver ¢ is able to implement interference cancellation.
(b) The interference produced by the bits V', on X, ,, at
receiver ¢ can be eliminated in a single case: when the bits in
V j.n consists of bits previously transmitted by transmitter 4.
(c¢) The top

. ) +
i ((ﬁ” - nij)Jr, (Inln(%jj,max(ﬁ}jjmji)) — (ﬁjj fnji)Jr) )
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Theorem 1: The capacity region 0(7117 722, n12,M21, ﬁu, ng) of the two-user LD-IC-NF is the set of non-negative rate
pairs (Ry, Re) that satisfy for all i € {1,2}, with j € {1,2}\ {i}:

R;<min (max (7“, nji), max (ﬁu‘, nij)), (20a)
Rzgmm (max (ﬁ”, nji) , max (W”, %jj - (ﬁjj - nji)Jr)) 5 (20b)
Ry + Ry<min (max (77 22,112) + (11 — n12) ", max (711, n91) + (Was — n21)+) , (20c)

Ry + Ry<max ((711 —n12) " nar, W1 — (max (711, n12) — %11)+>
+ max ( (722 — 1), n12, oo — (max (7 29,m91) — %22)+), (20d)

2R1 + Rjgmax (ﬁ”, nji)+(ﬁii—nij)++max ((ﬁjj —’I’Lji)+ ,TLZ'j, ﬁj]‘ —(max (ﬁjja 'Ilji) - %jj)jL) . (206)

e

=

X UI{
Xius{Vi{

U
Vv

U

X1,58{ V;

U
X
? Xo uB { 14

X X :
2 {Xii‘;} A
Xl{ {
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1
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|

Fig. 4. Concatenation of binary vectors U;,, € {0,1}9:1, with g; 1 defined in (22); V', € {0,1}9:2, with g; 2 defined in (24); and X ; p,, € {0,1}%3,
with g; 3 defined in (26) to form the input symbol X; ,, in (a) very weak interference regime, (b) weak interference regime, (c) moderate interference
regime, (d) strong interference regime, and (e) very strong interference regime.
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(a) Capacity regions of C(7,5,3,4,0,0) (thick red line) and C(7,5,3,4,6,4) (thin blue line). (b) Achievability of the rate pair (2,5) in

C(7,5,3,4,6,4). (c) Achievability of the rate pair (4,4) in an C(7,5,3,4,6,4). (d) Achievability of the rate pair (7,1) in an C(7,5, 3,4, 6,4).

bits in U, are observed interference-free at receiver ¢ and
thus, they are reliably decoded at the end of channel use n.
Note also that these top bits in U, , produce interference
in receiver j. However, thanks to feedback, transmitter j
can retransmit these bits in U 4 OF Vi, for some
m > 0. Interestingly, the interference produced by these
retransmissions can be eliminated at receiver ¢ at the end of
channel use n + m.

(d) The bottom

min ((nﬂ ~7a)t, (%jj —+ﬁ>” — min ((ﬁ)jj - nji)Jr ,my)
— (75 —miy)* - nji)+> )

bits of U;, are not observed at receiver i but receiver j.
Thus, they can be fed back to transmitter j. If transmitter j
retransmits these bits in any of the bits U 4y 0r V' 1y 1, fOr
some m > 0, these bits might be reliably decoded at receiver
1 forming an alternative communication path to transmitter-
receiver pair 1.

Taking into account the facts (a) - (d), simple coding schemes
can be constructed as shown in the examples in Figure 5. A

complete proof of the achievability is presented in Appendix
A.

2) Comments on the Converse Region: The outer bounds
(20a) and (20c) are cut-set bounds and were first reported in
[36] for the case without feedback. These outer bounds are
still useful in the case of perfect channel-output feedback [3].
The outer bounds (20b), (20d) and (20e) are new.

The outer bound (20b) is on the individual rate of
transmitter-receiver ¢ when at channel use n, receiver 7 is
granted with the knowledge of the message index W) and
all previous feedback signals observed at transmitter j, i.e.,

j,(1:n—1)- See for instance Figure 6(a) for the case i = 1.
A complete proof of (20b) is presented in Appendix B.

The outer bound (20d) is on the sum-rate of both
transmitter-receiver pairs with enhanced versions of the re-
ceivers. More specifically, for all ¢ € {1,2}, receiver i is
granted at channel use n with the knowledge of all previous
feedback signals observed at transmitter 7, i.€., Y ; (1:n—1)-
See for instance Figure 6(b). A complete proof of (20d) is
presented in Appendix B.

The outer bounds (20e) are on the sum-rate of three re-



Fig. 6.
on R1 + Ra; and (c) model used to calculate the outer bound on 2R; + Ro.

ceivers: for all ¢ € {1, 2}, receiver ¢ is granted at channel use
n with all previous feedback signals observed at transmitter 4,
ie., Y (1.,_1). For at most one i € {1, 2}, a third receiver
has input ?m and it is granted with the knowledge of the
message index W and all previous feedback signals observed
at transmitter j, i.e., Y j (1.,—1). See for instance Figure 6(c)
for the case ¢ = 1. A complete proof of (20e) is presented in
Appendix B.

C. Connections with Previous Results

Theorem 1 generalizes previous results on the capacity re-
gion of the LD-IC with channel-output feedback. For instance,
when %11 =0and %22 = 0, Theorem 1 describes the capac-
ity region of the LD-IC without feedback (Lemma 4 in [36]);
when %11 2 max (ﬁ)ll,TLlQ) and %22 2 max (ﬁgg,ngl),
Theorem 1 describes the capacity region of the LD-IC with
perfect channel output feedback (Corollary 1 in [3]); when
ﬁn = 722, N2 = N21 and %11 = 29, Theorem 1
describes the capacity region of the symmetric LD-IC with
noisy channel output feedback (Theorem 1 in [25] and Theo-
rem 4.1, case 1001 in [7]); and when 711 = 722, N1z = Na1,
%ii > max (ﬁizﬁ nij) and %jj = 0, with ¢ € {1, 2} and
j € {1,2}\ {i}, Theorem 1 describes the capacity region of
the symmetric LD-IC when only one of the receivers provides
perfect channel-output feedback (Theorem 4.1, cases 1000 and
0001 in [7]).

V. GAUSSIAN CHANNELS

This section introduces an achievable region (Theorem 2)
and a converse region (Theorem 3), denoted by C; _1c_np and
CG_IC_NF respectively, for a two-user G-IC-NF with fixed
parameters SNRj, SNRo, INR15, INRo;, %1, and %2.
In general, the capacity region of a given multi-user channel
is said to be approximated to within a constant gap according
to the following definition.

Definition 2 (Approximation to within £ units): A closed
and convex set T C R is approximated to within { units by
the sets T and T if T CT C T and for all t = (¢4, to, ...,
tm) €T, ((t1 Ot (=Y, (tn —g)+) eT.

Denote by Cq_1c—nr the capacity region of the 2-user G-
IC-NF. The achievable region C;_jc_np (Theorem 2) and

Genie-aided G-IC-NF models for channel use n: (a) model used to calculate the outer bound on R;; (b) model used to calculate the outer bound

the converse region Cco_1c—nF (Theorem 3) approximate the
capacity region Cg_ic—nF to within 4.4 bits (Theorem 4).

A. An Achievable Region for the Two-User G-IC-NF

The description of the achievable region Cn_jo_np 1S
presented using the constants a4 ;; the functions as ; : [0, 1] —
Ry, ar; @ [0,1)> — Ry, with [ € {3,...,6}; and a7; :
[0,1]> — R, which are defined as follows, for all i € {1,2},
with j € {1,2}\ {i}:

1 SNR; 1
i==1 2 - =, 2
ay 3 og < + INR],) 5 (29a)
1 1
az,i(p)=7 log (bl,i(p) + 1) — 3 (29b)

(o1 11 mﬁ(bzi(ﬂ) + 2) +b14(1) +1
as,i\p, )=510g )
’ 2\ SR, ()b () +2) 14 (1) 41
(29¢)
1 1
as,i(ps M):i log ((1 - M) ba,i(p) + 2) — 3 (294d)
1 SNE; 1
as,i(p, ) 5 log (2 tiNes T (1 - M)b2 z(P)) — 5
ji
(29¢)
1, (SNR, 1
as,i(p, u):§log (INR » ( (1 —#> ba,;(p)+ 1> +2> 5
ji
(291)
and
1, (SNR,
arq (Pvﬂbﬂz)zilog (INRjZ- ( (1 *Mz‘) ba,j(p)+ 1)
1
(111 ) boi(p) + 2) —5

where the functions b;; : [0,1] — Ry, with (I,i) € {1,2}?
are defined as follows:

blﬂl(p):SNﬁl + 2p \/ SN]%ZINR” + INRU and (3021)

bg,i(p):(l - p) INR;; — 1, (30b)
with j € {1,2} \ {i}.
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Theorem 2: The capacity region Cq_1c—Nr contains the region Cq_1c_nr 8iven by the closure of all non-negative rate pairs

(R1, R2) that satisfy

Ry <min (a2,1(P)7 ag,1(p, 1) + az2(p, 1), a11 + az2(p, p1) + as2(p, Ml)),

Ry<min (am(p), as1(p; p2) + as2(p; 12), as1(p, pi2) + as1(p, p2) + a1,z),

(31a)
(31b)

Ri+ Ry < min (02,1(P) +ai2,a1,1 +az2(p);a31(p, p2) + a1+ az2(p, p1) + az2(p, pa, p12),

a3, (p, p2)+as1(p, p2) + as2(p, p1) + as2(p, 1), as1(p, p2) + az,1(p, 1, p2) + asa(p, p1) + a1,2) ,

2R1+Ry < min (a2,1(p) + a1, +az2(p,p1) + ar2(p, p, p2),

(3lc)
(31d)

az1(p, p2) +ary +ar(p, p, po) + 2a32(p, p1) + as 2(p, 1), a2 (p) + ar + az2(p, 1) + as2(p, Ml)),

R1+2R> < min (a3,1(p, p2) + as1(p, p2) + az2(p) + a12,a31(p, p2) + ar1(p, pa, p2) + az2.2(p) + a2,

2a3,1(p, p2) + as,1(p, p2) + as2(p, p1) + a1,2 + a7 2(p, p1, M2))7

(3le)

. +
with (p, p1, p2) € [0, (1 - max(ﬁ, ﬁ)) } x [0,1] x [0, 1].

Finally, using this notation, Theorem 2 is presented at the
top of this page.

The proof of the achievability is based on random coding
arguments that make use of the insight obtained in the analysis
of the LD-IC-NF. The techniques are rate splitting, block-
Markov superposition coding, and backward decoding. The
complete proof is described in Appendix A. However, a brief
description of the ideas leading to the construction of an
achievability scheme are discussed hereunder.

One of the central observations in the examples presented
for the LD-IC-NF is that transmitters use correlated code-
words. This stems from the fact that a fraction of the bits
sent by transmitter ¢ are received by receiver j; fed back to
transmitter 7 and finally, retransmitted by transmitter j. See for
instance [3], [9], [17], [25], and [33]. This observation is the
driving idea in the construction of the achievability schemes
presented in previous works and it is central in the proof of
Theorem 2.

Let the message index
during the ¢-th block be denoted by f
{1,2,...,2N8} Following a rate-splitting argument,
assume that Wz-(t) is represented by three subindices
(Wi(,tC)‘DWi(,tC)??Wz‘(Q’) € {1,2,...,2NVuery
{1,2,...,2NRie2} o {1,2,... 2NRir} where
Ric1 + Rico + R; p = R;. The number of rate splits
is based on the fact that each symbol in the LD-IC-NF was
divided into three parts.

The codeword generation follows a four-level superposition
coding scheme. The number of layers is the number of rate
splits plus an additional common layer that accounts for the
correlation between codewords. This correlation is induced
as follows. The index Wi(tgll) is assumed to be decoded at
transmitter j via the feedback link of transmitter-receiver pair
7 at the end of the transmission of block ¢t —1. Therefore, at the
beginning of block ¢, each transmitter possesses the knowledge
of the indices Wl(t(;ll ) and W2(tc_11 ), Using these indices both
transmitters are able to identify the same codeword in the first
code-layer. In the case of the first block ¢ = 1 and the last

sent by transmitter ¢
w® e

block ¢t = T, the indices Wf?%l, W2(,OC)‘1’ Wl(jgl and W2(721

correspond to indices assumed to be known by all transmitters
and receivers.
The first code-layer is a sub-codebook of 2V (Fi1.c1+F2.c1)

codewords (see Figure 10). Denote by u(I/Vl(tC_l1 ),

Wz(tc_l1 )> the corresponding codeword in the first code-
layer. The second codeword used by transmitter ¢ is
selected using V[/'Z(tc)1 from the second code-layer, which
is a sub-codebook of 2N Fici codewords specific to
u(Wl(tc_ll),WQ(tc_ll)> as shown in Figure 10. Denote by
U; (Wl(tgl1 ), W2(t511 ), Wz‘(,21) the corresponding codeword in
the second code-layer. The third codeword used by transmitter
1 is selected using Wl(tgz from the third code-layer, which
is a sub-codebook of 2N Fic2 codewords specific to
Uu; (T/Vl(tc_l1 ), V[/Q(fc_l1 ), Wt(,tc)'l) as shown in Figure 10. Denote
by wv; (Wl(tgll),Wz(tgll),Wi(gl,Wi(’gQ) the corresponding
codeword in the third code—fayer. The fourth codeword used
by transmitter ¢ is selected using Wz(t; from the fourth
code-layer, which is a sub-codebook of 2V %i.r codewords
specific to v; (Wl(fc_ll ),WQ(’EC_l1 ),Wi€217Wi(722) as shown in
Figure 10. Denote by @;,p (W{io", Wi'a!, W&, wid,,
Wi(ytjt),) the corresponding codeword in the fourth code-layer.
Finally, the channel input sequence at transmitter ¢ during
block ¢ is denoted by Tt = (:(;Z-}m,xi,t,% S 7$i7t,N), with
te{1,2,...,T}, and it is a weighted sum of the codewords
u(wic wic!), wi (Wi Wi wily),
v (Wl(t(;ll)v Wétgf), Wi(,tc)‘p Wz(22) and  x;p (Wl(t(;ll)’
Wieds Wil Wity W),

At receiver 7, the decoding follows a backward decoding
approach as in previous works [3], [9], [25], among others.

B. A Converse Region for the Two-User G-IC-NF

The description of the converse region Ca_tc_nF is de-
termined by two events denoted by S, 1 and S, 2, where



(I1,12) € {1,...,5}2. The events are defined as follows:
Sis: SNR; < min (INR;;, INR;,), (32a)
S»si INR;; < SNR; < INR;, (32b)
Sss: INR;; < SNR; < INR;;, (320)
Sus: max (INR;,INR;;) < SNR; < INR;;INR;;, (32d)
Ssi: SNR; > INRyINR;;. (32¢)

Note that for all i € {1,2}, the events Si,, S2;, S3.4, Sa,i
and S5 ; are mutually exclusive. This observation shows that
given any 4-tuple (Sﬁl, Sﬁg, INRj2,INRg;), there always
exists one and only one pair of events (S, 1,S5,2), with
(I1,12) € {1,...,5}?2, that determines a unique scenario. Note
also that the pairs of events (Sz,1,S522) and (S31,S532) are
not feasible. In view of this, twenty-three different scenarios
can be identified using the events in (32). Once the exact
scenario is identified, the converse region is described using
the functions x;; : [0,1] — R4, with [ € {1,...,3};
ki ¢ [0,1] — Ry, with [ € {4,5}; ke, : [0,1] — R4, with
Il €{1,...,4}; and K74, : [0,1] — Ry, with [ € {1,2}.
These functions are defined as follows, for all ¢ € {1,2}, with

Jeft2i\{i}:

(33a)

ba,i(p)

b4z )+ bs;( )+1)§NRj

I€3 1 +1
b1 J (b4 z( )+ 1)
(33c)

1
) t3 log (bl,Q (p)+ 1)7 (33d)
ba o

1
g<1+1+b51 ) ilog (bu(p)ﬂ), (33e)

if (S1,2V S22V S52)
A(S1,1V S2.1V S51)

if (S1,2V S22V S52)
A(S3,1V S4,1)

if (S32V S42)
A(S1,1V S2,1V S51)

if (S3.2V S42)
A(S3,1V Sa.1),

if (Sl,i vV 5271' \Y 5571')
if (5371‘ V 5’4’1‘)7

’ilz

/—-\

Iﬁ:gl 1+b5j

1
+§ log b4 Z

1 bai(p
— 1
2 ( Jr1—&-652

[\')\H

k6 ()= (33f)

Kr.i(p)= {’”*“ (p) (33g)

H7,i,2(ﬂ)

where,

1 1
I€611(p) = ilog (bl?l(p)+b571(p)INR21) —5 IOg (1+INR12)

1 b § NR.
+210g<1+ 5.2( 2)

b1,2( )+1
1 1
—|—§ lOg (bl 2( ) + b5 1( )INRQl) — 5 log (1+INR21)

4ilog <1+b51 § NR;

5 bi() £ 1 ) + log(2me),
/4,6,2(,0) = %log <b672(p) + %& (Sﬁz + bgg))
s ﬁ%l)

bra(1)+1
1 1
+5log (bl,l(p)+b571(p)1NR21) ~5log (1 + INR21)

(34a)

1 1
—3 log (1+INR12) + 3 log (1 +

1 bs,2(p) b3 2§NR2
+-log |1+ = INRig + —————
2 & < SN§2 12 blﬁg(l) +1

1 IN
—~log <1 + b5.1(p) R21> + log(2me), (34b)
2 SNR,

1 b INR
K6,3(p) = B log (56,1(P) + %721 (SNﬁ1 + b3,1)>
1

1 1 bs 2(p § NR»
—5log (1+INR12> + ; log <1+ OES )

1
+5log (b1 2(p)+b5.1( INRgl) ~log (1+INR21)
e (14 INR b3’1§ NRy

98 2 M

1 b5 1( )INR21>
——log |1+ —= + log(2me), (34c¢)
2 < SNﬁl

Ke4a(p) = %log <b6,1(/)) + W% (m1 + b3 1))

SNR;

1 1
5 log (1 n INR12> — 5 log (1 n INRgl)

1 b5 2( ) b3 2§NR2
+—log |1+ INRy + ————

2 & < S]\]ﬁ2 12 b172(1)+1

1 bs 1(p)INR21)
——log |1+ —=

2 ( SNﬁz

1 bs 1(p)INR21)
—=log| 1+ —

2 < SNE1

1 b5 1( )INRQl ﬁ
+§log <b6,2( )+ ﬁj(s 2 + b3 2)

1 b5 1(p) bg 1§NR1
+=log |1+ = INRg; + —+i—

2 % ( SNE, 2 a1 +1
+log(2me), (344d)

K741(p) = %log (bl i(p) + 1) — - log (1 + INRzJ)

log (1+b5] NR;

b1,;(1) +1
log (b1,3(p) + bs,i(p)INRy; )

) +2log(2me)



4% log (1+b4,i(P)+b5,j(ﬂ)) - % log <1+bs,j(,0)> (35a)
Kri2(p) = %log (bu(p) + 1) - %1og (1 + INRij)

_1 log (1 + b5,j(p)) +% log <1 +bai(p) + b5,j(P))

2
1 INR;; bs ,SNR,
+5log [14+(1—p” :Rr” INR;j + —L——

1 bs.i(p)INR,; )
——log |1+ —

2 ( SNR,
+-log| be ;i (p)+— SNF?er,-

2 (GJ SNE, (SNE, +11.)

+2log(2me). (35b)

The functions by ;, with (I,4) € {1,2}* are defined in (30);
bs,; are constants; and the functions b, ; : [0,1] — R4, with
(1,7) € {4,5,6} x {1,2} are defined as follows, with j €
{1,230\ {i}:

bg’i:mi -2 \V SﬁlINRﬂ + INRjZ‘, (363)
bai(p)=(1 - p*)SNE,, (36b)
b5,i(p):(1 - pQ)INRij, (36¢)

bﬁ,i(p):mi+INRij+2p\/INRij (\/ Sﬁz — \/INRji)
+% v IRy <\/INR]-Z- —2 SNHi) . (36d)

Finally, using this notation, Theorem 3 is presented below.

Theorem 3: The capacity region Co_1c—NF is contained
within the region Cq_1c—~r given by the closure of the set of
non-negative rate pairs (R, Rg) that for all i € {1,2}, with
J {1, 2} \ {¢} satisfy:

R;<min (fﬂ,i(P), /‘432,2‘(/)))7 (37a)
R;<k3,(p), (37b)
Ry + Ry<min (w4(p), k5(p) ), (37¢)
R1 + Ra<re(p), (37d)
2R; + R;<k7,i(p), (37e)
with p € [0,1].
Proof: The proof of Theorem 3 is presented in Appendix
C ]

The outer bounds (37a) and (37c) play the same role as the
outer bounds (20a) and (20c) in the linear deterministic model
and have been previously reported in [3] for the case of perfect
channel-output feedback. The bounds (37b), (37d), and (37¢)
correspond to new outer bounds. The intuition for deriving
these outer bounds follows along the same lines of the outer
bounds (20b), (20d), and (20e) in the LD-IC-NF, respectively.

C. Connections with Previous Results

Theorem 2 generalizes previous results on the achievable
region of the two-user G-IC with channel-output feedback.
For instance, when §NR1 = 0, SNR; = 0, and p = 0,

Theorem 2 describes the achievable region of the G-IC without
feedback [12], [21], [37]; when SNR; — oo and SNRy — o0,
Theorem 2 describes the achievable region of the G-IC-PF
(Theorem 2 in [3]); when SNE; = SNKy, INR;» = INRs,
and SNR; = SNR», Theorem 2 describes the achievable
region of the symmetric G-IC-NF (Theorem 3 in [25]). The-
orem 3 generalizes previous results on the converse region of
the two-user G-IC with channel-output feedback. For instance,
when mh =0, mg =0, and p = 0, Theorem 3 describes
the converse region of the G-IC without feedback [5]; when

NR; — oo and SNRy — oo, Theorem 3 describes the
converse region of the G-IC-PF (Theorem 3 in [3]); when
SNK, = SNHs, INR;s = INRy; and SNR; = SNRo,
Theorem 3 describes the converse region of the symmetric
G-IC-NF (Theorem 2 in [25]).

D. A Gap Between the Achievable Region and the Converse
Region
Theorem 4 describes the gap between the achievable region
Cq_1c_nr and the converse region Cg_1c_nr (Definition 2).
Theorem 4: The capacity region of the two-user G-IC-NF
is approximated to within 4.4 bits by the achievable region
Co_1c_nr and the converse region CG_1C_NF-
Proof: The proof of Theorem 4 is presented in Appendix
D. ]
To the extent of the knowledge of the authors, this ap-
proximation to the capacity region of the G-IC-NF is the
most general with respect to existing literature and the one
that guarantees the smallest gap between the achievable and
converse regions when feedback links are subject to Gaus-
sian additive noise. Figure 7 presents the exact gap existing
between the achievable region C_;c_np and the converse re-
gion Cq—_1c— for the case in which SNR; = SNR, = SNR,
INR;, = INRy; = INR, and SNR; = SNR» = SNR as a

function of o = 2&INR 4ng 3 = ﬁlog MR Note that in this
. log SNR, 5 log SN
case, the maximum gap is 1.1 bits ang occurs when a = 1.05

and 5§ = 1.2.

VI. TRANSMITTER COOPERATION VIA FEEDBACK

Despite the fundamental differences discussed in [25], there
exist several similarities between the G-IC-NF and the two-
user G-IC with conferencing transmitters (G-IC-CT). For
instance, there might be cases in which the side information
that can be obtained by the transmitters is the same either
using transmitter cooperation or channel-output feedback.

Consider for instance the LD-IC with conferencing-
transmitters (LD-IC-CT) depicted in Figure 8 and the LD-
IC-NF depicted in Figure 9. Note that the noise level in the
link from transmitter ¢ to transmitter j is such that transmitter
7 observes only the bits sent by transmitter ¢ through the bit-
pipes X; cFr.n and X; pr ., (see Figure 8 and Figure 9), for all
i€{1,2} and j € {1,2} \ {i}. Then, in this particular case,
subject to a finite delay, in both channel models (Figure 8
and Figure 9) the corresponding transmitters possess the same
side information and the corresponding receivers observe the
same channel outputs. From this point of view, any outer
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conditions, i.e., SNﬁl = SNﬁg = SNﬁ, INRi2 = INR2; = INR, and
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bound on the individual or weighted sum-rate for the case of
conferencing transmitters is also an outer bound for the case of
channel-output feedback and vice-versa. A similar observation
can be made for the case of a G-IC-NF and a G-IC with
conferencing transmitters (G-IC-CT).

Outer bounds on the sum-rate for the LD-IC-CT and the
G-IC-CT have been reported in [31]. The gap between the
achievable sum-rate and the corresponding outer bound in
the G-IC-CT is 20 bits in [31]. Other outer bounds have
been presented in [38], but a gap between the achievable and
converse regions is not reported.

VII. CONCLUDING REMARKS

In this paper, the exact capacity region of the LD-IC-NF has
been fully characterized (Theorem 1). Exploiting the insight
obtained in the LD-IC-NF, an achievability region (Theorem 2)
and a converse region (Theorem 3) have been presented for
the two-user G-IC-NF. These two regions approximate the
capacity region of the G-IC-NF to within 4.4 bits (Theorem 4).

Despite the contributions made in this paper, several ques-
tions remain unsolved in the understanding of the benefits of
channel-output feedback in the G-IC-NF. For instance, the
case in which the channel-output feedback is observed by
both transmitters is still an open problem. Only the case of
symmetric channels has been fully studied. Another case in
which very little is known about the benefits of channel-output
feedback is that of a large number of users (more than two)
and large number of antennas (more than one) at each network
component.

APPENDIX A
PROOF OF THE ACHIEVABILITY

This appendix describes an achievability scheme for the IC-
NF based on a three-part message splitting, block-Markov
superposition coding, and backward decoding. This coding

scheme is general and thus, it holds for the two-user LD-IC-
NF and the two-user G-IC-NF.
Codebook Generation: Fix a strictly positive joint proba-
bility distribution
Py, Uy vi Vo X1 p Xa.p (U, UL, Uz, V1, V2, 1, p, T2,p) = Py(u)
Py, v (w1 |w) Py, o (w2 |[w) Py, o o, (vi|u,s ur)
Py, v v, (v2|u, u2) Px, piu v, v, (21,0, ur, v1)

Px, p|u U, va (T2, P|U, ug, v2), (38)
for all (u,u1,ug,v1,v2,21,p,22.p) € (X1NA) X
(Xl X XQ)S.

Let Rl,Clv Rl)og, R2,Cl, ngcg, Rl,P, and RQVP be non-
negative real numbers. Let also R; ¢ = Ric1+ Rico,
Ryc=Ryc1+Race, Ri = Ric + Rip, and
Ry = Ry c + Ry p.

Generate 2VV(F1.01tF201) jjd. codewords of length N
u(s,r) = (u1(s,7),u2(s,7),...,un(s,r)) according to

N
Py (u(s,r)) = H Py (un(s,1)), (39)
n=1
with s € {1,2,...,2NFre1) and r € {1,2,...,2NF2.01),
For encoder 1, generate for each codeword u(s, ), oNER1.c1
iid. codewords of length N wi(s,r, k) = (u11(s, 7 k),

ur2(s,m, k), ..., urn(s,T, k)) according to
N
PU1|U(’LL1(S, r k) u(s, 7“)) = HPUl\U (ul,n(s, r, k) |un (s, r))7
n=1
(40)
with & € {1,2,...,2NFue1} For each pair of

codewords (u(s,r),ui(s,mk)),  generate  2NFic2
iid. codewords of length N  wvy(s,7 k1) =
(v1,1(s, 7k, 1), v1,2(s,m, k. 1), ... v1,n (s, 7k, 1)) according
to
PV1|UU1 (vl(s,r,k,l)|u(s,r),u1(s,7“,k))
N
= H PV1|U Uy (’1117"(577“, kv l)|un(8a T)7u1,n(87r7 k))a(41)
n=1
with [ € {1,2,...,2NR1.c2} For each tuple of codewords
(u(s,r), wi(s,r, k), wi(s,r k1)), generate 2NF1r

iid. codewords of length N 1 p(s,7k,l,q =
(3317]371(8,7“,k',l,q),ml,P,Q(S,T,k,l,q),...,
z1,pN(s, 1k, q)) according to

PXLP\U UlVl(ml,P(S7 T, kv l7 q)ru‘(& T)aul(sa T, k)7v1(57 T, kv l))
N
= HPX1,P|U U Vi (zl,P,n(sa T, ka la Q)|un(sa T)a ul,n(sa r, k)a

n=1
Ul,n('S,rakal)),
with ¢ € {1,2,...,2NFur)

For encoder 2, generate for each codeword w(s, ), oNRz.c1
iid. codewords of length N wus(s,r,j) = (uz:1(s,r,j),

(42)

u2,2(8,7,4), ..., uz,n(s,7, 7)) according to
N
PU2|U(u2(57Taj)‘u(S’T)) = HPU2|U<U2,H(5,T»j)|un(sar))7
n=1

(43)
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with j € {1,2,...,2NFzc1} For each pair of
codewords  (u(s,r),uz(s,r,j)),  generate  2NH2c2
iid. codewords of length N  wa(s,7,j,m) =

(’U2,1(8, T, j,m),va2(s, 7,5, m), ..., va,n(s,T,7, m))
according to

PV2|UU2 (’UQ(S,T, j7 m)|u(87r)7u2(s’r7j))
N
= H PV2|U Us (’1}2’"<S,7“,j, m)|un(s,r), u2,n(S7T7j))’(44)

n=1

with m € {1,2,...,2NB2c2} For each tuple of
codewords  (u(s,r), wa(s,7,j),v2(s,7,j,m)), generate
2NR2pjjd. codewords of length N x5 p(s,r,j,m,b)
= ($2,P71(S,T,j,m,b), xQ,P,Q(s’r’jamab)’ LR
x2,pN(s,7,7,m,b)) according to

PXz,P|UU2V2 (:CZP(Sv 3, m, b)hl’(sa T)7u2(57 ij)an(Sv 7, m))
N
= HPX21P|UU2V2 (xZ,P,n(Sa T, J,m, b)|un(s, 7’), u2,n(87 rvj)a

n=1

van(s,7,5,m) ) (45)

with b € {1,2,...,2VF2.r} The resulting code structure is
shown in Figure 10.

Encoding: Denote by W) € {1,2,..., 2V} the message
index of transmitter ¢ € {1, 2} during block ¢t € {1,2,...,T},
with T' the total number of blocks. Let Wi(t) be composed by
the message index Wz(tc) € {1,2,...,2NFic} and message
index W' € {1, 2, ..., 2VRor} ie, W = (W, WD)
The message index Wi(tl)g must be reliably decoded at receiver
1. Let also Wz(tc)* be composed by the message indices Wz(tc)l €
{1,2,...,2VRcry and W, € {1,2,...,2NRuc2} e,
Wl(g = (Wz(gpwz(gz) The message index Wl(tc)1 must be
reliably decoded by the other transmitter (via feedback) and
by both receivers. The message index Wi(,2’2 must be reliably
decoded by both receivers, but not transmitter j.

Consider block-Markov encoding over 7" blocks. At encod-
ing step t, with ¢t € {1,2,...,T}, transmitter 1 sends the



codeword:
t t—1 t—1 t—1 t—1 t
o (w2 ) ().
t—1 t—1 t t
or (WD WAZD Wil Wi,

t—1 t—1 t t t
x1,p (Wl(,cl ). W2(,01 ), Wl%l, Wl(,()m, Wf})) . (46)

where, ©; (X nX)Y x a3 5 xN

is 2(1 1)function( }l)lat transforn(ls . the( 1g:ode?v)ords
t— t— t— t— t

U(Wl,m , W2,01 )’ Ui (Wl,Cl aWQ,c1 7W1,01>v

o (WD WD Wit WY and e (WD,

W2(t511 ), Wl(%l, Wl(,%z, Wl(tl)a) into the N-
dimensional vector :cgt) of channel inputs. The indices
W1(?()71 = W1(Tc)1 = s" and Wg(oc)'l = WQ(Tc)l = r*, and the

pair (s*,7*) € {1,2,...,2NF1c1} x {1,2,... 2NR201) are
pre-defined and known by both receivers and transmitters. It
is worth noting that the message index Wg(tgll ) is obtained
by transmitter 1 from the feedback signal ﬂ“” at the end
of the previous encoding step ¢ — 1.

Transmitter 2 follows a similar encoding scheme.

Decoding: Both receivers decode their message indices at
the end of block 7' in a backward decoding fashion. At
each decoding step ¢, with ¢ € {1,2,...,T}, receiver 1
obtains the message indices (/Wl(?;lt), /Wz(’%;t), Wl()TC;(t*l)),
WD WY e {1, 2,0, 2N} x {,
2,...,2NReeny s fq 2 oNBucz} 11,2 ... 2NRLP) x
{1, 2,...,2NF2¢2} from the channel output 3 ("¢,

The tuple (/Wl(,T(;?)’ Wé,T(,*Et)’ /Wl()TC;(tfl))’ /Wl()];f(t—l))’

Wéz;(t—l))) is the unique tuple that satisfies

(s (P ) o (0 T W)
o (T T )

(T ) WA W W D)),
(VL L0 W),

v (/Wl(,TC_lt)7 /W2(,Tc_1t), WQ(E—l(t—l))’ Wé%g(t—l))) , 7§T—(t—l)))

e TN

, 47
Uty vi Xip U2 V2 Vi) “7)

where Wl()T(fl(tfl)) and W2(’chl(t71)) are assumed to be per-

fectly decoded in the previous decoding step ¢t — 1. The set

[([]]V;)l Ve Xap Us Vo ] represents the set of jointly typical

sequences of the random variables U, Uy, V1, X1 p, U, V3, and
1, with e > 0. Receiver 2 follows a similar decoding
scheme.
Error Probability Analysis: An error occurs during en-
coding step t if the message index WQ(thll ) is not correctly
decoded at transmitter 1. From the asymptotic equipartion

property (AEP) [39], it follows that the message index W2(t511 )

can be reliably decoded at transmitter 1 during encoding step
t, under the condition:

Roc1 < I(Y1;U2|U,U17V1,X1>

= 1(Yuuu.xy). (48)

An error occurs during the (backward) decoding step ¢ if the
message indices W1(7cht), W2(7T(;1t), Wl(,TC;(t*l)), Wl(?;;(tfl)),
and Wz(,TC;(tfl)) are not decoded correctly given that the
message indices Wl(TC_l(t_l)) and WZ(TC_l(t_l)) were correctly
decoded in the pre\;ious decoding sfep t — 1. These errors
might arise for two reasons: (i) there does not exist a tuple
(sz;t)’ WQ(,I;‘_lt)’ Wl(,j;‘;(t_l))’ Wl(;—(t—l))’ WéE“‘”’
that satisfies (47), or (i7) there exist several tuples
Wl(z_lt)7 Wéz_lt)7 Wl(:lé'_Q(t_l))ﬂ Wf;—(t—l)), W2(7“c—2(t—1))

that simultaneously satisfy (47). From the AEP, the
probability of an error due to (i) tends to zero when N grows
to infinity. Consider the error due to (7¢) and define the event
E(s,r1,q;m) that describes the case in which the codewords
(u(s,r).  w(s,r, Wie " wi(s, Wi 0,
wLP(Sa r, W]_(?é'i](til)% la Q)’ u2(87 T Wg(?é'il(til))%
va(s, T, Wz(’TCTl(t*l)),m)) are jointly typical with 3 {* (=)
during decoding step t. Assume now that the codeword to
be decoded at decoding step t corresponds to the indices
(s,m,1,q,m)=(1,1,1,1,1). This is without loss of generality
due to the symmetry of the code. Then, the probability of
error due to (i¢) during decoding step ¢, can be upper-bounded
as follows:

and

P,(N)=Pr U E(s,r,1,q,m)

(s,rl,q,m)#(1,1,1,1,1)
< Z Pr [E(s,r,l,q,m)] ’

(s,ml,q,m)ET

(49)

with T = {{172a"'2NR1'Cl} X {1,2,...2NR2’01} X
{17 2,.. -2NR1‘CQ}><{1, 2,... QNRLP}X{L 2,... 2NR2,02}}\
{1, 1,1, 1, 1)}
From the AEP [39], it follows that
P.(N) 2N (Ra.ca IV 1Vl UU3 Uz, Vi, X0)426)
42N Ry p—I(Y 1:X1|UU1 Uz, Va, Vo) +26)

9N R2,02+R1,P*I(?1;V2,X1\U,Ul,Uz’Vl)Jer)

+

LN (Ruca—I1(Y 13V, X1|U,U1, Uz Va) +2¢)

9N R1,02+Rz,c2*1(71;\/1,V2,X1 |U,U1,Uz)+2¢)

+

9N R1,02+R1,P_I(?1§V17X1‘U1U17U27V2)+26)

+

(
(
(
(
(
(

+2N Rl,C2+R1,P+R2,C‘2_I(71§V1»V27X1 |U,U1,Uz)+2¢)
L 9N(Ra.c1—1(Y 13U,Us,Us Vi, Va, X1)+2¢)

9N (Ra,c— (Y 13U,Us,Us Vi, Va, X1)+2¢)

L 9N(Ra.c1+R1,p—I1(Y 1;U,U1, U2,V Va, X1)42¢)

L 9N(Ra.c+Ri,p—1(Y 13U,U1,Ua V1, V2, X1)+2¢)

L 9N(Ra.c1+R1,00— (Y 1:U.U1,U2, Vi, Vi, X1 )+26)
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Fig. 10. Structure of the superposition code. The codewords corresponding to the message indices Wl(tgll ) s Wétgll ), Wi(tC)‘P Wi(tc)?, Wi(tl)g with ¢ € {1,2}
as well as the block index ¢ are both highlighted. The (approximate) number of codewords for each code layer is also highlighted.

+2N(R2~C+R1’C2*I(71?U’UI’U2’V1’V2’X1)+26) for transmitter ¢ € {1, 2}, with j € {1,2}\ {i}:
N(Rz,c1+R1,02+R1,P*I(71;U,Ul,U2,V1,V2,X1)+2€)

+2N(R2,C+R1,C2+R1,P*I(?l;U,UlaUZ’V17V23X1)+2€)
:I (?“ Uj'U, Xl)

+2N(R170171(71;U,U1,U2,V1,V2,X1)+25)

N (Rio1+Ra,ca—1(V 1;U.U1,U2,V2 Va, X1)+2¢) 201, (51a)

+2N(R1,c1+R1,p—1(?1;U,Ul,U2,V1,V2,X1)+2€) R, + Rj70<1(7i; U,U;,U;, Vi, Vi, X;)

+2N(R1,c1+R1,p+R2,cz—I(?l;U,Ul,Uz,vl,Vg,X1)+2e) :1(71; U,U;, Vi, X;)

+2N(R1,c—1(?’1;U,U1,UQ,Vl,Vz,X1)+2e) 20, ;, (51b)

4 9N(Ri.cH+Ra.ca—I(Y 1;U,U1Uz, Vi, Va, X1)42¢) Rj,02<1(7i; ViU, U, U, Vi, X5)

LN (Ri=I(Y13U,U1,Us, Vi, Va X1 ) +2¢) :](7i; V;|U, U;, X;)

9N (Ri+Rs,co— (Y 1:U.U1,Ua Vi, Vi, X1)+2€) 205 ;, (51c)

+2N(R1,01+R2,01—I(?l;U,Ul,Ug,Vl,Vz,X1)+2e) Rz‘,P<I(?¢; X|U, U, U, Vi V)

+2N(R1,CIJFRZ,C—I(?I;U,Ul,U27v1,v2,X1)+2€) 20,4, (51d)

L oN(B1c1+Ra or+ Ry p—I(V 1iUUL U, Vi, Vo, X1)+2€) Rip+ Rj7c,2<[(?i; V;, X:|U, U, U;, Vi)

Jr2N(R1,01+R2,C+Rl,pfl(171;U,Ul,U2,V1,V2,X1)+26) 205, (51e)

+2N(R1,C+R2,017I(}_}1;U,Ul,UQ,Vl,Vz,X1)+2e) Rico + Ri,P<I(7i; Vi, Xi|U, U, U, V;)

L 9N(Ry o+ Ra,c=1(Y 13U,U1,U2 V1, Va, X1) +2¢) 21(71‘; Xi|U, U U;, V)

LN (Ri+Ra, 01~ 1(¥ 1iUULU2, V2, Vi, X1)+2€) 205, and (516)

N R+ a0 LT 000 Vi Ve X0)420), (50) Rico+ Rip + Ryco<I(Y Vi, Vj, XilU, U, Uj)
—I1(Y;;V;, X,|U, U;, Uj)

The same analysis of the probability of error holds for
transmitter-receiver pair 2. Hence, in general, from (48) and
(50), reliable decoding holds under the following conditions Taking into account that R; = R; c1+R; c2+R;, p, a Fourier-

é97,i~ (51g)



Motzkin elimination process in (51) yields:

Ri<min (021,061 + 012,041 + 012 +032), (52a)
Ro<min (022,611 + ag,2,01,1 + 031+ 042), (52b)
Ry + Ro<min(fs 1 4 042,021 + ag2,041 + 022,
061+ 022,011 +031+041+012+052,
011+ 07140124 052,011+ 041+ 012+ 072,
01,1+ 05,1+ 012+ 032+ 042,
Or1+ 05,14+ 012+ 052,01 14 071+ 0124 04.2),

(52¢)
2Ry + Ro<min(fy 1 + 041 + 012+ 072,
01,1+ 041+ 071 + 201 2+ 05 9,
021 4 041+ 012+ 052), (52d)
Ry 4 2Ro<min(61,1 + 051 + 022 + 042,
011+ 071+ 022+ 049,
2011+ 651+ 612+ 042+ 072), (52e)

where 0, ; are defined in (51) with ({,4) € {1,...,7} x{1,2}.

A. An Achievable Region for the Two-user Linear Determinis-
tic Interference Channel with Noisy Channel-Output Feedback

Following  the  discussion in  Section IV-BI,

consider the random variables U, U,;, V,, and

X;p independent and uniformly distributed over

+\+

the sets {0}, {0’]_}(”ji*(max(ﬁjj’”ji)*wjj) ) i
+

{0, 1y (minrse (max{(T230)=533)7)) ang {0, 13 (Fu=mse)”,
respectively, with ¢ € {1,2} and j € {1,2} \ {i}.

Let the channel input symbol of transmitter ¢ at each chan-
nel use be X; = (U], V], X[, (0,.. .,0))T e {0,1}.
Considering these random variables, the following holds for
the terms 6, ;, with (1,7) € {1,...,7} x {1, 2}, in (51):

0171‘ :I(?z; Uj|U, Xi)

Yn (YU, X))

=H (U,)

= (n,] — (max (ﬁ”, n,J) — %ii)_‘_)—‘r 5
02714 :I(?i; tj7 Uj, Vj,Xi)

Y (¥)

= max (ﬁ)”, TLij) s

93,i=1(7i;vj\U,Uj,Xi)

(53a)

(53b)

@H (?i|U,Uj,Xi)
:H(Vj)
=min <nij, (maX(ﬁu‘,nij) - %ii)Jr) )

0. 21(72-; X.|lU,U,U,;,V, Vj)

(53¢c)

Oy (5—}i|U,Ui>Uj>Vi,Vj)
=H (X;p)

)", and

05.i=1(Y 5V, XU, U U, V)

@H (71|Ua Uia U]a VL)
=max (dim X; p,dim V)

=max <(ﬁm — lei)+ 5
min (nij, (max (77 3, nij) — %iz‘)Jr) ) , (53e)

where (a) follows from the fact that H (?AU, Uj,, X¢> =0

and (b) follows from the fact that H(l_}i|U, U; V; X;)=0.

For the calculation of the last two mutual information terms
in inequalities (51f) and (51g), special notation is used. Let
the vector V; be the concatenation of the vectors X; g4 and

T
Xiup, ie, V; = (X»THA,XZHB) . The vector X; pra

K2
contains the entries of V'; that are available in both receivers.

The vector X; gp is the part of V; that is exclusively
available in receiver j (see Figure 4). Note also that the vectors
X ma and X; gp possess the following dimensions:

dim X; yy 4=min (nﬂ (max (77 5, m5:) — ;)" )

—min ((”ji —55) " (max (7 55, m;:) _%]’jﬁ)

dim X@,HB=m1n<(nj7:—ﬁm)+ , (max (75, nji) — %jjﬁ)-
Using this notation, the following holds:
00.=1(Yis X:|U, UL U, V)

Yn(¥Y.|u.U.U,.V))

=H (Xina, Xip)

=dim X; ga +dim X; p

=min (nﬁ, (max (7 j;,m;) — %jjﬁ)

73)")
(53f)

— min ( (nji — ﬁii)+ 5 (max (ﬁjj, nji) -
+ (i —ngi) "
97,i:I(7i§VjaXi|U7UivUj)

, and

~1(YsX,|UU.U,)) +1(Y:V,[UU,U,;, X))
~1(Ys XU U, U+ (Y V,IUU, X))
Yn (Y.u,U.U,)

=max (H (V;),H (Xina) + H (Xip))

=max (dim V;,dim X; g4 + dim X; p)

=max (min (nij, (max (ﬁiia nij) - %ii)—i_ ),

i)
i), (max (755, m5:) —

+ (ﬁm‘ - nji)+ )7

min (nﬂ, (max (ﬁjj, lei) —
75)7)
(33

— min ( (lez' —

where (c) follows from the fact that H(7i|U, U; vV, X;) =
0.



Plugging (53) into (52) (after some algebraic manipulation)
yields the system of inequalities in Theorem 1.
The sum-rate bound in (52c) can be simplified as follows:

Ry + Ry<min (92,1 + 042,041 + 020,
0114051 +612+ 95,2)~ (54)

Note that this follows from the fact that

max (92,1 + 042,041+ 022,011 +051+ 012+ 95,2) <

min (92,1 +ag2,061 + 022,011+ 031+ 041+ 012+ 052,

O11+071+012+052,011+0s14 012+ 072,

0104051 +012+032+042,001+071+012+ 94,2)-

(55)

B. An Achievable Region for the Two-user Gaussian Interfer-
ence Channel with Noisy Channel-Output Feedback

Consider that transmitter ¢ uses the following channel input:
Xi=U+U;,+V; + X; p, (56)

where U, Uy, U, V1, Vo, X4, p, and X5 p in (56) are mutually
independent and distributed as follows:

U~N 0, p), (57a)
(0 ﬂz i, C) (57b)
( (]- - ,U"L) i,C ) ) (570)
p~N (0, \.p), (57d)
with

p+Aic+Xp=1and (58a)
A p=mi (; 1) (58b)

4, P =111 INR]fL, )

where p; € [0,1] and p € [O, (1 — max (INll)m’ ﬁ))q
The parameters p, p;, and A; p define a particular coding
scheme for transmitter ¢. The assignment in (58b) is based
on the intuition obtained from the linear deterministic model,
in which the power of the signal X; p from transmitter ¢ to
receiver j must be observed at the noise level. From (8), (9),
and (56), the right-hand side of the inequalities in (51) can
e written in terms of Sﬁl, Sﬁg, INR;2, INRy71, SNR4,
NRao, p, p1, and po as follows:

91121 (?Z,UJ|U7 Xl)
11 m-(bzi -I-Q) +b1:(1)+1
=—1o
2% ﬁ( — ;) bai(p )+2>+bl,i(1)+1

—as (o), (59
02,i:1 (?la U; U]7 V}a Xz)
1 1
=5 log (bu(/’) + 1) -3
) (590)

0s,=1 (Y V;|U. U, X,)

Lo (1) +2) -

N | =

=aq,i(p, pj), (59¢)
01,=1 (Y5 Xi||U UL U, VL V)
—110 SR, +2) - 1
2 %\ INR; 2
=ay , (59d)
05.=1 (Y V3, X,|U, U, U, Vi)
1 SNE; 1
— “log (2 1= 1 )boi(p) | — =
2 Og( " INR,, +< “J) 2 (”)) 2
:115,1'(/), ,u'j)7 (59¢)

0¢,:=1 <717 X;|U,U;, Uj, VJ>

1 SNR, 1
= 3 log (INRﬁ <(1 — ,ui)bg,j(p) + 1) + 2) -3

:aﬁ,i(pu :u’l)7 (59f)
0ri=1 (Y 5V}, Xi|U, U, U )

:%10«% (ISNﬁlgjii((lui)bz,j(P)Jrl) + (1Nj)bz,¢(ﬂ)+2>

1

2
:am(P, M1, Hz)-

(592)

Finally, plugging (59) into (52) (after some algebraic manip-
ulation) yields the system of inequalities in Theorem 2. The
sum-rate bound in (52c) can be simplified to give:

Ry + Ry<min (02,1(0) +a1,2,01,1 + az.2(p),
as1(p, p2)+ar,1+as2(p, p1)+ar2(p, 1, p2),
az,1(p; p2)+as1(p, p2)+as2(p, p1)+as2(p, ),
az,1(p, pi2) +az,1(p, p1, p2) +as2(p, M1)+a1,2>-
(60)

Note that this follows from the fact that

max (ag,l(p) +ay2,a1,1 + az2(p),

az,1(p, p2) +ar +az2(p, 1) + ara2(p, p1, p2),
az1(p, p2) + as1(p, p2) + as2(p, 1) + as2(p, p1),
az1(p, p2) + ar1(p, pa, p2) + az2(p, 1) + am)

<min (a2,1 + ae 2(p, p2), a1 (p, 1) + az2(p),
as1(p, p2) + as1(p, p2) + a11 + as2(p, 1) + as,2(p, 1),
az,1(ps p2) + ari(p, 1, p2) + as2(p, 1) + as 2(p, pa),
az,1(p, p2) + as 1 (p, p2) + az2(p, p1) + 032 + a1,2>-
(61)

Therefore, the inequalities in (52) simplify into (31) and this
completes the proof of Theorem 2.



APPENDIX B
CONVERSE PROOF FOR THEOREM 1

This appendix provides the proof of converse for Theorem 1.
The proof of inequalities (20a) and (20c) is presented in [3].
The rest of this appendix provides a proof of the inequalities
(20b), (20d) and (20e).

Notation. For all ¢ € {1, 2}, the channel input X ,, of the
LD-IC-NF in (18) for any channel use n € {1,2,..., N} is a
g-dimensional vector, with ¢ in (27), that can be written as the
concatenation of four vectors: X; ¢ n, Xi pn, Xi D,n, and

T
X 10 Xin = (XTI X ps X1p Xlg.0) a8
shown in Figure 9. Note that this notation is independent of
the feedback parameters %11 and %22, and it holds for all
n € {1,2,..., N}. More specifically,

X ;.c,n represents the bits of X; ;, that are observed by both
receivers. Then,

(62a)

. . _>
dim X; ¢, =min (77, nj;) ,

X ;. pn represents the bits of X, that are observed only
at receiver 7. Then,

dim X pp =i — nji) ", (62b)

X p,n represents the bits of X;,, that are observed only
at receiver j. Then,
dim X; p ,=(nj; — 7)", and (62¢)
Xion=1(0,... ,0)" is included for dimensional matching
of the model in (19). Then,

dim X; o n=q — max (77 s, nji) - (62d)

The bits X; g, are fixed and thus do not carry information.
Hence, the following holds:

H(X;,)=H(Xcn: Xipn> Xipms Xi,om)
=H (Xi,c,nv Xi,P,nv Xi,D,n)
<dim Xi,C,n + dim Xi,P,n + dim Xi,Dm» (62e)

Note that vectors X; p,, and X; p, do not exist simulta-
neously. The former exists when Wn‘ > nj;, while the latter

exists when ﬁu‘ < nj;. Let X; p, be written in terms of
T

Xi,DF,n and Xi,DG,na i-e-, X’i,D,n = (X;'F,DF,'m X;'F,DG,n
The vector X; pr,, represents the bits of X; p, that are
above the noise level in the feedback link from receiver j to
transmitter j; and X; pg » represents the bits of X; p ,, that
are below the noise level in the feedback link from receiver
7 to transmitter j, as shown in Figure 9. The dimension of
vectors X; pr, and X; pg,, are given by

. . +
dlmXi,DF,n =1nin ((nﬂ — ﬁ)“) 5 (%jj — W“‘

— min ((ﬁ)jj — nj¢)+ ,nij)

— ((ﬁjj — nij)+ - nji>+ >+> and

dim X@DG’n:dim Xi,D,n — dim Xi,DF,n~

(63a)

(63b)

Let X, ¢, be written in terms of X, cr, and X; cqg n,

ie, X;con= (XI,CF7",XI,CG7,L) . The vector X, crn
represents the bits of X; ¢, that are above the noise level
in the feedback link from receiver j to transmitter j; and
Xi.ca,n represents the bits of X, ¢, that are below the
noise level in the feedback link from receiver j to transmitter

7, as shown in FigurTe 9. Define the dimension of the vector
T T
(XLCFWXZ»’DF’”) as follows:
. T T T . —
dim (Xi,CF,mXi,DF,n> ={ min (" j;, max (77 j;,n;))

—(ﬁﬁ—”%0+)+

The dimension of vectors X;cr, and X;cq, can be
obtained as follows:

(64)

. . T T T .
dim X; .5, =dim ((XLCFW X prn) ) —dim X; prn
(65a)
and

dim Xi,CG,7L:dim Xi,C,n — dim Xi,CF,n- (65b)

The vector X; ., is used to represent the bits of vector
X that are observed at receiver j without producing any
interference with bits in X ; p,,. An example is shown in
Figure 11.

Based on its definition, the vector X 17, consists of the
top

. R . +

dim X ; y,=min (7 ;;,n;;) — min ((ﬁjj —nj;) ,nij)

— Tt
+ (lei - njj) (66)

bits of X; ,,.

Finally, for all ¢ € {1,2}, with j € {1,2} \ {i}, the
channel output Y, can be written as the concatenation
of three vectors: Y ; g n, Yin, and

n
(?{Q,m ?T ?IGn) , as shown in Figure 9. More specifi-

i,no

i,G,n> 1.6, iwn

cally, the vector ?m contains the bits that are above the noise
level in the feedback link from receiver ¢ to transmitter ¢. Then,

dim ?im:min (%“, max (ﬁi’ia nij) ) . (67a)

The vector 7i7G7n contains the bits that are below the noise
level in the feedback link from receiver ¢ to transmitter ¢. Then,

dim ?i,G,n: ( max (ﬁ)”, nij) — %“) i (67b)
The vector ?7;7(37" = (0,...,0) is included for dimensional
matching with the model in (19). Then,
H <7i,n>:H(7i7Q7n; ?i,'ru 71;,G,’I’L)
:H(Yi,n; 7'L',G,n)
<dimY,, +dimY, .. (67¢)

Using this notation, the proof continues as follows.



Proof of (20b): First, consider n;; < ﬁii, i.e., vector
X, pn exists and vector X; p, does not exist. From the
assumption that the message indices W; and Wy are i.i.d.
following a uniform distribution over the sets W; and W,

respectively, the following holds for any & € {1,2,...,N}:
NR;=H (W;)
(a)
H (Wi W)

—H (7i,i7j|wj) + N&(N)
N
(QZ H(?inu ?j,n|Wj7 7i,(l:n—l)a ?j,(l:n—lﬁ Xj,n)
n=1

FNS(N)
N
gZH(Xi,n,?MXj,n) + NO(N)
n= 1
<ZH n) + NS§(N)
n=1

=NH (X, )+ N6(N),

<N (dim X, o, +dim X; pi) + NO(N). (68)
Second, consider the case in which nj; > 7” In this case
the vector X; p,, does not exist and the vector X; p , exists.
From the assumption that the message indices W; and Ws
are i.i.d. following a uniform distribution over the sets W,
and W, respectively, hence the following holds for any k €

{1,2,...,N}:
NR;=H (W;)
Y (W w)

r(w ¥, ¥, + No(N)

=H (?i,?jwj) + N§(N)
N

O H(Y i, Y 5nlW5, ¥ ineys ¥ oneys X
Sf&( N)

<ZH< i,C,ns zCF,naXz‘,DFm)—FN(S(N)

= i H(Xi,c,n, Xi,DF,n) + N§(N)
n=1

:NH(Xick,Xi DFk) + N6(N)

<N (dim X; o +dim X; ppi) + NO(N). (69)

The inequalities (a), (b), and (c¢) in (68) and (69) are
justified in accordance with: (a) follows from the fact that
W1 and W5, are independent; (b) follows from considering

enhanced receivers (see Figure 6(a) for the case ¢ = 1)
and Fano’s inequality; and (c) follows from the fact that
_ ¢(n)
_f_j (W j,(l:n—l))-

Then, (68) and (69) can be expressed as one inequality in

20

the asymptotic regime, as follows:

Ri<dim X, o +dim X; py +dim X; prr, (70)

which holds for any k € {1,2,...,N}.

Plugging (62a), (62b), and (63a) in (70), and after some
algebraic manipulation, the following holds:

R;<min (max(ﬁii, nji) , Max (ﬁm‘, %jj - (ﬁjj —”ji)+ ))

This completes the proof of (20b).
Proof of (20d): From the assumption that the message

indices W7 and W5 are i.i.d. following a uniform distribution
over the sets W; and W, respectively, the following holds
for any k € {1,2,...,N}:
N(Ry+Ro) = H (Wy) + H (W)
(i)f(wl,?l,? ) +I(W2,17’2,§7 ) + N&(N
HY)) - H(Y\ W) - H(X: C|W1,?1,X1)
+H (72) — 1 (Y,
—H (X 1.0|Wa, Ya, X2) + N6(N)
— 1 (Y))-H(Y\W) - H (Xz0. X101, Y1, X))
+H (Y,) - H (Yo i)

(Xl, , X U|W27?2;X2> + NO(N)
= 1 (Y1) + ]I (Xo.0. X10:W0, V1)~ H (Xo.0, X10) |
+H (V) + [[(X 10, Xowi W, ¥o) —H (X 1.0, Xa0)]

—H (Y1) - H (Yo Ws) + N3()
YH(Y\X10, Xow) - H (X 10, Xo0l Y1)
+H (Yol Xa0, X10) — H (Xa0. X10[Y2)
+1 <X27C7X1,U§W1;?1> +1 (XI,C7X2,U§W27?2>
—H (Y W)) — H (Ya|W2) + N§(N)
H <71|X1,C7X2,U> +H (?2|X2,C7X17U>
H (X X0 W Y1) + 1 (X1 0, Xo i Wa, Ya)
~H (Y W1) — H (Y[ Ws) + No(N)
H (Y1 X10,Xo0) + H (Yol Xo0. X10)
+1I <X2,C,X1,U7W2,<172;W1,?1>
I (X0 Xow, W1, Y 15, V)
—H (YoWs) + N6(N)
— 8 (V11X 1,0, X20) + H (Y2l Xo0. X 10)
+1 (Wos W, Y1) + 1 (Xoc, X oo, Yo W0, V1 W2)
+I (Wl;W2,?2> +1 (XI,C,XQ,U7?1§W27?2‘W1>
—H (Yo w)) — 1 (Ya|W2) + N3(N)

N

/N

—H (Y. m)



X1Un {

Xl,U,n{

XZ,U,n{

Fig. 11.  Vector X; v, in different combination of interference regimes.

9 (V11X 10 Xo0 ) +H (Yol Xao, X10) +H (W)
+H <(171|W1) — H (W |Ws) — H (?1|W2,W1>
+H (Xo0, X 10, Yol Wa) + H(Wo) + H (V2| W2)
—H (WalWh) — H (YW, W)

+H<X1,C, Xy, ?1|W1) —H(?1|W1) _H&Q‘WQ)
+NS(N)
<H (?1|X1,07X2,U) + H (72|X2,C;X1,U)
+H (X2,07X1,U’?2|W2)
+H (X 1.0, Xow, Y1 W) + N3()

N
:Z [H (71,n\X1,C,X2,U7?1,(1:%1)) +
n=1

H (7z,n\X2,C,X1,U,72,(1;n—1)) +
H(Xz,c,n, Xl,U,na?ZnWQ»XQ,C,(lzn—l)7X1,U,(1:n—1),
y2,(1:n—1)> +H(XLC,n,Xz,U,n,(?Ln[W1,X1,c,(1:n—1),
X2,U,(1:n—1)7Yl,(l:n—l))} + NO(N)

N
@Z |:H (71)n‘X1xC’X2’U7 ?1,(1:77,71)) +
n=1

H (72,n‘X2,C,X1,U7?2,(1:11—1)) +
H(XZ,C,naXl,U,na?Q,nW27X2,C,(1:n—1)aXl,U,(l:n—l)a
?2,(1;71—1), Xg,(m)) + H(Xl,c,m X2Un, ?1,n|W17
X1.0,01m-1), X2,U,(1:n-1)5 Yl,(l:n—1)7X1,(1:n)):|
+NS(N)

o NV
22 I:H<?17n|X1,C,’ﬂ7 X2,U,n>+H (?2,71 | X 2,05 Xl,U,n)
n=1

+H <X1,U,n7?2,n|X2,n) + H (XZ,U,nayl,n|X1,n):|

+NS(N)
N

<0 [H (X1,pn)+H (Xo,pn)+H (Xl,U,na YQ,n|X2,n)
n=1

21

Xoun

+H (ngUyn,YMXl,n)] + N§(N)

(e)
éN[H (X1,pp)+H (Xopr)+H(X1,uk)

+H (?27k|X2,k,X1,U,k> +H (X2uk)
+H (?17k|X17k,X2,U,k)} + NO(N),
:N[H (X1,pk)+H(X2pr)+H(X1,0k)

+H (X1 crp, X1,0rk X2k X1,0k) + H(X2,0k)
+H (Xo.crk: Xo.DFk Xl,kaXZ,U,k)} + N6(N)

éN[H (X1pp)+H (Xopr)+H(X1,uk)
+H (X1,crk, X106 X1,08) + H(X2uk)
+H (Xscrk X2, DRk X2,U,Ic)] + N6(N)

<N [dile)p)k + dingyp)k + dile,U,k
+
+( dim(X1,creX1,00,k) _dile,U,k> +dim X vk

Jr
+ ( dim (XQ,CF,ka ngppﬁk) — dim X2,U,k) + 5(N):| .
(71)
where, (a) follows from considering enhanced receivers (see
Figure 6(b)) and Fano’s inequality; (b) follows from the fact
that H(Y) — H(X) = HY|X) — H(X|Y); (c) follows from
the fact that H (Xic, Xju, YilWi, Wy, ¥;) = 0; (@)

follows from the fact that X; , = fi(”) (Wi, ?i,(hnq)); and
(e) follows from the fact that conditioning does not increase
entropy. Plugging (62b), (64), and (66) in (71) and after some
algebraic manipulation, the following holds in the asymptotic
regime:

— +
Ri+Ry < max ((n 11 —Ni2) ,Ne,

%}11 - (max (711,7112) - W11)+ )-l—
+ +
max ((722 - ”21) ﬂmﬁzz—(ma}i (722,7121)—%22) >

This completes the proof of (20d).



Proof of (20e): From the assumption that the message
indices W; and W5 are i.i.d. following a uniform distribution
over the sets WW; and W, respectively, it follows that for all
i€ {1,2}, with j € {1,2}\{i} and for all k € {1,2,...,N}:

N(2R; + R;) = 2H (W;) + H (W)

2 (Wa ¥ ¥o) + 1 (W ¥, Y, W)
+1 (W Y5, Y,) + No(N)

YY) -m (Y. w)-u (Y w.Y,)
(Y, ¥,) + 1 (Y,) -1 (Y, W, Y,)
+NS(N)

- °H(Y) -2 (Y W) - H(X,0.X,0W,,Y,)
+H(7 w,.Y,)+ 1 (Y))

X0 7,D|W]’?>+N6( )

(? W) — H (X0, X i,U‘Wiv?i)

(Yiw,.¥,) + 1 (Y))

( ZC|W],<17)+N6( N)

H (Y W) + [ (Xj0. X3 Wi, Y

]c, 1U)}+H(71,X7C|WJ,?)

H(X,0[W;, Y ;) + N(N)

(? |W) [ ( gC,Xi,U;WiyvO

(X500 Xiw) |+ H (Yilw;, Y5, X 0)

(? )+N5 N)

(37 |W) [ ( gc,XiU;Wz,?i)

—H (X0 Xo0) | + H (Y0, ¥, X0

H( Xjc, Xiv) + NO(N)

(7i) - (3_2|Wi) 1 (X0 Xawi W, Y

+H (YW, Y, Xo0) + H (V)X 0. Xo0)

+NS(N)

H(Y) - H (Y w)

I<Xj,C7Xi,UaWja?j§Wia?i>

H(Y W, Y, Xoc)+ H(Y)|X,0,X0)

+NS(N)

D H (Y- H (Y w,w,)
+H(X 00 Xow, Y W) +H (YW, ¥, X0

+H (Y1 X 0. Xow) + NS(N)

H(Y) +H (X0, X0, Y, |W,)

+H (YW, Y, Xo0) + 8 (V)X 0. Xo0)

+NS(N)

?)

N
=

N
S

m mmm mA
:<i

N
S
:<¢

|
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N
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+
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NE

< [H (?i,n) + H<Xj,C,na X vumn, ?j,n|Wj7

Il
fa

X 0,0m-1), XiU,(1:in-1)s ?j,(l:nfl))
+H <?i,n|Wj7 ?ja Xi,Cv 7i,(l:n—l))

+H (7j,n|Xj,c,Xi,U,?j,(m_l))} + N§(N)

|:H <?z,n) + H(Xj,C,n, Xi,U,na ?j,n“/vjv

] =

Il
s

Xj»cf(linfl)vXi,U,(l:nfl)a ?j,(lznfl)vxj,(lzn))
+H (?1 n|Wj7 ?]‘, Xic, ?i,(lzn—l)a Xj,(l:n))
+H (Y julXjc, zUa?j,(l:n_1)>} + N§(N)

Mz

(¥

[ H(XunlXjn)
n=1
+H ( ol X jns X U") +H (?”L|chn’ va")
+H (V50X 0 Xiwn) | + N6(NV)

<N|H (?zk> +H(X;ur)+H (?j,k|Xj,k7Xi7U7k>

—

(Xi.pk) + H (X pk) | + NO(N)
(Yir)+H (Xoon) +H (XiornXopre Xoo)
(Xi.pk) + H (X pk) | + NO(N)

TR I

+
<N {dim ?M + dim ?i,G,k + dim X 1

+ (dim (X opp, Xiprg) — dim X, g x)"
+dim X p| + N6(N),

+ dim Xiﬁp’k
(72)

where, (a) follows from considering enhanced receivers (see
Figure 6(c) for the case « = 1) and Fano’s inequality; (b)

follows from the fact that H ( 1,?j|Wi,Wj> = 0; (¢)
follows from the fact that H(Y|X) = H(X,Y) — H(X);
and (d) follows from the fact that H(ng, X,u, Y;|[W;,

Wi, ?i) ~0
Plugging (62b), (64), (66), (67a), and (67b) in (72) and

after some algebraic manipulation, the following holds in the
asymptotic regime:

ZRZ + Rj < max (ﬁ)“, ’I’Lji) + (ﬁ” — nij)+

+
+max ((ﬁjj — i) g - (maX (7 35m5) = %m) > :
This completes the proof of (20e).

APPENDIX C
PROOF OF THEOREM 3

The outer bounds (37a) and (37c) correspond to the outer
bounds of the case of perfect channel-output feedback derived
in [3]. The bounds (37b), (37d) and (37e) correspond to
new outer bounds. Before presenting the proof, consider the
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parameter hj; 7, with ¢ € {1,2} and j € {1,2}\ {3}, defined {1,2,...,N}:

as follows:

0 if (Sl,i \Y 5271' V 53,1')
hjl U —

\/INIZKI@ if (5411' V 55,1')7 7

where, the events S ;, S2., S3,, Sa,i, and S5 ; are defined in
(32). Consider also the following signals:

Xi.cn=+/INR;; Xip + Z .n and (74)
Xivm=hji Xim + 2 jms (75)

where, X; ,, and 7 j,n are the channel input of transmitter ¢
and the noise observed at receiver j during a given channel
use n € {1,2,..., N}, as described by (8).

Proof of (37b): From the assumption that the message
indices W7 and W5 are i.i.d. following a uniform distribution
over the sets W; and W, respectively, the following holds
for any k € {1,2,...,N}:

NRi—H (W)
=H (W;|Wy)

(%)I (WM?MYJ‘WJ') + NG6(N)

|:<?zna?J7L|WJ7? ,(1n—1) ? (1m—1):Xj <1n>)
1 (Zin) =1 (Z;n) | + No()
S5 { @ém ) () (%)

Il
-

=N [n (71 0 ¥ 41%50) — log (2e)] + NS(N), (76)

where (a) follows from considering enhanced receivers (see
Figure 6(a) for the case ¢+ = 1) and Fano’s inequality.

From (76), the following holds in the asymptotic regime:

Ri<h <7i,k; <37j,1c|Xj,k) — log (2me)

1
<§ log (bB,i + 1)

+1log<( (b0 bas () 1) SN, +1>. (77)

2 bij(p) + 1) (53,1: +(1— P2))

This completes the proof of (37b).
Proof of (37d):

From the assumption that the message indices W; and
Wy are ii.d. following a uniform distribution over the sets
Wi and W, respectively, the following holds for any £ €

N(R1 + R2> = H (Wy) + H (Ws)

Y, (Wi Y1, Y1) +1(Wa: ¥, Vo) + NS(N)
—n(Y) +0(ZY)) - n(Yiw)

n(PuwL Y LX) 40 (Ys) + 0 (2,]Y)

—h (YalWa) — h (Yo W, Yo, X0 ) + NS(NV)
éh(?1) +h<<21> —h(?1|W1>

(X el Y0, X0) + 0 (Y2) + 1 (Z)
“h (? Wa) = h (X1,0[Wa, Vo, X5) + N3(N)
—n(Y)) —h (Vi) - b (Xac. Zo1, ¥, X))
+h (ZoW, Y1, X1 X ) + 1 (Ys) — b (YalWs)
—h(Xrcn 21|, ¥, X)
+h (71|W2f172,X2,X1 ¢) + Nlog (2e) + N§(N)
1 (Y) = h (Y1) - b (Xoon X101, V1, X))
(ZoW1, Y1, X1, Xo0) + 0 (Y2) — b (Va0
(X100 Xa0lWa, YV, X2)

+h (21| W2, Y5, X5, X1 ¢) + Nlog (2me) + N3(N)
=1 (Y1) =h (Vi) + [1 (Xa.0, X105 W1, Y1)

—h(Xa0, X10) | +h (Y2) — h (Yaw2)

+ [I (Xl,C;XQ,U§W27?2) - h(XLCHXZ,U)}

+h (21 W2, Y2, X0, X1 .¢)

+h (Zo)W1. Y1, X1, Xa.c) + Nlog (2me) + NS(N)
gh(?l)—h (?ﬂWl)-i-[I (X27C,X1,U;W1»?1)

—h(Xa0, X10) | + 1 (V2) b (Va02)

+[1 (X e XowiWe, ¥a) = h (X 10, X20)]

1 (a0, X10(¥s) ~h (Xo.0, X1.0[¥2, X1, X )|

D‘

+h
—h
h

h(
Jr{h XlCaX2U|? ) (Xl,CyXQ,U|?1;X27X1)}

(7 |Wa, ?27X27X1 C>

h
h
Y 1|X1,C,X27U)711(<171|W1)
I <X2,C, X103 Wi, ?1) +h (72|X2,C, X1,U>
—h (YalWa) +1 (X100 Xo0:We, Y2)
(21, Z2Y o, X1, X)) 0 (22,2, [¥ 1. X, X))
+h

71|W2,?2,X2,X1,C)

+h (72|Wl7 ?17X17X2,C)
+N log (2me) + NJ(N)



(0)

(7 | X1, C,X2U> <?1\W1)
+1I (XQ,C,XLU; Wi, ?1) +h (72\X2,C,X1,U>
—h (YoWe) + (X100 Xo0:Wa, ¥s) + Nlog (2me)
+NS(N)
<h (?1|X1,C;X2,U> —h <?1\W1)
+1I <X2,CHX1,U7W27?2§W17?1)
+h (?2|X2,07X17U> —h (?2|W2>
+1 (X100 X0, Wi ¥ W, ¥a) + Nlog (2me)
+NS(N)

(i)z [h <71,n|X1,C7 X v, ?1,(1:77,71))

2

+h (X1l X2,0m) + 1 (?2,n|X2,na Xl,U,n)

( 2.0 X 2,0, Xl,U?27(1:n71)> + h (X200 X1,0n)
+h (Y 10 X1, Xo00) — 3log (2¢) | + N log (2me)
+NS(N)

n)

+h <?27n|X2,na Xl,U,n) +h (72,n|X2,C,na Xl,U,n>
+h (XounlX1,0n) + 1 (371,n|X1,n, X2,U,n)
—3log (27T6)} + Nlog (2me) + N§(N)

N
< Z [h (?1,n|X1,C,na Xz,U,n> +h(
n=1

=N [h (V14 X100 Xouk) +h (Xe0alXa.08)
+h (YQ,HXQ,M Xiuk)+h (72,k|X2,C,k, X10.k)
+h (Xo vkl Xi,06)+h (?Lk‘Xl,kn Xz,U,k)
—3log (2mc) | + N log (2re) + N3(N), (78)

where (a) follows from considering enhanced receivers (see
Figure 6(b)) and Fano’s inequality; (b) follows from the fact
that h(Y) — h(Xio, X,0) + h (X0 X,01Y) =
h <7Z|X207 Xj,U); (c) follows from the fact that
h <7i|Wj>?janaXi,C) — h <7i37j|?jaXi7Xj) g 0;
and (d) follows from Lemma 1 at the end of this appendix.

From (78), the following holds in the asymptotic regime for
any k€ {1,2,...,N}:

Ri+Ra<h (71,k\X1,C,k7 X2,U,k) + h (X1 vkl X2,0.1)
+h <?2,k|X2,k, X1,U,k> +h (?2,k|X2,C,ka Xl,U,k)

+h (Xeuk|X1.0k) + R (?l,k‘Xl,ka X27U.,k)
—2log (2me)

g% log (det (VaI <71,k, X1.0.ks X2,U,k)))

1 1
3 log (INRj2 + 1) — 5 log (INRg; + 1)

24

log (det (Var (Yo, Xou X104)))
log (det (Var (X2, X1.0.%)))

log (det (Var (¥ 2.4, Xz, X1,08) ))
log (det (Var (Y1 4, X10 Xo,0)) )

1
~5 log (det (Var (X1 x, Xo.uk))) + log (2me),  (79)

where, for all ¢ € {1,2}, with j € {1,2} \ {i} the following
holds for any k € {1,2,...,N}:

det (Var <7j,k»Xj¢C,k7 Xi,U,k) ) = mj‘ + IN].:{jZ + h?i,U

—2hji.u\/INRy; + (1 — p?) (INRijINRﬂ

1% (SNE, + INRy;) — 2hy; oy INRy; /INRﬁ>

+2py/ Sﬁj (\/INTJZ - hjzﬂ,U) ;
det (Var (vj,lijJm Xi,U,k) ) =1+ h‘?i,U (]_ _ p2)
+‘sﬁ%j (1—p?) (h% 4 — 2hj00 /INR,; + INRy;)
(SNE, + 29\/SNIINR,; + INRy; + 1) ’

(80b)

(80a)

and

det (Var (ijk,Xl-vak)) — 1+ (1= p?) K. (80¢)

The expressions in (80) depend on Sy ;, S24, S34, Sa4, and
S5 ; via the parameter hj; 7 in (73). Hence, the following cases
are identified:

Case 1: (5172 vV 5272 vV 5572) A (51,1 V 5271 vV 5571). From (73),
it follows that hi2 y = 0 and ha1,y = 0. Therefore, plugging
the expression (80) into (79) yields (34a).

Case 2: (Sl 2V 522 V 55 2) (53 1V 54’1). From (73), it
follows that hio iy = 0 and hay y = INR”INRM

plugging the expression (80) into (79) ylelds (34b)

Case 3: (Sg 2V Sy 2) (Sl 1V SQ 1V 55 1) From (73), it
follows that hig 7 = INR”INRM and hg;1,y = 0. Therefore,
plugging the expression (80) into (79) yields (34c).

Case 4: (S3.2V.S4.2) A(S3,1V Sy,1). From (73), it follows that
hi2 v = % and hoy v = %I\LRA. Therefore,
plugging the expression (80) into (79) yields (34d).

This completes the proof of (37d).

. Therefore,

Proof of (37e): From the assumption that the message
indices W7 and W5 are i.i.d. following a uniform distribution
over the sets W, and W, respectively, for all ¢ € {1,2}, with



j € {1,2}\{i}, the following holds for any k € {1,2,..., N}

N(2Ri+Rj) = 2H (W;) + H (W;)
Y 5 (W) + H (W) + H (W)

¢ <I(Wi ¥ ¥ +1 (Wa ¥ Y, W) +1 (W ¥ )

+N§(N)

<h(¥)+h(Z) - n (Y w,) —n (YW, Y))
+h (Y51w,) = h (YW, w;) + 1 (W Yo w,, Y)
Ng( 2 (§) (?ﬂWj)* (7g‘\Wj,§7J>

(V) - (Faw) - (Vi P x)

—n (YW w;) + 1 (W ¥, Y,) + 1 (Y))
—h (YW, Y. X;) + Nlog (2me) + N3(N)
(T - (FA) - n (B Fo x0)

+1 (W YW, Y5) + 0 (Y)) -0 (Y, W, Y, X,)
+Nlog (2me) + N§(N)

0 (Ye) - n (VW) b (X0 Vi X))
+1 (Wi YW, Y,) 40 (Y)) —h (XicW;, ¥, X))
+N log (2me) + NS(N)

=1 (Y) - h(YIW) - h(X,0.Z,W. Y. X))
+h(7|W?X Xjc)+1 (W?\W ?)
+h<l_/2j>— < ic|W, ?J )+N10g(27re)
+NO(N)

Dn(¥) —n (VW) - h (X0 XowlWe ¥, X
+h (Z, W, Yo X0 X,0) +1(Wa Y ow,, Y)
+h (Y,) ~h (X, ¥, X,) + Nlog (2re)
+NO(N)

<h(¥) -n(Y W) = b (X0 Xow Wi, Y
+h <?j|Wi>?i;Xi7Xj,C>+I (Wi;l_/}i,Xi’de,?j)
+h (Y,) = h (X50/W;, Y ;) + Nlog (2me) + NS(N)

=1 (Y) - h (VW) - h(X,e. XZU|W )

+h (2, WY X0, X0) +h (YW, ¥ X0

—h(?Z,XZC|W1,W Y)+n(¥ )+Nlog(27re)
+NS(N)

Cn(¥) - (Faws) - (X0, XoolW, )
+h (2, WY X0, X0) +h (YW, ¥ X0
~h (Yo Xoo W W, ¥, X0 X)) + 1 (V)
+N log (2me) + NS(N)

= (¥ - n(Yiw:) - h (X0 X0 |W, X))
+h (Z, W, Y X0 X,0) +h (YW, Y. Xo0)

25

(2.2, W W, ¥, X, X,) + 1 (¥))
+Nlog (2me) + No(N)

n (@) = (Vi) - (X0 XiwlWh, V)
+h (?JWW ?j, Xi,C) + h (?J> + NlOg (271’6)
+NS(N)

<h (1—}z> —h (?JWZ) +1 (X]yc, X0 Wa, ?z>
“h (X0 Xow) +h (YW, ¥, X, o) + 1 (Y))
+h (X0, X,0lY ;) + Nlog (2me) + N§(N)

D (¥) —n(Yaw) +1 (X0, X Wi, Y)
+h (YW, Y, Xoo) + 1 (Y1 X 0. Xo0)
+N log (2me) + NS(N)

<h (V) -n (ViAW) +1 (X0 Xo0. W, Y W2, YY)
+h (YW, Y, Xoe) + 1 (Y51 X 0. Xo0)
+N log (27re) + N§(N)

( >+Z |: zUn|Xj,C,n)+h (?jfn'Xj;naXLU;n)

(h)

_% lOg (27T€):| +h <?i‘Wja ?JW Xi,C)
+h (Y,|X 0. Xs0) + Nlog (2me) + N§(N)

i N
<h (Y)+X [ (XivalXien) +h (il X Xivin)
n=1

—glog (2re) | + b (Vil X0, X))
+h (Y,|X 0. X10) + Nlog (2me) + N§(N)

N
gZ[ ( zn)""h zUn|Xj,C,n)+h (?j,n‘Xj,naXi,U,n)

fg log (27€) + h (¥ 1.0 Xi.Cons X
th (7j,n|Xj,c,n, Xivn) ] + Nlog (2me) + NO(N)
=N [ (Vir) + b vl X o) + b (V41X Xirrs)
—g log (27€) + h (Y 14| Xi o, X)
+h (Y 14| X0 Xig) + 2log (2me) + s(V)], @y

where, (a) follows from the fact that W; and W, are
mutually independent; (b) follows from considering en-
hanced receivers (see Figure 6(c) for the case ¢ = 1)
and Fano’s inequality; (c) follows from (8) and (74);
(d) follows from (75); (e) follows from (10) and the
fact that conditioning does not increase entropy; (f) fol-
lows from the fact that h(?ﬂwj, Z-,XZ-,XJ-’C) —

h (Ei,7j|Wi,Wj,?j,Xi7Xj) < 0; (g) follows from the
fact that h (?]) —h (vac, Xi,U) +h (Xj,CyXi,U‘7j) =

h (?j\ijc, X,;7U>; (h) follows from Lemma 1 at the end of
this appendix; and (i) follows from the fact that conditioning
does not increase entropy.



From (81), the following holds in the asymptotic regime for
any k€ {1,2,...N}:

2RAR;<h (Vi) +h (ool Xp.o0) +h (V) X0 Xo0)
+h (7i,k|Xi,C,ka Xj)+h (?j,k|X‘,C,k7 Xivn)

—% log (27e)

<1 log (Sﬁl + 2p\/m+ INR;; + 1>
1 1

- log (INRU‘ +D+ 510g(det <Var(yj,k, Xk Xi,U,k)))
1

—3 log (det (Var (X, 1, Xi.vk)))

~ %) (SNE, + INRy;))

) INR;;)

\V]

;log<1+(

1
—§log (1—|— (1 —p?

—&—%log(det <Var (?NC, Xj.cks Xi7U7k))) +2log (2me) .
(82)

The outer bound on (82) depends on S1;, S2,:, 534, Sa,is
and Ss; via the parameter hj; y in (73). Hence, as in the
previous part, the following cases are identified:

Case 1: (51,;VS2,;V.S5 ;). From (73), it follows that hj; 7 =
0. Therefore, plugging (80) into (82) yields (35a).

Case 2: (S3; V S4;). From (73), it follows that hj, v =

A/ %& Therefore, plugging the expressions (80) into

(82) yields (35b).

This completes the proof of (37e) and the proof of Theo-
rem 3.

Lemma 1: For all i € {1,2}, with j € {1,2}\ {i}, the
following holds:

I( 1c,XJU,? Wi; ? W)
+Z[

—g log (27e) ]

((?leVJ‘)
_7 U,n |Xz C, n) +h <?i,n|Xz’,n7 Xj,U,n)

(83)

Proof: Lemma 1 is proved as follows:

(Xic, X0, YW Y, W)
(Wz,?],w)jul(xw, X,0. Y Y, w, W)

=n (Y, w;) = n (Y, Wi W) + b (Xio, X0, Yo W5)
—h(Xie, X0 YW W, Y)

=h (Y, w,) = n (YW, W) + b (Xion X0, Yo W3)
—h(Xie, X0 YW W, Y )

—h (Y, W) + 0 (Xie, X0, Y W)
—h(XiC,XjU,?i,?wWi,Wj)

JL(? W; +Z

Il
= o~ o~

( i Cna 7,Umn; ?i,n|Wi7 Xi,C,(l:n—l)v
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XU, (1n—1)s ?i,(hnq),

Xi,(l:n))

—h (Xi,C,'m X vumn, ?i,n; ?j,nlwia Wi, X c,(1m-1)>

Xj,U,(l:n—l)v ?i,(lzn—l)a ?j,(l:n—l)v Xi,(l:n)v Xj,(l:n))]

<n(Y,w;) +§N:

*h(ﬁj,n; 71’,71» ?i,na ?j,n|W’ia Wja Xi,C,(l:n—l)v

X]}U,(l:nfl)v ?i,(lznfl)a ?j,(lznfl)v Xi,(l:n)7 Xj,(l:n))]

=h (?7 |Wj> + i h(Xi7C,n|Xi7n>
n=1

‘*'h(Xj,U,n|Xz‘7m Xz‘.,C,n) +h(yi7n|Xi,na Xicn, Xj7U7n>
0 (Zin) = (Zin) = 0(Vin, VWi, W

Xi,C,(l:n—l)v Xj,U,(l:n—l)a yi,(l:n—l)v ?j,(lzn—l)a

Xi,(l:n); Xj,(l:n); ?j,n; ?z,n)]
N

<h (?j|Wj> +Y

1

n=

+h(Vinl Xins X0 ) =0 (Z50) =1 (Zin)
*h<<§i,n, <Zj,n|Wi7 Wi, X c,(1in—1), X j,U,(1:n—1)>
?i,u:nfl)’ 37]-,@;”71), Xi,(1:m), X, (1:m) Zm. 701
N
D (Viw5) + 3 |h(XwalXion)
n=1
+h (Vi Xins X0 ) =1 (Zin) = 1(Zi)
~h(Z;.)
N
=h (?jWVj) Z
+h (Vi Xin, X

h (Xi,C,na XJEUJ“ Y“ﬂb |Xl’n)

h (7Jn |Xi,n) +h (Xj,U,n \Xi,c,n)

Un|Xz Cn)

3
U,n) - 5 lOg (27T€)‘| 9

= =
where (a) follows from the fact that 2, ,, and Z; , are inde-
pendent of Wy, W;, X; ¢ (1:n—1), X,,U,(1:n=1)>

i,(1in—1)»

J,(1in—1)> Xi,(l:n)a Xj,(l:n)a j,ms and in. This com-
pletes the proof of Lemma 1. [ ]
APPENDIX D

PROOF OF THEOREM 4

The gap between the sets Cq—1c—nr and C_jo_np (Def-
inition 2), denoted by J, is approximated as follows:

5* 6* 5*
szaX (5}%1’6;227 22R7 3?1)%1 ) 3;2> 9

(84)



where,
(85a)

Op,= sup {0g, (¢',p, 1)},
p'€[0,1]

6732: sup {5R2 (plv 12 .UJ2)} s (85b)

p'€[0,1]

5;R: sup {52R (p/apnufla,u'Q)}a
p'€l0,1]

5§R1: sup {5331 (p/a Py 15 ,U'Q)} )
p'€l0,1]

§R2: sup {5332 (p/apa;ufla,uQ)};
p'€[0,1]

(85¢)
(85d)

(85¢)

for some p, 1, o chosen arbitrarily, with
OR, (Pl7 P Ml) = min (H1,1(pl)7 ko1 (p"), K«3,1(Pl))
— min (aQ,l(p)aaﬁ,l(p7 M1)+a‘3,2(pa /1/1)’

ai,1+as2(p, p1)+as2(p, Ml)), (86a)

OR, (Pla P M2) = min (H1,2(p')7 ra2(p), K«3,2(Pl))
— min (a23(p).a3,1(p, p2) + 6,2 (p, 12),

as,1(p, p2)+aa1(p, M2)+a1,2), (86b)

dam (', 1, ) = min (a(e'). ko (0'), (0

—min (az,l(p) + a1,2,a1,1 + az2(p),

az,1(p, p2) + ar1 + as2(p, 1) + az2(p, pa, p2),
as,1(p, p2) + as.1(p, p2) + as2(p, 1) + as2(p, 1),

az1(p, p2) + a7 a(p, p1, p2) + as2(p, p1) + a1,2)7
(86¢)

3R, (P’,P, H17M2> = k7,1(p")

— min (a2,1(p) a1 +az2(p, ) + ar2(p, pa,s ),
a3 (p, p2) +arq + ara(p, p, po) + 2a32(p, pi1)
tas,2(p, p1), az1(p) + a1, + az2(p, p1)

+as.2(p 1)) (864)

03R, (Pl» P 1, N2) = rr2(p")

— min (as,l(P’ p2) + as.1(p, p2) + az2(p) + a1,2,
as,1(p, p2) + ar1(p, 1, p2) + az2(p) + a2,
2a3,1(p, pr2) + as,1(p, p2) + az2(p, p1) + a1

+ara(ps i) )- (86¢)

Note that 6 and J%, represent the gap between an
achievable individual rate bound (determined by p, 11, p12) and
the active converse individual rate bound; 055 represents the
gap between an achievable sum-rate bound (determined by
p, 11, p12) and the active converse sum-rate bound; 35 and
d3p, represent the gap between an achievable weighted sum-
rate bound (determined by p, i1, p2) and the active converse
weighted sum-rate bound.

It is important to highlight that, as suggested in [3], [5],
and [25], the gap between C;_jo_np and Ca_1c_NF can be
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calculated more precisely. However, the approximation in (84)
eases the calculations at the expense of less precision. A key
point in order to find the gap between the achievable region
and the converse region is to choose convenient values of p,
(1, and po, such that the optimization problem in (86) become
an optimization only on p’ € [0,1]. The following describes
all the key cases.

Case 1: INR;» > SNR; and INRy; > SNR,. This case
corresponds to the scenario in which both transmitter-receiver
pairs are in high interference regime (HIR). Three subcases
follow considering the SNR in the feedback links.

Case 1.1: SNR, < SNR; and SNR; < SNR,. The choice
is: p=0, u1 =0, and po = 0.

Case 1.2: SNRQ > SNRl and SNRl > SNRQ. The choice
iss p=0, uy =1, and po = 1.

Case 1.3: SNRy < SNR; and SNR; > SNR,. The choice
is: p=0, up =0, and po = 1.

Case 2: INR;» < Sﬁl and INRy; < E‘mg. This case
corresponds to the scenario in which both transmitter-receiver
pairs are in low interference regime (LIR). There are twelve
subcases that must be studied separately.

In the following four subcases, the choice is: p = 0, 1 = 0,
and pus = 0.

Case 2.1: mh g INRQl, MQ g
INR;2INRy; > SNE; and INR;5INRy; > SNE,.

Case 2.2: SNR; < INRgy, SNRyINRy < SNRo,
INR;2INRy; > SNE; and INR;5INRy; < SNR».

Case 2.3: SNR1INRj2 < SNR;, SNR; <
INR12INRs; < SNR; and INR15INRo; > Sﬁg.

Case 2.4: SNR;INRy» < SNE;, SNRyINRy; < SNK,
INR12INRy; < SNR; and INR;5INRy; < SNE».

INR;2,

INR;2,

In the following four subcases, the choice is:

=0 INR3, SNR; and
P S (INRglfl)(INRMW{Qerg)’

_ INR2,8NR;
H2 = (INR1271)(INR12m1+Sﬁ1)'

Case 2.5: SNR;. > INRs;, SNRos > INRy,
INR12INRo; ﬁl and INR;2INRo; > Sﬁg.

Case 2.6: SNR; > INRy;, SNRyINRy; > SNRs,
INRy,INRy; > SNR, and INR;oTNRy; < SNHy.

Case 2.7: SNRyINRy, > SNE;, SNR, > INRys,
INRy5INRy; < SNR; and INR;,INR,; > SNR,.

Case 2.8: SNR,INRy, > SNR;, SNRoINRy; > SNH,
INRy5INRy; < SNR; and INR;,INR,; < SNRs.

In the following four subcases, the choice is: p = 0, u1 = 0,
INRZ,5NR,
(1NR12—1)(1NR12m1+m1)

Case 2.9: %1 > INRo, %z <
INR;5INRy; > SNR, and INR;5INRy; > SNK,.

Case 2.10: mil > INRgq, ﬁglNRQl < Sﬁg,
INR;2INRy; > SNR, and INR;5INRy; < SNKs.

Case 2.11: SNR;INR;2 > SNR;j, SNRy <
INngINRgl < SN 1 and INnglNR 1> Sﬁg.

Case 2.12: SNR,INRy5 > SNR;, SNRoINRy; < SNR»,
INRy5INRy; < SNR; and INR;oTNRy; < SNK,.

Case 3: INRy, > SNR; and INRy; < SNR,. This case
corresponds to the scenario in which transmitter-receiver pair

and py =
INR;2,

INR;2,



1 is in HIR and transmitter-receiver pair 2 is in LIR. There
are four subcases that must be studied separately.

In the following two subcases, the choice is: p = 0, 1 = 0,
and po = 0.

Case 3.1: SNR, < INRy; and INR;5INRy; > SNK,.

Case 32: SNRyINRy < SNH, and INR;pINRy <

SNRs.
In the following two subcases, the choice is: p =0, 1 =1,
and po = 0.

Case 3.3: ﬁg > INR;5 and INR;3INR2; > ﬂ
Case 3.4: SNRoINRy; > SNR, and INR;,INRy <
SNRa.
The following is the calculation of the gap ¢ in Case 1.1.
1) Calculation of 47 .
From (86a) and considering the choice of values: p = 0,
w1 =0 and pe = 0, it follows that

5}}1 < sup {min (/ﬁ,l(Pl), 52,1(0/)7 fiB,l(P’))}
p'€[0,1]
~ min <a6’1(07 0), a11 + a4.2(0, 0)). (87)
Note that in this case:

1
k11(p')= B log (b1,1(f0/> + 1)

a) 1 ﬁ /ﬁ
< *10g(SN 1+2 SN 1INR12+INR12+1)

2
(b)
< %1 o (QSNﬁl + 2INRys + 1)
1 1
< g log (SNﬁ1 +INR12 +1) + 5 (88a)
1
H2,1(P'): 5 log (1+ba,1(p") 4+ bs52(p"))
< 5 (S NR, + INRyy + 1) (88b)

K31(p)= 5 log (b4 1(p') + 1)

11 g(ﬁz (ba1(p")+bs2(p )+1)+1>

2 (b1,2(1)+1) (ba1(p)+1)
(2 %1og (Sﬁl + 1)
1 WRQ (SﬁlJrINRQlJrl)

ﬁlog (SNRQ +INRo; + 1) (SNR1 + 1)

SNR, (SNE,; +INRy; +1
zllog ’ : - )-l-SﬁH—l ,

2 SNRs + INRo; + 1

+

(88¢c)

where (a) follows from the fact that 0 < p’ < 1; (b)

follows from the fact that

(\/ SNR; — \/INR12>2 > 0; (89)

and (c) follows from the fact that x31(p’) is a mono-
tonically decreasing function of p'.
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Note also that the achievable bound a; 1 +a4,2(0, 0) can
be lower bounded as follows:

1log<SN ! +2>

2

CL1’1+0J4,2(0, 0) =

1
+5log INR21 + 1) 1

% og (INR21 ) + %log (INR21> ~1
%log (SNE, + 2INRyy ) — 1
= log (SNEy + IRy, + IRy, ) —

% log (SNE, + INRy; +1) — 1. (90)

From (87), (88) and (90), assuming that
a1+ a4,2(0,0) < ag,1(0,0), it follows that

0p, < sup {min (51,1(#)76271(,0')7'@3,1(#))}
p'€[0,1]

— (am + a42(0, O))

< Sup I{Z,l(p/) - (a1>1 + a472 (0’ 0))
p'€[0,1]
<1 9D

Now, assuming that ag1(0,0) < a1,1 + a42(0,0), the
following holds:

6k, < sup {min (fﬁ,l(P')aH2,1(Pl)7’€3,1(ﬂ/))}
p'€[0,1]

70’6,1(070)- (92)

To calculate an upper bound for (92), the following cases
are considered:

Case 1.1.1: SN ﬁl > INRg; A SN ﬁz < INRq2,

Case 1.1.2: SNﬁl < INRs; A SNRs > INR;2, and
Case 1.1.3: SNﬁl < INRg; A SN ﬁz < INRj>.

In Case 1.1.1, from (88) and (92), it follows that

Ok, < sup fg1(p") — a6,1(0,0)
p’€[0,1]

<%10g<8ﬁ1 +INRo; +1) — % log(ﬁl +2)

R
2

g%log (Sﬁlﬁ-mﬁ-l) —% log (Sﬁ1 +2)

41
2
<1. (93)



In Case 1.1.2, from (88) and (92), it follows that

0p, < sup rg1(p’) — a61(0,0)

p'€[0,1]
SNR, (SNR, +INRyy +1
log 2 1 21 )

1
2 SNE,+INRo; +1
1 1
—§log(SN§1 +2)+§
g% log (W{Q + SNR, + 1)
1 1
—glog (ml + 2) + B
g% log (Sﬁl + Sﬁl + 1)

1 1
5 log (Sﬁl +2) + 5
<1. (%94)

+SNR,+1

<

In Case 1.1.3 two_additional cases are considered:
Case 1.1.3.1: SNR; > SNR» and

Case 1.1.3.2: SNR, < SNR,.

In Case 1.1.3.1, from (88) and (92), it follows that

0k, < sup rg1(p') — ag1(0,0)
p'€[0,1]
%2 (Sﬁl +INR21+1)

SNR; + INRy; + 1

1 1

—§log (Sﬁ1 + 2) +t3

:% log (Sﬁ1 + 1)

; SNR (SNR; +INRy; + 1)

Tyl (SNEy+INRg +1) (SNE, +1) o

—%log (Sﬁl +2> —&-%

1 SNﬁl (INRg; 4+ INRg; + INRg;)
<§ log +1

<= log —&-SNﬁl—i—l

N =

INR,;SNR,
1
3
3
=_, 5
3 95)
In Case 1.1.3.2, from (88) and (92), it follows that
07, < sup rz1(p’) — ag,1(0,0)
p'€[0,1]
1 SNR., (SNﬁ1+INR21+1)
<= log —&—SNﬁl +1
2 SNRQ +INRs; +1

—%log (Sﬁl +2) —&—%
g%log (mﬁsﬁl +1) - %log (Sﬁil +2)
1

3
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g%log (Sﬁl + SNR, + 1) - %log (Sﬁi1 +2)
.
2
<1. (96)

Then, from (91), (93), (94), (95), and (96), it follows
that in Case 1.1:

0 <. 97

5, <. (98)

2) Calculation of ¢3. From (86¢) and considering the val-
ues p =0, uy =0, and s = 0, it follows that

S sup {min (ia(p'),ns(o'), o)) }

—min (az,1(0) + a1 2,a1,1 + az2(0),
as.1(0,0) + as.2(0, 0))
< sup {min (m(p’), 55(p'))}

p’€[0,1]

—min (a2,1(0) + a1,2,a1,1 + a22(0),

a5.1(0,0) + as (0, 0)). (99)

Note that

/ 1 ( b41(p,) ) 1 ( / >
—log(14+—21) )0 1
ka(p') 5108 +1+b572(p’) +5log bi2(p") +
)

log (51,2(,0/) + 1)

2
Pl (14 SNE,
5 %% INRy;

+% log (25NE; + 2INRy; +1),

1 ( SNﬁl)
<=zlog| 1+

2 INRo;
—i—% log (SﬁQ + INRo; + 1) + %

log <2+ SN, )

INR2;

<

X

1

2
1 1

+3 log (SNﬁ2 +INRg; +1) + 3 (100a)



and

I (1 — 1 N+1
og +1+b51 +2 og | bi,1(p")+

b
log {1+ 12 )
b51

(@)

log (ZSﬁl + 2INRj2 + 1)

log <1+ Sﬁz)

INR>
+% log (Sﬁl + INR; 5 + 1) + =

log (SNE, + INRyz +1) + % (100b)

where (h) follows from the fact that

(\/ SNR, — \/INR21>2 > 0; (101)

and (i) follows from the fact that

(\/ SNR; — \/INR12>2 > 0. (102)

From (99) and (100), assuming that as 1(0) + a1 2 <
min (al,l + a2,2(0),a5.1(0,0) + as,2(0, O)), it follows
that

d5p< sup {min(m(p’), H5(pl))} - (ag’l(O) + al’g)

p'€[0,1]

< sup () — (024(0) + a2)

p'€[0,1]
<llo 24+ SNR,
S5 %8 INRyy

+% log (sﬁ& +INRyp + 1) +

N =

—% log (Sﬁl + INR;2 + 1>
1log(SNﬁ2 +2> +1

==, (103)

From (99) and (100), assuming that aq 1 + a22(0) <
min (a271(0) + a1.2,a5,1(0,0) + a5 2(0, 0)) it follows
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that

535< sup {min (ra(p),k5()) } = (011 + az2(0))

p'€[0,1]

< sup ka(p') — (a1,1 + a272(0)>

p'€[0,1]
<110 2+ SNE,
S0 INRy;

+% log‘ (SWQ + INRo; + 1) +

DN | =

—% log (SﬁQ + INRg; + 1)

(104)

Now, assume that a5 1(0,0)+as 2(0,0) < min(az1(0)+
ai,2,a1,1 + a22(0)). In this case, the following holds:

85r< sup {min (ﬁ4(p')7ﬁ5(P’)>}

p'€[0,1]

_ (am(o, 0) + as.2(0, 0)). (105)

To calculate (105), the cases 1.1.1, 1.1.2, and 1.1.3
defined above are analyzed hereunder.

In Case 1.1.1, a51(0,0) + a52(0,0) can be lower
bounded as follows:

1)

CL5,1(O, O)+a572(0,0) 1 <INR

1 S ﬁ
4—1 (INR1 +INR21+1) 1
1
25 log (INR12 +1) — 1. (106)

From (100), (105), and (106), it follows that
S5p< sup min (k4(p'), k5(p")
i< sup {min ( )}

—(ag,,l (0,0)+as 2(0, 0))

< sup ss(p') = (a3,1(0,0) +a5.2(0,0))
p'€[0,1]

log <2+ SN, ) +% log (SﬁlJrINRlerl)

1 1

log(2+1)+

1

5 log (INR12 + INR12 + ].)
1 3

—3 log (INR12 + 1) + 3

log (3) + 2. (107)

In Case 1.1.2, a51(0,0) + a52(0,0) can be lower



3) Calculation of d3pg, .

bounded as follows:

as, 1(0 0)—%—@5 2(0 0) 11 g(lsl\ljﬁR;l
1 (ﬁ

=5
298 INRL,

+INR12+1>

+ INRo; + 1) -1

>§ log (INRgy + 1) — 1. (108)

From (100), (105), and (108), it follows that
05p< sup

p’€[0,1] {min (M(pl)’ 55(/)’))}
—(a5,1(0, 0)+as2(0, O))

< sup ra(p) = (5,1(0,0) + a5,2(0,0))

p’€[0,1]
SNﬁ 1
1 ) +§logQSN§2+INR21 —H)

<4
S5 %%\ “ T INRy

1 1

—_

1
<zlog(2+1)+ 5 log (INRg2; + INRg; + 1)

N}

1 3
—— log (INRgy + 1) + 3
<

log (3) + 2. (109)

1\9\»—*

In Case 1.1.3, from (100), (105), and (106), it follows
that

gRép w {min ("54(,0/)7 ﬂ5(ﬂ/)) }

— (a5’1(0, 0) + as2(0, 0))

< sup s () = (5,1(0,0) +a5,2(0,0))

p'€[0,1]

+% log (Sﬁ1+INR12+1)

1 1

1 3
—3 log (INRy2 + 1) + 3
1

Then, from (103), (104), (107), (109), and (110), it
follows that in Case 1.1:

1
5 log (INR12 + INR12 + 1)

(110)

1
From (86d) and considering the

choice p =0, 1 = 0, and py = 0, it follows that

sup k71(p')— (a1,1+a7’1(0,0,0)+a5,2(0,0)).

p'€[0,1]

535’1

(112)
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The sum a1 + a7,1(0,0,0) + a52(0,0) can be lower

bounded as follows:
S )
+ 2

1
ag, 1+ar. 1(0 O 0) + as 2(0 0) 1 <INR21

+% log (Sﬁl + INR12 + 1)

1 SNR, 3
lo IN 1)-2
+2 og <INR12 + INRo; + ) 5
1. (SNR,
>3lo g(INR2 +2> ~log (SNﬁ1+1NR12+1)

3

+5 log (INRy +1) — . (113)

When the term k7 1(p’) is active in the converse region,
for a given p’ € [0, 1], it can be upper bounded by the
sum x11(p") + ka(p’), ie., the sum of the single rate
and sum-rate outer bounds respectively, and this can be
upper bounded as follows:

k71 (p)<k1,1(p") + kalp)

gélog(ml +INRi12+ 1) + %log (2 +

)

INR»;
+110g (sTfi2 +INRg; +1) +1

)

1
<=log(SN ﬁ INR 1 I 2
S5 og + 12+ )—|— Og< +INR21

—|—§ log (INRQl + INRo; + 1) +1

)

1 1
<= _
< 21og(SNﬁ1+INR12+1) +5log <2 + INR,.

1 3
+35 log (INRg1 + 1) + 7

From (112), (113) and (114), it follows that in Case 1.1:

N
Fip, < log( ﬁl+INR12+1)+1 ( ﬁl)
SNE, 2)

(114)

1 3 1
— 1 IN N+-—=1
+2 og (INRa1 + )+2 5 og(

1
—ilog(SNﬁl—s—INRlﬁ—l)—flog INRy; +1)

L3
2

=3. (115)

The same procedure holds in the calculation of 455, and
it yields:

ip, <3. (116)

Therefore, in Case 1.1, from (84), (98), (97), (111),
(115) and (116) it follows that
0in O03p. 03
5= (5* 55, 228 %3 —”‘2) <
Sup R1°"YRy» 2 ) 3 9 3
This completes the calculation of the gap in Case 1.1. Ap-

plying the same procedure to all the other cases listed above
yields that § < 4.4 bits.

3
5 (117)
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