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Approximate Capacity Region of the Two-User
Gaussian Interference Channel with Noisy
Channel-Output Feedback

Victor Quintero, Samir M. Perlaza, Ifaki Esnaola, Jean-Marie Gorce

Abstract—In this paper, the capacity region of the linear deter-
ministic interference channel with noisy channel-output feedback
(LD-IC-NOF) is fully characterized. A capacity-achieving scheme
is obtained using a random coding argument and three well-
known techniques: rate splitting, superposition coding and back-
ward decoding. The converse region is obtained using some of the
existing outer bounds as well as a set of new outer bounds that
are obtained by using genie-aided models of the original LD-IC-
NOF. Using the insights gained from the analysis of the LD-IC-
NOF, an achievability region and a converse region for the two-
user Gaussian interference channel with noisy channel-output
feedback (G-IC-NOF) are presented. Finally, the achievability
region and the converse region approximate the capacity region
of the G-IC-NOF to within 4.4 bits.

Index Terms—Linear Deterministic Interference Channel,
Gaussian Interference Channel, Feedback and Capacity.

I. INTRODUCTION

The interest in the analysis of channel-output feedback in
the interference channel (IC) has been fueled by the significant
improvement it brings on the number of generalized degrees
of freedom (GDoFs) with respect to the case without feedback
[3]. Let C (m7 INR) denote the set of all achievable rates
(capacity region) of a symmetric Gaussian IC with parameters
SNR (signal to noise ratio in the forward link) and INR
(interference to noise ratio). Note that the number of GDoFs
[4], ie.,

sup {R :(R,R) € C(Sﬁ, Sﬁa)}

GDoF(a) = Ii a
oF(a) = lim og (SNR) ey

SNR—00

log(INR)
log(SNE)
the case without feedback. In particular, when a € [0

increases for some values of a = with respect to
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Fig. 1. Generalized Degrees of Freedom (GDoF) of a symmetric two-user
Gaussian IC with feedback.

« € [2,00) substantial improvements are observed, as shown
in Figure 1. Note that GDoF(a)) — oo when o — oo, which
implies an arbitrarily large gain in the asymptotic regime of
INR. These promising results are also observed when the
system 1is fully decentralized, that is, when each transmitter
seeks to unilaterally maximize its own individual data rate
[5].

However, recent studies by Le et al. [6] show that the number
of GDoFs is highly sensitive to additive Gaussian noise on
the feedback links. Let SNR be the signal to noise ratio in
the feedback links. Figure 1 shows the GDoFs of the G-IC
log (SW{)
log (SN
in the presence of noise, the improvement on the number of
GDoFs is no longer monotonically increasing with « in the
interval [2,00) but is instead upper-bounded by min(5, 3).
This reveals the fact that Gaussian additive noise in the
feedback links dramatically limits the benefits of channel-
output feedback. Similar results have been reported in the fully
decentralized G-IC-NOF [7].

A deeper understanding on the impact of Gaussian additive
noise in the feedback links of a given G-IC can be
obtained by studying the capacity region of the two-user
Gaussian interference channel with noisy channel-output
feedback (G-IC-NOF). This capacity region, denoted by
Cnor(SNRy, SNRy, SNR;, SNRy, INRyo, INRy;), is fully
described by six parameters: the SNR of the forward link
between transmitter-receiver pair 4, denoted by SNR;; the
SNR of the feedback link between transmitter-receiver pair
i, denoted by ﬁai; and the INR at receiver 7, denoted
by INR;;, with ¢ € {1,2} and j € {1,2}\{¢}. With
the exception of a particular case mentioned later, the
region  Cnor(SNRi,SNRy, SNRy, SNRy, INR; 2, INRy; )

for different values of the ratio f = . Note that




is not yet fully known and only approximations to
within a constant gap are available for certain cases.
Denote by  Cwor(SNRi,SNRs, INRo, INRs;)  and
CPOF(Sﬁl,SmQ,INRu,INRm) the capacity region
of the G-IC without feedback and with perfect channel-output
feedback, respectively. Note also that:

CWOF(SNﬁla SNﬁm INRi2,INRy;) =

im Cnor(SNR1, SNRy, SNR;, SNRs, INR 12, INRy: )
&NTe o

and

CPOF(SNﬁh SNﬁm INR12,INRg;1) =
_lim Cnor(SNR1, SNRs, SNRy, SNRo, INR1, INRy, ).

SNR; — oo

§NR2 — oo

The capacity region Cwop(ml,mg,INRu,INRgl) is
approximated to within one bit by Etkin and Tse [8] (see
Definition 2) using elements of the achievability scheme
introduced by Han and Kobayashi in [9]. The capacity region
Cwor(SNR1, SNEa, INR2, INRg: ) is perfectly known in the
case in which both links are in high interference regime [10].
In all the other interference regimes, only inner and outer
bounds are available [11], [12].

The capacity region CPOF(Sﬁl,Sﬁg,INRH,INRm) is
approximated to within two-bits by Suh and Tse [3] (see
Definition 2). The achievability scheme presented in [3] is
based on three well-known techniques: rate splitting [9],
[13], block Markov superposition coding [14] and backward
decoding [15], [16]. Other achievability schemes have been
independently presented by Tuninetti [17] and Yang et al. [18]
using rate-splitting, superposition coding, backward decoding,
and binning/dirty paper coding for the interference channel
with generalized feedback (IC-GF). It is worth mentioning
that these achievability schemes are general and are useful
for more involved channel models. Recently Prabhakaran et
al. [19] have presented both inner and outer bounds for the
sum-capacity using the existing connections between channel-
output feedback and conferencing transmitters. More advanced
models, for instance when channel-outputs are fed back to
several receivers, have been studied and inner and outer bounds
are available in [20]-[23]. When feedback is impaired by addi-
tive Gaussian noise, Kramer and Gastpar [24] have established
an outer bound using the Hekstra-Willems dependence-balance
arguments for two-way channels [25]. In the G-IC, these
results suggest that feedback loses its efficacy on increasing
the capacity region roughly when the noise variance on the
feedback link is larger than on the forward link. More recently,
using similar arguments, Tandon and Ulukus [26] have derived
outer bounds that are tighter than the cut-set bound in some
interference regimes. In the particular case of the symmetric
G-IC-NOF, the capacity region is approximated to within
a constant gap in [6]. However, despite this approximate
capacity region description, very little can be concluded in
the case in which feedback is available in only one of the
point-to-point links or simply when the point-to-point links
are in different interference regimes.

A. Contribution

In this paper, the exact capacity region of the LD-
IC-NOF is fully characterized (Theorem 1). Using key
insights obtained from the analysis of the LD-IC-NOF,
an achievability region (Theorem 2) and a converse re-
gion (Theorem 3) are presented for the two-user G-IC-
NOF. These two_ regions approximate the capacity region
Cnor(SNRy, SNRy, SNR;, SNRy, INRy2, INRy;) to within
4.4 bits (Theorem 4). To the extent of the knowledge of the
authors, this approximation to the capacity region of the G-
IC-NOF is the most general with respect to existing literature
and the one that guarantees the smallest gap between the
achievable and converse regions when feedback links are
subject to Gaussian additive noise.

B. Organization of the paper

Section II introduces the notation used in this paper. Sec-
tion III describes the two-user G-IC-NOF and identifies the
parameters that fully describe it. Section I'V describes the exact
capacity region of the LD-IC-NOF. Using two examples, the
main insights for the design of the achievability scheme and
the derivation of the new outer bounds are described. Section V
introduces the main results, essentially, an achievability and a
converse region for the G-IC-NOF. Section VI describes the
connections between the IC-NOF and an IC with conferencing
transmitters (IC-CT). In particular, it is highlighted that any
outer bound for the IC-CT is also an outer bound for the IC-
NOF (and vice-versa) under certain conditions. Finally, Sec-
tion VII concludes this work and highlights some interesting
extensions of these results.

II. NOTATION

Throughout this paper, sets are denoted with uppercase
calligraphic letters, e.g. X. Random variables are denoted by
uppercase letters, e.g., X. The realizations and the set of events
from which the random variable X takes values are respec-
tively denoted by x and X. The probability distribution of X
over the set X is denoted Px. Whenever a second random
variable Y is involved, Pyxy and Py |x denote respectively
the joint probability distribution of (X,Y") and the conditional
probability distribution of Y given X. Let N be a fixed
natural number. An N-dimensional vector of random variables
is denoted by X = (X1, Xs,..., Xx)" and a corresponding
realization is denoted by x = (z1,z9,..,zn5)" € &N,
Given X = (X,Xo,...,Xn)" and (a,b) € IN?, with
a < b< N, the (b — a+ 1)-dimensional vector of random
variables formed by the components a to b of X is denoted
by X(4:) = (Xa» Xat1,--.,Xp)". The notation (-)* denotes
the positive part operator, i.e., ()" = max(-,0) and Ex[]
denotes the expectation with respect to the distribution of the
random variable X. The logarithm function log is assumed to
be base 2.

III. PROBLEM FORMULATION

This section introduces the two-user Gaussian interfer-
ence channel with noisy channel-output feedback (G-IC-
NOF) and defines an approximation to its corresponding
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Fig. 2. Gaussian interference channel with noisy channel-output feedback
at channel use n.

capacity region. Consider the two-user G-IC-NOF in Fig-
ure 2. Transmitter ¢, with ¢ € {1,2}, communicates with
receiver ¢ subject to the interference produced by transmitter
j, with j € {1,2}\{é}. There are two independent and
uniformly distributed messages, W; € W,, with W, =
{1,2,...,2NB} where N denotes the fixed block-length
in channel uses and R; is the transmission rate in bits per
channel use. At each block, transmitter 7 sends the codeword
X; = (Xi,17Xi,27 - 7)(1‘7]\])-|- S Xl—N, where A& and XlN are
respectively the channel-input alphabet and the codebook of
transmitter 7.

The channel coefficient from transmitter j to receiver ¢ is
denoted by h;;; the chan_)nel coefficient from transmitter ¢ to
receiver ¢ is denoted by h ,;; and the channel coefficient from
channel-output ¢ to transmitter ¢ is denoted by & ;. All channel
coefficients are assumed to be non-negative real numbers. At
a given channel use n € {1,2,..., N}, the channel output
at receiver ¢ is denoted by Y ; ,,. During channel use n, the
input-output relation of the channel model is given by

?i,n:ﬁiiXi,n +hi; Xjn+ 777“ ()

where 71»7“ is a real Gaussian random variable with zero mean
and unit variance that represents the noise at the input of
receiver i. Let d > 0 be the finite feedback delay measured
in channe%uses. At the end of channel use n, transmitter &
observes Y ; ,, which consists of a scaled and noisy version
of Y; ,_q. More specifically,

?' _ ZM " forne {1,2,...,d} 3)
o hii7i,n7d+ Zi,n7 for ne {d+1,d+2,...,N}7
where Z; ,, is a real Gaussian random variable with zero mean
and unit variance that represents the noise in the feedback
link of transmitter-receiver pair 7. The random variables Z; ,,
and ?Zn are independent and identically distributed. In the
following, without loss of generality, the feedback delay is
assumed to be one channel use, i.e., d = 1. The encoder of
transmitter ¢ is defined by a set of deterministic functions
FO @ with Y s W, = A and for all

ne{2,3,....N} ™ : W; x R"~! — X;, such that

Xi,l :fz(l) (WZ) s and

Xi,n:fi(n) (Wm ?i,la ?m, e ?i,n71> .

The components of the input vector X; are real numbers
subject to an average power constraint:

(4a)
(4b)

1 N
¥ 2 E(Xin?) <1, 5)
n=1

where the expectation is taken over the joint distribution of
the m(gssage indexes W7, W5, and the noise terms, i.e., Z 1,
2, Z1, and Z 5. The dependence of X; , on W;, W5, and
the previously observed noise realizations is due to the effect
of feedback as shown in (3) and (4).
Let T € IN be fixed. Assume that during a given commu-
nication, T" blocks, each of N channel uses, are transmitted.
Hence, the decoder of receiver ¢ is defined by a deterministic
function v; : RNT — WI'. At the end of the communication,

T
receiver 7 uses the vector (?i,l, 72»,2, o 7i,NT> to obtain
an estimate of the message indices:

(WO W, W)= (Yo, Vi Yinr) . 6)

where ﬁ/\i(t) is an estimate of the message index sent during
block ¢t € {1,2,...,T}. The decoding error probability in the
two-user G-IC-NOF during block ¢ of a codebook of block-
length N, denoted by Pe(t)(N ), is given by

PO(N)=max (Pr {17[71 © Wf”} Pr {17[72(” 4 Wﬂ ) (D

The definition of an achievable rate pair (R, Ro) € R? is
given below.

Definition 1 (Achievable Rate Pairs): A rate  pair
(R1,Rs) € Ri is achievable if there exists at least
one pair of codebooks X{ and X with codewords
of length N, and the corresponding encoding functions
1(1), 1(2),..., 1(N) and f2(1),f2(2),..., Q(N) such that the
decoding error probability Pe(t)(N ) can be made arbitrarily
small by letting the block-length N grow to infinity, for all
blocks t € {1,2,...,T}.

The two-user G-IC-NOF in Figure 2 can be fully described
by six parameters: Sﬁi, %i, and INR;;, with i € {1,2}
and j € {1,2}\{i}, which are defined as follows:

SNR,= 12, ®)
INR;;=h7;, and ®)

17

SNR=h2 (W2 +2H ahi + b +1). (10)
The analysis presented in this paper focuses exclusively on the
case in which INR;; > 1 forall (z,7) € {1,2} x{{1,2}\{i}}.
The reason for exclusively considering this case follows from
the fact that when INR;; < 1, transmitter-receiver pair % is
impaired mainly by noise instead of interference. In this case,
treating interference as noise is optimal and feedback does not
bring a significant rate improvement.
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Fig. 3. Two-user linear deterministic interference channel with noisy channel-
output feedback at channel use n.

IV. PRELIMINARY RESULTS

This section describes the two-user linear deterministic
interference channel with noisy channel-output feedback (LD-
IC-NOF) and its exact capacity region. The relevance of this
result is that it provides the main insights used to obtain the
approximate capacity of the G-IC-NOF in Section V.

A. Two-User Linear Deterministic Interference Channel with
Noisy Feedback

Consider the two-user linear deterministic interference chan-
nel with noisy channel-output feedback (LD-IC-NOF) de-
scribed in Figure 3. For all ¢ € {1,2}, with j € {1,2}\ {i},
the number of bit-pipes between transmitter ¢ and its corre-
sponding intended receiver is denoted by 7 i;; the number
of bit-pipes between transmitter ¢ and its corresponding non-
intended receiver is denoted by n;; and the number of bit-
pipes between receiver 7 and its corresponding transmitter is
denoted by %7 4;. These six integer non-negative parameters
fully describe the LD-IC-NOF in Figure 3.

At transmitter 4, the channel-input X, at channel use n,

with n € {1,2,...,N}, is a g-dimensional binary vector
T
Xin= (X0, x5 X9), with

(11

and N the block-length. At receiver ¢, the channel-output

i,n at channel use 7 is also a g-dimensional binary vector
T
171»)” = (752,?522, i, ,75‘2) . The input-output relation

during channel use n is given by

- =
q= max(n 11, n22,n12,n21) ,

Yin=8T X, 4 ST X (12)

and the feedback signal 371-7” available at transmitter ¢ at the
end of channel use n satisfies

T T
<(O, ...,0), ?z,n> :S(max(ﬁii,mj)*ﬁn)+ ?i,n_d, (13)

where d is a finite delay, additions and multiplications are
defined over the binary field, and S is a ¢ x ¢ lower shift
matrix of the form:

0 0 0 0
1 0 0 0
S=]0 1 0 (14)
: .. . .0
o --- 0 1 0

The dimension of the vector (0,...,0) in (13) is q —
min (‘ﬁii,max(ﬁii, n;;)) and the vector in  TEpTE-
sents the min (%”,max(ﬁ“,nij)) least significant bits of
§(max( iiomig) =)™ 7i,n7d.

The parameters 7“’, %ii and n;; correspond to
| 410, (SNE,)|. |41log, (SNR,)| and |} log, (INR,;)]
respectively, where Sﬁi, mil and INR;; are parameters of
the Gaussian interference channel (G-IC) in (8), (9) and (10),
respectively. The existing connections between the linear
deterministic model and the Gaussian model are thoroughly
described in [27].

As in the previous section and without any loss of generality,
the feedback delay is assumed to be equal to 1 channel use.
Transmitter ¢ sends the message index W, by sending the
codeword X; = (X;1,X2,...,X;n) € XN. The encoder
of transmitter ¢ can be modeled as a set of deterministic
mappings fi(l), fi(Q), cey fi(N), with fi(l) :W; — {0,1}7 and
foralln € {2,3,...,N}, £ : W; x{0,1}9=D — {0, 1},
such that

X1 = (W;) and

Xi,n:fi(n) (Wu ?i,lv ?i,% BERE) ?i,n—l)~
Assume that during a given communication, 7" blocks are
transmitted. Hence, the decoder of receiver i is defined by
a deterministic function v; : {0,1}9*NxT — WT At

the end of the communication, receiver ¢ uses the sequence
LY, N T) to obtain an estimate of the mes-

(16)
a7

i1y X 4,2,
sage indices.
The decoding error probability in the two-user LD-IC-NOF,
denoted by Pe(t)(N ), is calculated following (7). Similarly, a
rate pair (Ry, Ry) € R is said to be achievable if it satisfies
Definition 1.

B. Capacity Region of the Two-User Linear Deterministic
Interference Channel with Noisy Channel-Output Feedback

Denote by C(ﬁu,ﬁgg,mg,ngl, %11,%22) the capacity
region of the LD-IC-NOF with parameters 711, 92, N12,
n91, %11, and %22. Theorem 1 (in the top of this page) fully
characterizes this capacity region. The proof of Theorem 1 is
divided into two parts. The first part describes the achievable
region and is presented in Appendix A. The second part
describes the converse region and is presented in Appendix
B.

Theorem 1 generalizes previous results regarding the ca-
pacity region of the LD-IC with channel-output feedback.
For instance, when %11 = 0 and %22 = 0, Theorem 1
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Theorem 1: The capacity region C(ﬁ)u, 722, N12, N21, %11, %22) of the two-user LD-IC-NOF is the set of non-negative rate
pairs (Ry, Re) that satisfy for all i € {1,2}, with j € {1,2}\ {i}:

R; <min (max(ﬁii,nji) ,max (ﬁii,nij)), (15a)
R; <min (max (ﬁ)”,nﬂ) , max (ﬁ)”, %jj — (ﬁjj — nji)Jr)) , (15b)
Ry + Ry <min (max (7 22, n12) + (711 — nlg)+ ,max (711, n91) + (a2 — n21)+> , (15c¢)
Ry + Ry <max ((711 —n12) " nor, Wy — (max (711, n12) — %11)+>

+ max ( (a2 —n21) " a2, Mo — (max (Waz, na1) — %22)+)7 (15d)
2R; 4+ Rj<max (s, nj:) + (7 s — nij)Jr + max ( (7 — nj,-)Jr g, T g5 — (max (7 45, 15:) — %jjﬁ). (15e)

describes the capacity region of the LD-IC without feedback
(Lemma 4 in [28]); when %111 > max(ﬁu,nlg) and
Srae > max(ﬁgg,ngl), Theorem 1 describes the capacity
region of the LD-IC with perfect channel output feedback
(Corollary 1 in [3]), when 711 = 722, N2 = N91 and

11 22, Theorem 1 describes the capacity region of

the symmetric LD-IC with noisy channel output feedback
(Theorem 1 in [6] and Theorem 4.1, case 1001 in [23]); and
when Wll 722, Ni2 = N21, %ii > max (ﬁ)”,n”) and
;= 0, with i € {1,2} and j € {1,2}\ {i}, Theorem 1
describes the capacity region of the symmetric LD-IC with
only one perfect channel output feedback (Theorem 4.1, cases
1000 and 0001 in [23]).
An interesting observation from Theorem 1 is that feedback is
beneficial only when at least one of the feedback parameters
%11 or %22 is beyond a certain threshold [29]. For instance,
note that when %u‘ < (Wii — nij)+, receiver ¢ is unable
to send to its corresponding transmitter via feedback any
information about the message sent by transmitter j, and thus,
feedback does not play any role for enlarging the capacity
region. This is basically because the bit-pipes that are subject
to interference at receiver ¢ are not included in the set of
bit-pipes that are above the (feedback) noise level. However,
the threshold (7“ — ng;)*t for S, is necessary but not
sufficient for feedback to enlarge the capacity region. Consider
for instance the following examples.

Example 1: Consider the LD-IC-NOF with parameters
ﬁll = 5, ﬁgg == 1, ﬁlg == 3, 721 = 4, and %22 = 0.
The capacity regions C(5,1,3,4,0,0) and C(5,1,3,4,4,0) are
shown in Figure 4a. In this case, channel-output feedback in
transmitter-receiver pair 1 enlarges the capacity region only
when W11 > Moo + (711 — n12)+ = 3. More specifically,
for all %21y €{0,...,3},

C(5,1,3,4,%11,0)=C(5,1,3,4,0,0)

and for all 11, € {4,5,...,00},
€(5,1,3,4,0,0)cC(5,1,3,4, 77 11,0).

In Example 1, in the absence of channel-output feedback, the
rate Ry is upper-bounded by 1 bit per channel use, whereas the
sum-rate ?; + R is upper-bounded by 5 bits per channel use.
Figure 4b shows a simple achievability scheme for the rate pair
(3,1). Note that Ry cannot be improved letting transmitter 2

use the bit-pipes X §2n5) as they are not observed at receiver

2. When channel-output feedback is available at least at
transmitter-receiver pair 1 and the bit-pipe from transmitter 2
ending at 54% is included in the feedback signal Y'; ,,, the bit-

pipe Xézfl can be used by transmitter 2 as feedback provides
a path between transmitter 2 and receiver 2: transmitter 2 —
receiver 1 — transmitter 1 — receiver 2. For this alternative path
to become available at least the (ﬁgg + (ﬁn — n12)+ + 1)-
th (feedback) bit-pipe from receiver 1 to transmitter 1 must be
above the noise level, i.e., 7111 > oo + (711 — n12)+.
Example 2: Consider an LD-IC-NOF with parameters
ﬁll == 7, 722 = 7, Nnig = 3, Nng1 = 5, and %22 = 0.
The capacity regions C(7,7,3,5,0,0) and C(7,7,3,5,6,0) are
shown in Figure 5a. In this case, channel-output feedback
in transmitter-receiver pair 1 enlarges the capacity region
only when $71; > max (Tlgl, (711 — n12)+) = 5. More

specifically, for all o1 € {0,1,...,5},
C(7,7,3,5,%11,0)=C(7,7,3,5,0,0),

and for all w11 € {6,7,... 00},
€(7,7,3,5,0,0)cC(7,7,3,5, 7 11,0).

In Example 2, in the absence of feedback, the sum-rate
capacity can be achieved by simultaneously using two groups
of bit-pipes: (a) All bit-pipes starting at transmitter ¢ and
being exclusively observed by receiver ¢; and (b) All bit-pipes
starting at transmitter ¢ that are observed at receiver j but do
not interfere with the first group of bit-pipes, with ¢ € {1,2}
and j € {1,2}\ {¢}. Figure 5b shows an achievability scheme
that uses this idea and achieves the sum-rate capacity. Note
that using other bit-pipes to increase any of the individual

rates produces interference that cannot be resolved and thus,
impedes reliable decoding. In particular note that XQ(Q,)L and
XQ(‘?L must remain unused. When feedback is available at least
at transmitter-receiver pair 1 and the bit-pipe from transmitter
2 ending at 567)1 is included in the feedback signal Y1 ,,, the

bit-pipe X2(_27)L can be used for transmitting maximum-entropy
i.i.d. bits for increasing the individual rate Ry and the sum-rate
(see Figure 5c). This is mainly because the bits XQ(?,)L can be
decoded by transmitter 1 via feedback and be re-transmitted to
resolve interference at receiver 1. Interestingly, during the re-
transmission by transmitter 1 these bits produce an interference
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(a) Capacity regioniof C(5,1,3,4,0,0) (thick red line) and C(5, 1, 3,4, 4, 0) (thin blue line). (b) Achievability of the rate pair (3,1) in an LD-IC

with parameters 711 = 5, W22 = 1, n12 = 3, n21 =4, %11 =0 and %22 = 0 (no feedback links). (c) Achievability of the rate pair (3, 2) in an LD-IC
with parameters 711 =5, ﬁzz =1, ni2 =3, no1 =4, %11 =4 and %22 =0.

that can be resolved by receiver 2, as these bits have been
received interference-free in the previous channel uses. Note
that for this to be possible, at least one of the bit-pipes of
transmitter 2 that do not belong to either of the two groups
mentioned above, i.e., X2(27)L and Xg’,)“ must be observed above
the noise level in the feedback link of transmitter-receiver pair
1, ie., %11 > 5.

The exact thresholds for the feedback parameters 11 or
29 beyond which the capacity region is enlarged is strongly
dependent on the parameters, i.e., ﬁ)ll, 722, n12, and na.
However, the calculation of these thresholds is involved. Thus,
this analysis is left out of the scope of this paper. The interested
reader might refer to [29] for a full-characterization of these
thresholds.

1) Comments on the Achievability Scheme: The achievable
region is obtained using a coding scheme that combines
classical tools such as rate splitting, superposition coding,
and backward decoding. This coding scheme is described
in Appendix A. In the following, an intuitive description
of this coding scheme is presented. Let the message index
sent by transmitter ¢ during the ¢-th block be denoted
by W e {1,2,...,2NR:}. Following a rate-splitting
argument, assume that Wi(t) is represented by three
subindices (W2, W 0y, WD) € {1,2,...,2NRic1}
{1,2,...,2NRic2} X {1,2,...,2NRir} where
Rici + Rico + Ri,p = R;. The codeword generation
from (Wi(,tc)'l’ Wi(22’ Wz(tll) follows a four-level superposition
coding scheme. The index Wigtgll) is assumed to be decoded
at transmitter j via the feedback link of transmitter-receiver
pair 5 at the end of the transmission of block ¢ — 1.
Therefore, at the beginning of block ¢, each transmitter
possesses the knowledge of the indices Wl(tC_ll ) and WQ(’EC_l1 ),
In the case of the first block ¢ = 1, the indices W1(,Oc)*1 and
Wé%l correspond to two indices assumed to be known
by all transmitters and receivers. Using these indices both
transmitters are able to identify the same codeword in the
first code-layer. This first code-layer is a sub-codebook
of 2N(FicitR201)  codewords (see Figure 8). Denote
by ’I,L(Wl(tc_ll ),I/V2(tc_11 )) the corresponding codeword in

the first code-layer. The second codeword is chosen by
transmitter ¢ using Wi(,gl from the second code-layer, which
is a sub-codebook of 2V %.c1 codewords corresponding
at u (Wl(fc_ll )71/1/'2(*0_11 )) as shown in Figure 8. Denote by
U; (Wl(tgll ), W2(t511 )vWi(,tc)n) the corresponding codeword
in the second code-layer. The third codeword is chosen by
transmitter ¢ using WZ.(EQ from the third code-layer, which
is a sub-codebook of 2V Ri.c2 codewords corresponding at
Uu; (Wl(fc_f ),V[/Q(tc_l1 )th(,tc)q) as shown in Figure 8. Denote
by wv; (Wl(tgl1 ),Wz(tgll )’Wi(,tC)'DWi(,gQ) the corresponding
codeword in the third code-layer. The fourth codeword is
chosen by transmitter 4 using Wi(tll from the fourth code-layer,
which is a sub-codebook of 2V %7 codewords corresponding
at v; (Wl(fc_ll), WQ(tc_ll), ;21, WZ(I‘C),Q) as shown in Figure 8.
Denote by i p (W\'cy), Wi'c), Wiey Wik, W) the
corresponding codeword in the fourth code-layer. Finally, the
generation of the codeword @; = (x;1,%iz2,..., % N) € XN
during block ¢t € {1,2,...,T} is a simple concatenation
of  the wi (Wi wie! wily),
oD WD W0 W) and (WD,

T
W2(t511)’ Wi(,gv Wz‘(,t()m’ Wi(,tF)’)? Le., ;= (uz‘Tv'UzTawiT,P) ’
where the message indices have been dropped for ease of
notation.

codewords

The intuition to build this code structure follows from the
identification of three types of bit-pipes that start at transmitter
i: (a) The set of bit-pipes that are observed by receiver j but
not necessarily by receiver ¢ and are above the (feedback) noise
level; (b) The set of bit-pipes that are observed by receiver j
but not necessarily by receiver ¢ and are below the (feedback)
noise level; and (¢) The set of bit-pipes that are exclusively
observed by receiver ¢. The first set of bit-pipes can be used to
convey message index ngl from transmitter ¢ to receiver j
and to transmitter j during block ¢. The second set of bit-pipes
can be used to convey message index Wl(tc)2 from transmitter
1 to receiver j and not to transmitter j during block ¢. The
third set of bit-pipes can be used to convey message index

Wi(t; from transmitter ¢ to receiver 4 during block ¢.
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These three types of bit-pipes justify the three code-layers
super-posed over a common layer, which is justified by the
fact that feedback allows both transmitters to decode part of
the message sent by each other. The decoder follows a classical
backward decoding scheme. This coding/decoding scheme is
thoroughly described in Appendix A in the most general case.
Later, it is particularized for the case of the LD-IC and G-IC.
Other achievable schemes, as reported in [6], can also be
obtained as special cases of the more general scheme presented
in [17]. However, in this more general case, the resulting
code for the IC-NOF counts with a handful of unnecessary
superposing code-layers, which demands further optimization.
This observation becomes clearer in the analysis of the G-1C-
NOF in Section V.

2) Comments on the Converse region: The outer bounds
(15a) and (15c¢) are cut-set bounds and were first reported in
[28] for the case without feedback. These outer bounds are
still useful in the case of perfect channel-output feedback [3].
The outer bounds (15b), (15d) and (15¢) are new. Consider the
notation used in Appendix B (See Figure 10 and Figure 11).
The outer bound (15b) on the individual rate ¢ is a cut-set
bound at the input of an enhanced version of receiver ¢. More
specifically, this outer bound is calculated considering that
receiver ¢ possesses the message index of transmitter j, i.e.,
W, as side information and observes the channel output Y ;

and the feedback signal ? ;j of transmitter-receiver pair j at
each channel use. A complete proof of (15b) is presented in
Appendix B.
The intuition behind the outer bound (15d) follows from the
observation that in the absence of feedback, the sum-rate is
upper-bounded by the sum of the bit-pipes from transmitter
¢ that are exclusively observed by receiver i (denoted by
X ;,p) and the bit-pipes from transmitter ¢ that are observed by
receiver j and do not interfere with bit-pipes X ; p (denoted by
X, v), withi € {1,2} and j € {1,2}\ {i}. More specifically,
in the absence of feedback:
2
Ry + Rp<) dim X p + dim X g (18)

i=1

When Ry + Ry = Zle dim X ; p + dim X; 7 is achievable
without feedback, the bit-pipes X; p and X; ;y can be used
for sending maximum-entropy i.i.d bits from transmitter 7 to
receiver 4, which maximizes the sum-rate. Interestingly, any
attempt of using any of the other bit-pipes creates interference
that cannot be resolved and thus impedes reliable decoding.
This observation is formally proved in Appendix B (see proof
of (15d)). Note also that this outer bound is not necessarily
tight (see Example 1). When feedback is available at least at
transmitter-receiver pair ¢, other bit-pipes different from X ; p
and X ; y might be used by transmitter j for simultaneously
increasing the rate R; and the sum-rate (see Example 2). This
simple observation suggests that there must exits an upper-
bound on the sum-rate of the form:
2
Ry + Rp<)_dim X p + dim X, v + F},

i=1

19)

where, F; < dim X; ¢ + dim X; p represents the bit-pipes
other than X; p and X 7, whose origin is at transmitter g,
that can be used for sending maximum entropy i.i.d bits from
transmitter ¢ to receiver ¢, while generating an interference that
can be resolved by the use of feedback. Following this idea,
the following outer bound is presented in Appendix B (see
proof of (15d)):

2
R+ Ry<) dimX; p+dimX; y+dimX; o, +dim X pr,
i=1
(20)

where dim (X; cr,, X, pr) is the number of the bit-pipes
whose origin is at transmitter 7 and are observed above the
noise level in the feedback link of transmitter-receiver pair
7. The outer bound (20) is derived considering genie-aided
receivers. More specifically, receiver ¢ has inputs Y ; and Y,
with 7 € {1, 2}.

A similar reasoning is followed to derive the outer bound (15¢)
considering three genie-aided receivers. More specifically,
receiver ¢ has inputs Y; and Y;, with ¢ € {1,2}, and a



third receiver has inputs 7i, 37]», and W; for at most one
1€ {1,2}, with j € {1,2}\ {i}.

V. MAIN RESULTS

This section introduces an achievable region (Theorem 2)
and a converse region (Theorem 3), denoted by C_jc_noF
and Cq_1c_NOF respectively, for the two-user G-IC-NOF with
fixed parameters SNR;, SNRo, INR12, INRo, %1, and

NRy. In general, the capacity region of a given multi-user
channel is said to be approximated to within a constant gap
according to the following definition.

Definition 2 (Approximation to within & units):

A closed and convex set T C RYT is approxi-
mated to within & units by the sets T and T if
T C T C T and for all t= (ti,ta,....tm) €T,
(t—9" (=", (tm—O") €T

Denote by Cq_1c—nor the capacity region of the 2-user G-
IC-NOF. The achievable region C_;o_nop and the con-
verse region Ca_1c_NOF approximate the capacity region
Ca_1c_NoF to within 4.4 bits (Theorem 4).

A. An Achievable Region for the Two-User G-IC-NOF

The description of the achievable region Cq_jc_norp 1S
presented using the constants a; ;; the functions az; : [0, 1] —
Ry, ai; ¢ [0,1)> — Ry, with [ € {3,...,6}; and a7, :
[0,1]> — R, which are defined as follows, for all i € {1,2},
with j € {1,2}\ {i}:

1 1
=5 log (2 + INR]1> 3 (21a)
1 1
azi(p)=5 log (bLilp) + 1) = 3, Q1)
SNR(b2.4(p) +2) +br.a(1) +1
az,i(p, b)=5 log
SNR, (1= p)ba,i(p)+2) +b1,i(1)+1
2lc)
1 1
agqi(p, =35 log ((1 52 ilp) + 2) — (21d)
1 1
as,i( =5 log (2 + INRﬂ ( - M) bu(/’)) —
2le)
11 SNﬁZ 1 )b (0)+ )+2 1
ag,; pa 9 og INR K02 5P 9’
and (211)
1. [SNE,
a?,i(P7M1,M2)=§10g INR,, (1—Mz‘)b2,j(P)+1
1
+(1—uj)bz,i(p) +2> —5 (21g)

where the functions b;; : [0,1] — Ry, with (1,4) € {1,2}2

are defined as follows:

bu(p):(l - p)INRij _1, (22b)

with j € {1,2}\ {¢}.
Note that the functions in (21) and (22) depend on ﬁl,
Sﬁg, INR;2, INR91, SNR;, and ﬁg, however as these
parameters are fixed in this analysis, this dependence is not
emphasized in the definition of these functions. Finally, using
this notation, Theorem 2 is presented on the next page.
Proof: The proof of Theorem 2 is presented in Ap-
pendix A. [ ]
The achievability scheme presented in Appendix A is gen-
eral and thus, it can be used for both the LD-IC-NOF and the
G-IC-NOF. The special case of the G-IC-NOF is derived in
Appendix A.

B. A Converse Region for the Two-User G-IC-NOF

The description of the converse region Ca_1c_NOF 1S
determined by two events denoted by S;, 1 and Sy, 2, where

(I1,l2) € {1,...,5}2. The events are defined as follows:
Si;: SNE; < min (INR;;, INR;;) | (24a)
Sy INRj; < SNR; < INR;;, (24b)
Ssi: INR;; < SNR; < INR;, (24c)
Su: max (INRy;,INR;;) < SNR; < INR;;INR,;, (24d)
Ssi: SNR; > INRINR,;. (24¢)

Note that for all ¢ € {1,2}, the events S1, S24, S34, Sa4
and S5 ; are mutually exclusive. This observation shows that
given any 4-tuple (Sﬁl, Sﬁg, INR;2,INRg;), there always
exists one and only one pair of events (S, 1,5,,2), with
(I1,12) € {1,...,5}2, that identifies a unique scenario. Note
also that the pairs of events (S21,S522) and (S31,S32) are
not feasible. In view of this, twenty-three different scenarios
can be identified using the events in (24). Once the exact
scenario is identified, the converse region is described using
the functions x;; : [0,1] — Ry, with [ € {1,...,3};
ki :[0,1] = Ry, with [ € {4,5}; ke @ [0,1] — Ry, with
1€ {1,...,4}; and k7, : [0,1] — R4, with [ € {1,2}.
These functions are defined as follows, for all ¢ € {1, 2}, with

Jje {172} \ i}

11(p)=3 1o (bri(p) ) (25a)
ba,i(p)
R2, z g (1 + b5,] o log < +b5j()>’ (25b)
b4 i(p) +bs5(p) + 1>ﬁ
K3, z +1
blj <b41( )+ 1)
+ 1o b4 i (25¢)
1 b (p) 1
H4(P)—§ log <1 + 1+b52(p)> +3 log (51,2(,0) + 1>,(25d)
1 baz2(p) 1
Hs(P)—§ log <1+1+b5,1(p)> —|—§1og (b1,1(P)+1>7 (25e)
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Theorem 2: The capacity region Cq_1c—Nor contains the region Cq_jc_nor 8iven by the closure of the set of all possible
non-negative achievable rate pairs (R1, Ra) that satisfy

R;<min (a2 1(p)sae,1(p, 1) + az2(p, p1), a11 + az2(p, p1) + as2(p, M1)>, (23a)
Ry<min (a2,2(p)7 az,1(p, p2) + ag2(p, p2), a1 (p, p2) + as,1(p, p2) + a1,2), (23b)
Ry 4+ Ry<min (GQ 1(p) +a12,a11 + az2(p),as1(p, p2) + a1 + as2(p, p1) + az2(p, p1, p2),
az1(p, p2) + as1(p, pa) + az2(p, 1) + as2(p, 1), az 1 (p; p2) + ara(p; 1, p2) + az2(p, p1) + 01,2)7 (23¢)
2R + Ry<min (az 1(p) + a1 +az2(p, p1) + az2(p, p1, p12), (23d)
as,1(p, p2) + a1 + ar1(p, 1, p2) + 2a3.2(p, 1) + as2(p, 1), a2,1(p) + ar,1 + as2(p, p1) + as2(p, M1)),
Ry + 2Ry<min <a3,1(P7 o) + as1(p, p2) + a22(p) + a2, a31(p, p2) + az1(p, pa, p2) + az2(p) + a2,

2a3.1(p, p2) + as1(p, p2) + as2(p, p1) + ar,2 + az2(p, pa, uz)), (23e)

. +
with (p, i1, ) € [0, (1= max (gt b)) ] ¢ [0,1] % [0, 1)

. 1 .
ke1(p) if (S12V S22V S52) +§1 g (b1,2(P)+b5,1(p)INR21> -3 log (1+INR21>
A(S11VSy1V S
. (S11 2,1 51) ) bs (o) by 1ﬁNR1
r6,2(p) i (S12V S22V S52) +5log [ 1+ = N1+ "+ 1
K6 (p)= A(S3.1V S41) (25f) SNR, 11
ke3(p) if (S32V Si2) 1 o (1 bs,1(p)INRgq )
’ : i gl1+ + log(2me), (26c¢)
A(S1,1V S2,.1V S51) 2 W
i 1 bs.1(p)IN
moale) I (852 Sa2) A (S50 ¥ Haa) K6,4(p) = 3 log (b6,1( )+ %ﬁ (ﬁl + b3 1)>
k()= kria(p) if (S1,:V S2,iV S5,) (250) ) ) SNR,
Z rria(p) if (S5 V S4) 3 log (1 - INRlz) — = log (1 - INRzl)
where 1 1 (p) (INR12 I b3,25NRy §NR2>)
Ke,1(p) = §1Og(b1 1(p)+bs1(p )INR21) —5 log (1+INR12) bro(1) + 1

)

1
log [ 1
tylos ( * b12()+1

ryon 1+ 2
110g<1+b51 INR21>
2 SNR,
1

s

+% log <b1 2(p) + bs.1(p )INRgl) . %log (1+INR21) log 1+ %&)

%bg (1+bzll’1 a fil) + log(2me), (26a) ; log [ be.a( 4 Bl ;IiR” (ﬁz + by 2))
ool ) b o 2

—% log <1+INR12> + %log <1 + m) +log(2me), (26d)

+%10g (bl,l(p)—&—b&l(p)INRgl) - ;;(1 n INRgl) and

1 b b3 2SNR

ol (1 i % (INRH " 5’1322(1)‘*‘21) ) K7,5,1(p) = %bg <b1 i(p) + 1) - llog (1 + INRij)

_%log (1 + bf»léﬁ%) + log(2me), (26b) +%10g (1 . bzljﬂ( ﬁ )
Ke6,3(p) = % log (bﬁ,l(p) + %& (Sﬁl + b3,1>> +% log (bl,j(ﬂ) + bs,i(P)INRﬁ)

_% log (1+INRy2) + %log (1 + bz 2 ﬁQ) +% tog (1+ba4(p) +b5.1(0)) _%bg (1+055(0)

12(1)+1 +2log(2me), (27a)



Kri2(p) = %log (bl,i(p) + 1) - %bg (1 + INRij)

—% log (1 + b5,j(p)> + %1og (1 + bai(p) + b5, (P))

1 C O\INRy [

bg’jéNRj . llog (1 + b5’i (p)INRﬂ>
by (1) +1 2 SNE,

1 ) b5)i(p)INRji ] )
+§10g <b6,] (p)+ W (Sﬁ] + b37])

J

+2log(2me), (27b)

where, the functions b;;, with (I,i) € {1,2}? are defined in
(22); bs,; are constants; and the functions b;; : [0,1] — R,
with (1,i) € {4,5,6} x {1,2} are defined as follows, with
Jef{t2p\{i}:

b3, =SNR; — 2/SNR,INR; + INR;;, (284)
bii(p)=(1 - p*)SNR;, (28b)
b57i(p)=(1 - p2)INRij, (28¢)

b67i(p):mi + INRW + 2p+/ INRZJ (\/ mz — 4/ INRﬂ)

INR;;/INR;;
+ﬁ4 (\/INRﬂ—z SNRi). (28d)
NR;

Note that the functions in (25), (26), (27), and (28) depend on
SNE,, SNE,, INRy, INRy;, SNRy, and SNR,. However,
these parameters are fixed in this analysis, and therefore,
this dependence is not emphasized in the definition of these
functions. Finally, using this notation, Theorem 3 is presented
below.

Theorem 3: The capacity region Cq_1c—NOF IS contained
within the region Ca—_ic—Nor given by the closure of the set
of non-negative rate pairs (Ry, Rg) that for all i € {1,2},
with j € {1,2} \ {i} satisfy:

R;<min (k1,4(p), k2,:(p)), (29a)
Ri<krs,i(p), (29b)
R; + Ro<min (rq(p), k5(p)), (29¢)
R + Ra<re(p), (29d)
2R; + R;j<k7,i(p), (29¢)
with p € [0,1].
Proof: The proof of Theorem 3 is presented in Appendix
C [ |

The outer bounds (29a) and (29c) play the same role as the
outer bounds (15a) and (15c¢) in the linear deterministic model
and have been previously reported in [3] for the case of perfect
channel-output feedback. The bounds (29b), (29d), and (29¢)
correspond to new outer bounds. The intuition for deriving
these outer bounds follows along the same steps of those used
to prove the outer bounds (15b), (15d), and (15e), respectively.
Note the duality between the Gaussian signals X; ¢ and X; i/
(in 70 and 69, respectively) and the bit-pipes (X; ¢, X p)
and X; iy (in (54a), (54d) and (58), respectively).
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C. A Gap Between the Achievable Region and the Converse
Region

Theorem 4 describes the gap between the achievable region
Ca_1c_nop and the converse region Ca_tc—nor (Defini-
tion 2).

Theorem 4: The capacity region of the two-user G-IC-NOF
is approximated to within 4.4 bits by the achievable region
Co_1c_nor and the converse region CG_IC—NOF-

Proof: The proof of Theorem 4 is presented in Appendix
D. [ |

Figure 6 presents the exact gap existing between the achiev-
able region Ci;_;c_nor and the converse region Cq_1c—NOF
for the case in which SNR; = SNR, = SNR, INR;, =
INRy; = INR, and SNR; = SNR, = SNR as a function
of a« = % and 8 = Eiﬁ. Note that in this case, the
maximum gap is 1.1 bits and occurs when o« = 1.05 and
B8 =1.2.

VI. TRANSMITTER COOPERATION VIA FEEDBACK

Channel-Output feedback enables transmitter cooperation.
Consider for instance the LD-IC-NOF models in Figure 10 and
the notation used in Appendix B. In this model, the feedback
signal Y'; ,, can be used by transmitter ¢ to obtain the bits sent
by the other transmitter through the bit-pipes X ; ¢, n—1 and
X prn-1, with ¢ € {1,2} and j € {1, 2} \ {i}. Essentially,
feedback allows a transmitter to observe at least partially
the channel input of the other transmitter, subject to a finite
delay. This highlights the strong connections of channel-output
feedback and conferencing transmitters.

Consider the LD-IC models with conferencing-transmitters
(LD-IC-CT) in Figure 7. Note that the noise level in the link
from transmitter ¢ to transmitter j is such that transmitter j
observes only the bits sent by transmitter ¢ through the bit-
pipes X;cr; -1 and X; prn-1, for all i € {1,2} and
j € {1,2}\ {i}. Then in both channel models (Figure 7 and



Figure 10) the corresponding transmitters possess the same
side information and the corresponding receivers observe the
same channel outputs. This observation holds also for the case
of a G-IC-NOF and a G-IC with conferencing transmitters
(G-IC-CT). For instance, in the case where the noise power
in the link from transmitter ¢ to transmitter j in the G-IC-
CT is identical to the sum of the noise power at the input
of receiver j and the noise power in the feedback link of
transmitter-receiver pair j in the G-IC-NOF. Hence, under
these conditions, either in the linear deterministic or Gaussian
case, any outer bound for the case of conferencing transmitters
is also an outer bound for the case of channel-output feedback
and vice-versa.

Outer bounds for the LD-IC-CT and the G-IC-CT have been
reported in [19] and [21]. However, the gap between the
achievable sum-rate and the corresponding converse in the
G-IC-CT is 20 bits in [19]. Other outer bounds have been
presented in [30] for the G-IC-CT, but a gap between the
achievable and converse regions is not reported.

VII. CONCLUDING REMARKS

In this paper, the exact capacity region of the LD-IC-NOF
has been fully characterized (Theorem 1). Using key observa-
tions in the LD-IC-NOF, an achievability region (Theorem 2)
and a converse region (Theorem 3) have been presented for
the two-user G-IC-NOF. These two regions approximate the
capacity region of the G-IC-NOF to within 4.4 bits (Theo-
rem 4).

Despite the contributions made in this paper, the understand-
ing of the benefits of channel-output feedback are far from
being completely understood in the G-IC-NOF. For instance,
an interesting extension of these results is to consider the case
in which the channel-output feedback is observed by both
transmitters subject to (possibly non-independent) additive
Gaussian noise processes. This analysis would complement
initial attempts (see [23] and references therein) for under-
standing a larger and more interesting problem suggested by
Shannon [31]: the two-way interference channel.

APPENDIX A
PROOF OF ACHIEVABILITY

This appendix describes an achievability scheme for the IC-
NOF based on a three-part message splitting, superposition
coding, and backward decoding. This coding scheme is general
and thus, it holds for the two-user LD-IC-NOF and the two-
user G-IC-NOF.

Codebook Generation: Fix a strictly positive joint probability
distribution
Puu,Us vi Vi X, p Xa,p (U, U1, U2, V1, V2, T1 p, T2, p) =
Py (u) Py, v (w1 |[u) Py, o (uzlw) Py o o, (01 |u, u1)
Py, v v, (v2|u, u2) Py, pjv vy vi (@1,p[u, uy, v1)
Px, o) U, v, (T2,P|Us u2, 02), (30)

for all (u,uy, us,v1,v2,21,p, Ta,p) € (X1 UX2) X Xy X Xy X
X1><X2><X1><X2.

Let Rl,Cl’ RLCQ, RQyCl, ngcg, Rl’p, and RQ,P be non-
negative real numbers. Let also R; ¢ = Rici+ Rico,

Roc=Roc1+Roce, Ri = Ric + Rip, and
Ry = Ry c + Ra p.
Generate 2N(FicithRacl)  jid. length-N  codewords
u(s,r) = (u1(s,7),uz(s,r),...,un(s,r)) according to
N
Pyr (u(s,r)) = HPU(ui(s,r)), 31
i=1
with s € {1,2,...,2NFre1) and r € {1,2,...,2NF2.01),
For encoder 1, generate for each codeword wu(s,r),
2NBier jjid.  length-N  codewords (s, 7, k) =
(um(s7 ro k), u12(s,m, k), ... ur n(s, T, k)) according
to

N
Py, u (ul(s, rk)|u(s, r)) = H Py, v (ul,i(s, k) |u (s, r)),

i=1
(32)

with £ € {1,2,...,2Nfvery - For  each pair
of codewords (u(s,r),u1(s,7,k)), generate
2NFBie2  jid. length-N codewords wvi(s,r, k,l) =
(via(s,m, k1), v12(s, 7, k,0),...,v1,n(s,7,k,1)) according
to

Py, vu, (vl(s,r,k7l)|u(s,7"),u1(s,r, k)) =

N

HPV1|U U, (vl,i(sa T, k7 l)|u2(87 7")711,1’1'(877’, k))a (33)

i=1
with | € {1,2,...,2NFic2} For each tuple of

codewords (u(s,7), wi(s,r, k), wvi(s,7,k,1)), generate
2NFirjid. length-N codewords z1 p(s,7,k,l,q) =

(z1,p1(s,7,k,1,q),21,p2(s,7, k1, q),. ..,
z1pN (87, ks, q)) according to

Px, puuwv, @i p(s,m kL qhu(s,r)ui (s, r, k) v (s, k, 1)
N

= H PXLplU U, Vi (5317]371'(577"7 ka l7Q)|1ti(S’7‘)7u1,i(S7r7 k)a
=1

vl,i(sv r, ka l))v

with ¢ € {1,2,...,2NFur)
For encoder 2, generate for each codeword w(s,r),

(34)

2NB2c1jid. length-N  codewords wa(s,r,j) =
(ug1(s,7,7),u2,2(8,7,5), ..., uz n(s,7, 7)) according
to
N
PU2|U(u2(s,r,j)\u(s,r)) = HPU2|U(u27i(s,r,j)|ui(s,r)),
=1 (35)
with  j € {1,2,...,2NR2c1} For each pair
of codewords (u(s,r),usz(s,m,4)), generate
2Nf2.c2 jid. length-N  codewords wo(s,r,j,m) =
(02,1(5, ry 4, m),va2(s, 7, j,m),...,va n(S,T, ], m))

according to

PV2|UU2 (’02(‘9’ T, j7 m)|’u’(83 ’I“),’LLQ(S,T,j)) =

N

H PVg\U Us (02,@'(5’ T, .ja m)‘ui(sv 7"), u2,i(85 Ta.j))7 (36)

=1

{1,2,..., QNRZ’CZ}.
(u(s,r),

with m S
of codewords

For each tuple
’U,2(87 ’f’,j), UQ(Sa T, j7 m))’
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Fig. 7. Linear Deterministic Interference Channels with Conferencing Transmitters.
generate 2N B2 p iid. length-N codewords where, ©; (M UX)Y x &N x aN x xN 5 xN
2. p(s,r,5,m,b) = (x27p71(s, T, j,m,b)xe po(s,r,j,m,b)... is ~a function that transforms the codewords
b & =D =) W=D =1 o
, x2.pN(s, 7,4, m, )) according to u\Wy o1 2,c1 )» U\ Wic1 > Wo o1 Wio1)s

PX2,p|U Ung(mQ,P(Sa r, ja m, b)ru’(sv T),UQ(S, r, j)fUQ(Sa T, ja m))

N
= HPX2yp|UU2 Vo (xg,p’i(s,r,j,m,b)|ui(s,r),u2,i(s,7",j),
i=1
U?,i(svrvjamab»v (37)
with b € {1,2,...,2NE2r} The resulting code structure is

shown in Figure 8.

Encoding: Denote by Wl-(t) € {1,2,...,2N%} the message
index of transmitter ¢ € {1, 2} during block ¢t € {1,2,...,T},
with T' the total number of blocks. Let Wi(t) be composed

by the message index Wl(tc), € {1,2,...,2Nf.c} and mes-
sage index W) € {1, 2, ...,2¥Ber} That is, W =
(Wz(g,Wz(tI)g) The message index Wl(t])g must be reliably

decoded at receiver ¢. Let also Wi(g be composed by the
Wil € {1,2,... 2Rt} and W, €
(1,2, 2V Rez} That is, WG = (W2 W2, ). The
message index Wi(,gl must be reliably decoded by the other
transmitter (via feedback) and by the non-intended receiver,
but not necessarily by the intended receiver. The message
index Wi(EQ must be reliably decoded by the non-intended
receiver, but not necessarily by the intended receiver.

Consider Markov encoding over 1" blocks. At encoding step
t, with t € {1,2,...,T}, transmitter 1 sends the codeword:

message indices

t t—1 t—1 t—1 t—1 t
o) s ) (1 ),
t—1 t—1 t t
U1 <W1(,Cl )v W2(,c1 )» Wl(,élv Wf)cz) )

t—1 t—1 t ¢ t
T1,p (Wl(,cl ), Wz(,c1 ), Wl%l, Wl())m, Wf})) . (3%)

t—1 t—1 t t t—1
U1 <W1(,Cl)vW2(,c1)7W1(,()J17W1(,g)2) , and @y p (Wl(,Cl)’
W2(tc—11 ) s W1(%1 W1(,tc)72’ Wl(tl)g) into the N-
dimensional vector :Iigt) of channel inputs. The indices
Wl(%l = I/Vl(TC)1 = s* and Wé%l = WQ(TC)1 = r*, and the
pair (s*,7*) € {1,2,...,2NFrci} x (1,2, ... 2NF2c1) are
pre-defined and known by both receivers and transmitters. It
is worth noting that the message index WQ(tc_l1 ) is obtained
by transmitter 1 from the feedback signal ??‘1) at the end
of the previous encoding step ¢t — 1.
Transmitter 2 follows a similar encoding scheme.
Decoding: Both receivers decode their message indices at
the end of block 7' in a backward decoding fashion. At
each decoding step ¢, with ¢ € {1,2,...,T}, receiver 1
obtains the message indices (Wl(fg_lt), WQ(E?), Wl(fg;(t_l)),
THT—(t-1)) (T —(t—1
WL WI Y e {1, 2, 2NRien) x {,
2,...,2NRzeny 5 f1 2 2NRue2) M1, 2, 2NBLpY ¢
{1, 2,...,2NR2.c2} from the channel output ﬁgT_(t_l)).

THT—t) THT—t) THT—(t-1) T(T—(t—1

The tuple (Wl(,m ), Wz(,(n ), Wl(,CQ( 2% Wl(’P (=1,

Wé%;(t_l))> is the unique tuple that satisfies

T—(t—1
e

).

(T—(t=1)) 17(T—(t-1))
7W1,c1 aWch )

(Tt - T(T—t) TH(T—t

(“ (W1( c1 )v ) » U1 (Wl(,Cl )a W2(,Cl )a
T (T—t) 77(T—t T—(t—1 T (T—(t—1

vi (Wie Wae Wia ™ Wi ™

SS(T—t) T3 (T—1)
“’f'l,P(Wl,m 7W2,Cl

17 (T—(t—1)) 17 (T—t) 177(T—t) (T—(t-1))
Wl,P >7U2 (Wl,Cl ’Wz,m ’WQ,Cl )v

),

5(T—t) 77 (T—t T—(t—1)) 7 (T—(t—1
vy (WG Wi Wi, Wi )
y\gT—(t—l))) c T(N,e)

, 39
[U Ui Vi X1,p Uz V2 71] (39



where Wl(,TC*l(t*l)) and Wg(chfl(t*l)) are assumed to be per-
fectly decoded in the previous decoding step ¢ — 1. The set

(N,e) .. .
represents the set of jointly typical
[U U1 V1 lep U2 V2 71 p J y yp

sequences of the random variables U, Uy, V1, X1 p, Uz, V2, and
1, with e > 0. Receiver 2 follows a similar decoding
scheme.
Probability of Error Analysis: An error might occur during
encoding step ¢ if the message index Wz(t(;ll ) is not correctly
decoded at transmitter 1. From the asymptotic equipartion
property (AEP) [32], it follows that the message index W2(t511 )
can be reliably decoded at transmitter 1 during encoding step
t, under the condition:
Roc1 < 1 (?1; Ux|U, Uy, V1,X1>
- 1(Yumu.x,). (40)

An error might occur during the (backward) decoding

step t if the message indices Wf%;t), WQ(’TC?),
Wl(?;v_z(t_l)),Wg;(t_l)), and WQ(’%_Q(]L’_D) are  not
decoded correctly given that the message indices
szz(t_l)) and W2(Tc_1(t_1)) were correctly decoded in

the previous decoding step ¢t — 1. These errors might
arise for two reasons: (i) there does not exist a tuple
Wl(fit)a Wz(,Tc?)a W1(,Tc_2(t_1))v Wl(f;—(t—l))’ Wz(,%_z(t_l))
that satisfies (39), or (i) there exist several tuples
Wl(fg;t)v Wz(,%;t)v Wl(fg—z(t—l))’ Wl(f’];_(t_l)), WQ(,TC;(t—l))
that simultaneously satisfy (39). From the asymptotic
equipartion property (AEP) [32], the probability of an
error due to (i) tends to zero when N grows to infinity.
Consider the error due to (i¢) and define the event
E(s,r,1,q,m) that describes the case in which the codewords
(u(s,r).  w(s,r, Wig ") wi(s,r Wi U0,
$17P(S,T, Wl()jé’il(til)%l?q)’ UQ(S,T, Wg(’jé'il(til)))»
va(s, T, WQ(’TC_I(t_l)),m)) are jointly typical with 3 ("~
during decoding step t. Assume now that the codeword to
be decoded at decoding step t corresponds to the indices
(s,m,1,q,m)=(1,1,1,1,1) without loss of generality due to
the symmetry of the code. Then, the probability of error due
to (i¢) during decoding step ¢, can be bounded as follows:

and

E(s,r,l

,q,m)

P.=Pr U

(s.r.La;m)#(1,1,1,1,1)

S Z Pr [E(S,T',l,q,m)] 3

(s,ml,q,m)ET
with T = {{1,2,...2”1@} x {1,2,...2VRzc1} x

{1,2,...2NR1102}><{1,2,...2NRLP}><{1,2,...2NR2702}}\
{(1,1,1,1,1)}. From the AEP [32], it follows that

(41)

Pe<2N(R2,cz—I(71;V2|U7U1~,U2,V17X1)+2€)
L oN(R1p—1(Y 13X |UUL Us, Vi, Va) +2¢)
9N (Ra,catRa,p—1(Y13Va, X1 [UU U Vi) +26)

+2N(R1,cz—1(71;V1,X1\U7U1,U27V2)+26)

+2N(R1,02+R2,02—1(71;V17V2,X1 |U,UL,U2)+2€)

9N (Bicot Ry p—I(V13V2, X3 |UU1 Uz V) +26)

L 9N(Ri,catRa p+Ra,ca—1(Y 13V, V2, X2 [U,U1 Ua) +2¢)
9N (Ba,o1—1(Y13U,U1,U2,V2, Vo, X1 ) +26)

9N (Re,c=1(Y15U,U1,Us, Vi, Va, X1) +2¢)
+2N(R2,c1+R1,P—1(71;U7U17U2,V17V27X1)+26)
+2N(R2,0+R1,P—1(71§U7U1,U2,V17V2,X1)+26)
+2N(R2,01+R1,02*I(71;U,U17U27V1,V27X1)+2€)

4 9N(Re,c+Ry,ca—I(Y 1;U,U1,Uz, Vi, Va, X1)42¢)
+2N(R2,01+R1,02+31,P*I(71;U,Ul,Uz’V1,V2,X1)+26)
+2N(R2,C+R1,02+31,P*I(?1;U,U17U2,V1,V2,X1)+2e)
+2N(R1,Cl*1(71;UaUl’UQgV13V2’X1)+26)

4 oN(Ri o1+ Ra,02—1(Y 15U,U1,Ua Vi, Ve, X1)+26)

LN Brcr+Ryp—I(V 150U Ua Vi, Va, X1 )+26)

L 9N(Bic1+ Ry p+Ra.co— IV 1UUL U, VA Ve, X1)+26)
9N (B1o—I(V15U,U1,U2, V1, V2, X1)+26)

9N (B1c+Ra,co— IV 1iUUL U2,V Vo, X1)426)

LN (Ri=I(Y 13U,U1,Us, Vi, Va, X1 ) +2¢)
+2N(R1+Rz,cz—[(?1;U7U1 U2, V1, V2, X1)+2¢)
4oN(BicitRa 01 —I(Y ;U,U1,Us, Vi, Vi, X1 )+26)

L 9N(Ri,c1+Ra,0—1(Y 1:U,U1,Uz, Vi, Va, X1)42¢)
+2N(R1,CI+R2.CI+R1,P_I(?l;U;U17U27V1;V27X1)+2€)
+2N(R1,01+R2,G+Rl,P*1(71;U,U17U2,V1,V27X1)+2e)
4 9N(Ri o+ Ra,c1— (Y 1iU,U1,Uz,V, Vo, X1)42¢)

4 9N(Ry o+ Ra,c—1(Y 13U,U1,U2,V1,Va, X1) +2¢)

LN (R1+Ra, 01— 1(Y 1iUULU2, V2, Vi, X1)+26)

+2N(R1+Rz,c*I(?1;U,Ul,U27V17V2,X1)+26). (42)

The same analysis of the probability of error holds for
transmitter-receiver pair 2. Hence, in general, from (40) and
(42), reliable decoding holds under the following conditions
for transmitter ¢ € {1,2}, with j € {1,2} \ {i}:

Rer<I (YU |U. ULV, X))

201, (43a)
Ri + Ry c<I(Y ;;U, U, U;, Vi, Vi, X,)
—I1(Y;;U,U;,V;, X))
26,4, (43b)
Ry co<I(Y i V;|U, U, U;, Vi, X))
—I1(Y ;; V;|U,U;, X;)
205, (43¢)
Rip<I(Y:: XU, U, U, Vi, V)
L0, (43d)
Rip + Ryca<I(Y 5V, XilU, U3, U, V)
205, (43e)
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Structure of the superposition code. The codewords corresponding to the message indices wi D wloh )

(t) () e s
Lot Wo o1 s Wicn Wi o W, p with i € {1,2}

as well as the block index ¢ are both highlighted. The (approximate) number of codewords for each code layer is also highlighted.

R;c2+ Ri,PSI(?i; Vi, Xi|U, U3, U;, V;)
=1(Y:: Xi|U, U, U}, V;)
206, and
Rico+ Rip + Ryco<I(Y 13 Vi, Vs, Xi|U, Us, Uy)
=I(Y:;V;, Xi|U, Us, U;)

AN
=07

(43f)

(43g)

Taking into account that R; = R; c1+R; c2+R; p, a Fourier-
Motzkin elimination process in (43) yields:
Ry<min (01,061 + 61,2,041 + 612+ 032), (44a)
Ro<min (022,611 + ag 2,011 + 031 + 042), (44b)
Ry 4 Ro<min(fz1 + 042,021 + as 2,041 + 02,2,
01+ 022,011+ 031+ 041+ 012+ 052,
011+ 071+ 012+ 052,
01,1+ 041+ 012+ 072,
011+ 051+ 012+ 032+ 042,
0114051+ 012+ 052,
011+ 071+ 012+ 042),
2Ry + Ro<min(f1 + 041 + 012 + 072,
011+ 041+ 0714 2012+ 059,
02,1+ 041+ 012+ 052),
Ry 4 2Ry<min(01,1 + 05,1 + 02,2 + 042,
01,1+ 071+ 022+ 042,
2011+ 051+ 612+ 049+ 072),

where 0, ; are defined in (43) with ({,4) € {1,...,7} x{1,2}.

(44c)

(44d)

(44e)

A. An Achievable Region for the Two-user Linear Determinis-
tic Interference Channel with Noisy Channel-Output Feedback

In the LD-IC-NOF model, the channel input of transmitter
i at each channel use is a ¢-dimensional vector X; € {0,1}¢
with ¢ € {1,2} and ¢ as defined in (11). Following this ob-
servation, the random variables U, U;, V;, and X; p described
in (30) in the codebook generation are also vectors, and thus,
in this subsection, they are denoted by U, U;, V; and X; p,
respectively.
The random variables U;, V;, and X,;p are as-
sumed to be mutually independent and uniformly dis-
tributed over the sets {0 1}(””7(max(7”’TL"i)Jﬁ”'J')+)+
{O, 1}(min(nji,(max(ﬁjj,nji)—‘ﬁjj)+)) and {O, 1}(ﬁii7nji)+’
respectively. Note that the random variables U;, V;, and X; p
have the following dimensions:

+
dlmUl :(n]‘i — (max (7jj,nﬁ) — %jj)-‘_) y (453.)
dim V;  =min (nj;, (max (7 ;;,n;:) — %;;)") . and (45b)
dlm Xz,P:(ﬁu — lei)+ (45C)
These dimensions satisfy the following condition:

dimU; 4+ dim V; + dim X; p = max (74, 7j;) < q. (46)

Note that the random variable U in (30) is not used, and
therefore, is a constant. The input symbol of transmitterTi
during channel use n is X; = (UZ‘T,VZ»T,X;P7 (o,... ,O)) ,
where (0,...,0) is put to meet the dimension constraint
dim X; = ¢. Hence, during block ¢t € {1,2,...,T}, the



codeword X Et) in the LD-IC-NOF is a ¢ x N matrix, i.e.,
X = (X1, Xio..., X n) € {0,130V,

The intuition behind this choice is based on the following
observations: (a) The vector U; represents the bits in X,
that can be observed by transmitter j via feedback but no
necessarily by receiver i; (b) The vector V'; represents the bits
in X, that can be observed by receiver j but no necessarily
by receiver 4; and finally, (¢) The vector X 4,p 1s a notational
artefact to denote the bits of X; that are neither in U; nor V/;.
In particular, the bits in X; p are only observed by receiver i,
as shown in Figure 9. This intuition justifies the dimensions
described in (45).

Considering this particular code structure, the following holds
for the terms 6; ;, with (,4) € {1,...,7} x {1, 2}, in (43):

91’1' :I<?“ Uj'U, Xz)

Yn (YU, X

=H (Ujy)

= (nij — (max (ﬁ)mn”) - %ii)+)+ y
92’1' :I<7“ U, Uj, Vj, Xz)

Yr(¥)

=1max (Wﬁ,nij);

03,1:1(7“ VU, Uj,Xi)

(47a)

(47b)

Yu (Yu.u, X))
=H (V)
=min (nij, (maX (W“, nij) - %ii)+> ;

94,1‘:](?1';X¢|U, UivUjaVian)

(47c)

(:b)H (7L|U7 Ui, Uja Vi, VJ>
— (R

b5 :I(?i; vV, XU, U,U;, Vl-)

)" and 47d)

(:b)H (71|U7 Uia Uj7 Vz)
=max (dim X; p,dim V ;)
=1max ( (7“ — nji)+

)

min (nij, (max (7 3, nij) — %ii)+> ), (47¢)

where (a) follows from the fact that H (?AU, U;, Xi) =0;
and (b) follows from the fact that H(?AU, U;V,;, X;)=0.
For the calculation of the last two mutual information terms
in inequalities (43f) and (43g), special notation is used.
Let for instance the vector V'; be the concatenation of the
vectors Xi7HA and XinB, re., V, = (Xi,HA;Xi,HB)~
The vector X; g4 is the part of V; that is available in
both receivers. The vector X; gp is the part of V; that

is exclusively available in receiver j (see Figure 9). Note
that H (V;) = H (X ma) + H (X, yp). Note also that the

vectors X; g4 and X; g possess the following dimensions:

dim X; g 4=min (nji, (max (Wjj, nj;) — %jjﬁ)

—min ((nji— )", (max (7 j5,n5) — % j5)")

+
ﬁ)ii)+ ’ ( *

dimXLHB:min((nji — max (H}jjanji) %jj)

Using this notation, the following holds:

05, =1(Y5 XilU, UL U, V)

Y1 (Y.u,u.,U,.v))

=H (X, na, Xip)

ZdimXi’HA -‘rdimXi,p

=min (nﬂ, (max (ﬁjja nﬂ) — %jj)-‘r)

+
i)
475

— min ( (nji — ﬁ”)+ 5 (max (ﬁjja nji) —
+ (i —mnyi) " and
977i:I(?i;Vj,Xi|U,U7;,Uj)
—1(Yux,U.U,U,;) +1 (Y5 V,lUU,U,. X,
ZI(?Z';X”U,UT;,U]‘) +I<?i;Vj|U,Uj,X¢)
Yn(¥Y.u.U.U,)
=max (H (V;),H (X;na)+ H (Xip))
=max (dim V;,dim X; g4 + dim X; p)
—max (min (nij, (max (ﬁm nij) — %nﬁ )>
")
i)' (max (755, n5:) —

+ (ﬁn - nji)+ );

min (n;;, (max (ﬁjj, nj;) —
i)
47g)

—min ((ny; —

where (c) follows from the fact that H(?AU, U; v, X;) =
0.

Plugging (47) into (44) (after some trivial manipulations)
yields the system of inequalities in Theorem 1.

The sum-rate bound in (44c) can be simplified as follows:

Ry + Ro<min(fa 1 + 042,041 + 022,

010+ 051+ 012 +052). (48)
Note that this follows from the realization that max(t%,l +
042,021 + 022,611 + 051 + 012 + 052) < min(fz1 +
ag,2,061 + 022,011 +031+041+0124+052,011+071+
Or12+052,011+041+6012+072,001+051+012+032+
042,011+ 071+ 612+ 042).

B. An Achievable Region for the Two-user Gaussian Interfer-
ence Channel with Noisy Channel-Output Feedback

Consider that transmitter ¢ uses the following Gaussian input
distribution:

X;=U+U;+V; + X, p, (49)

)-
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Fig. 9. The auxiliary random variables and their relation with signals when channel-output feedback is considered in (a) very weak interference regime, (b)
weak interference regime, (¢) moderate interference regime, (d) strong interference regime and (e) very strong interference regime.

where U, Uy, U, V1, Vo, X4, p, and X5 p in (30) are mutually
independent and distributed as follows:

U~N (0, p), (50a)
Ui~N (0, tidic) , (50b)
VNN (07 (1 - Ml))‘l,C) ) (SOC)
Xi,PNN (07 AZ,P) ) (SOd)
with

p+Xic+Xp=1and (51a)
A p=mi (L 1> (51b)

4, p=11111 INRJZ ) )

where p; € [0,1] and p € {0, (1 — max (ﬁ7ﬁ))+]
The random variables U, Uy, Uz, Vi, Vo, Xy p, and Xo p
can be interpreted as components of the signals X; and
X, following the insights described in this appendix. The
random variable U, which is used in this case, represents the
common component of the channel inputs of transmitter 1 and
transmitter 2.

The parameters p, p;, and A; p define a particular coding
scheme for transmitter ¢. The assignment in (51b) is based
on the intuition obtained from the linear deterministic model,
in which the power of the signal X; p from transmitter ¢ to
receiver 5 must be observed at the noise level. From (2), (3),
and (49), the right-hand side of the inequalities in (43) can

e written in terms of SNﬁl, SNﬁg, INR2, INRoq, §NR1,
NRo, p, p1, and po as follows:

91,1‘:[ (?u Uvj“]7 Xi)
| %i (bz,i(P) + 2) +b1,4(1) +1
T2t %i((l_ﬂj)b2,i(p)+2)+b1,i(1)+1

=as,i(p, 1j); (52a)
02,=1 (Y ;U.U;, V3, X))

1 1
=3 log (bu(P) + 1) 3
=as,i(p); (52b)
03,=1 (Y VU U, X;)
1 1
=3 log ((1 - #j)bQ,z'(P) + 2) )
=ayi(p, 11); (52¢)

94,1':] (?iQ Xi|Ua Ui, Ujv Vi, VJ)

—ay; (52d)
65.=1 (Y 1V}, X|U,U,, U}, Vi)
1 SNR, 1
= §1Og <2 + INR; + (1 - /Jj)bli(p)) 3
=as,i(p, 1t5); (52e)




06,i=1 (7i§Xi|Ua Ui, Uj, VJ)

1. (SNR, 1
5 log (INRﬁ <(1 _“")b“(p) T 1) i 2) T2

=ag,i(p, jti); and

Zélog (IS;\I?:Z <<1_Mi) b2,j(ﬂ)+1) + (1—Mj)bz,i(,0)+2>

1

2
=ar,qi(p, p1, p2)- (52¢)

Finally, plugging (52) into (44) (after some trivial manipu-
lations) yields the system of inequalities in Theorem 2. The
sum-rate bound in (44c) can be simplified as follows:

(52f)

Ry + Ro<min <a2,1(p) +a2,a1,1 + az2(p),

az,1(p, p2) +arn +az2(p, 1) + ar2(p, g, p2),
az,1(p, p2)+as,1(p, p2)+as2(p, p1)+as2(p, 1),
)

az1(p; p2) + a71(p, pa, o) + az2(p, p1) + 01,2)-
(53)

Note that this follows from the realization that max(as21(p)+
aiz,a11 + az2(p),asi(p, p2) + a1, 1 + aza(p, 1) +
ar2(p, ps p2), aza(p, p2) + asa(p,p2) + asz2(p,p) +
as2(p, p1), az1(p, p2)+az1(p, pa, p2)+az2(p, p1)+a12) <
min(az1 + ae2(p, f2), a6,1(p, 1) + az2(p),as1(p; p2) +
as1(p, p2) + a1y + az2(p, 1) + as2(p, p1), as1(p, p2) +
ar1(p, paspi2) + az2(p,p1) + as2(p,p1),a31(p, p2) +
as.1(p, p2) +as2(p, 1) + 032 +ai 2). Therefore, the inequal-
ities in (44) simplify into (23) and this completes the proof of
Theorem 2.

APPENDIX B
CONVERSE PROOF FOR THEOREM 1

This appendix provides a converse proof for Theorem 1.
Inequalities (15a) and (15c¢) correspond to the minimum cut-set
bound [33] and the sum-rate bound for the case of the two-user
LD-IC-POF. The proofs of these bounds are presented in [3].
The rest of this appendix provides a proof of the inequalities
(15b), (15d) and (15e).

Notation. For all i € {1,2}, the channel input X, of the
LD-IC-NOF in (12) for any channel use n € {1,2,...,N}isa
g-dimensional vector, with ¢ in (11), that can be written as the
concatenation of four vectors: X; ¢n, X pn, Xi Dn, and

X i€ Xin = (XTI X ps X1p X1g.0) a8
shown in Figure 10. Note that this notation is independent of
the feedback parameters %11 and %22, and it holds for all
n € {1,2,..., N}. More specifically,

X .cn represents the bits of X ,, that are observed by both
receivers. Then,

dim X ;¢ =min (7735, 1;:) ; (54a)

X pn represents the bits of X; ,, that are observed only at
receiver 7. Then,

dim Xi,P,n:(ﬁ)ii — nji)"’; (54b)

X, p,n represents the bits of X;,, that are observed only at
receiver j. Then,

dim X p n=(nj; — W)"; and (54¢)

Xion=1(0,..., O)T is included for dimensional matching of
the model in (13). Then,
(544)

The bits X; ¢, are fixed and thus do not carry any informa-
tion. Hence, the following holds:

H (Xi,n):H(Xi,C,nv Xi,P,na Xi,D,n7 Xi,Q,n)
:H(Xi,CJu Xi,P,na Xi,D,n)
<dim Xi,C,n + dim )(1'713771 + dim Xi,D,'m

dim X; g n,=¢ — max (W“, nji) -

(54e)

Note that vectors X; p, and X; p, do not exist simulta-
neously. The former exists when W“ > nj;, while the latter
exists when W“ < mnj;. Moreover, the dimension of X,
satisfies

dim Xim:dim Xi,C',n + dim Xi,P,n + dim Xi,D,n
+dim X; g.n
=q. (54f)

For the case in which feedback is taken into account an alter-

native notation is adopted. Let X ; p ,, be written in terms of
T

X prn and X;.p.n, €0 Xipa = (Xl prm X D
The vector X; pr, represents the bits of X; p, that are
above the noise level in the feedback link from receiver j to
transmitter j; and X; pg,, represents the bits of X; p ,, that
are below the noise level in the feedback link from receiver
7 to transmitter j, as shown in Figure 10. The dimension of
vectors X; prn, and X; pg,, are given by

dlm Xi,DF,n =min <(le7 - ﬁii)+ 5 (%]’j — ﬁm‘
—min (75 —nji) ")

- ((ﬁjj — )" — njz-)+ )+) and (55a)

dimXLDG’n:dimXi’D’n — dim Xi,DF,n~ (55b)

Let X; ¢ be written in terms of X; cr; » and X; cq; n

lT’CG],’n) . The vector Xi,Cij
represents the bits of X; ¢, that are above the noise level
in the feedback link from receiver j to transmitter j; and
Xi.ca;n represents the bits of X; ¢, that are below the
noise level in the feedback link from receiver j to transmitter
7, as shown in Figure 10. Let also, the dimension of vector

(XZ CF; s XlDF’n) be defined as follows:

- T
1.€., Xi,C,n = (Xz‘,CFj,vL?X

dim <<X1 CFj,n XiTDF,n»
= (min (575, max (7 5, n5)) = (755 = nji)+>+ (56)

The dimension of vectors X i,cF;;m and X i,CG;mn can be
obtained as follows:

dim X; o, =dim ((X] o, 0 X1 ppr ) ) — dim X prin
(57a)
(57b)

and

dim Xz‘,CG]»,n:dim Xi,C,n — dim Xi,CFj,n-
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Fig. 10. Example of the notation of the channel inputs and the channel outputs when channel-output feedback is considered.

More generally, when needed, the vector X;r, ,, is used to
represent the bits of X, ,, that are above the noise level in the
feedback link from receiver k to transmitter k, with k € {1,2}.
The vector Xz, » is used to represent the bits of X; ,, that
are below the noise level in the feedback link from receiver k
to transmitter k.

The vector Xy, is used to represent the bits of vector
X that interfere with bits of X o, at receiver j and
those bits of X; ,, that are observed by receiver j and do not
interfere any bits from transmitter j. An alternative definition
of the vector X; 17, is the following: the bits of vector X; ,,
that are observed by receiver 7 and do not interfere any bits
corresponding to the vector X ; p . An example is shown in
Figure 11.

Based on its definition, the dimension of vector X; 7,5, is

dim Xiﬁyﬁn:min (ﬁjj; nij) — min ((ﬁjj — nji)Jr ,nij)
+ (njz- - ﬁjj)—i_ . (58)
Finally, for all ¢+ € {1,2}, with j € {1,2} \ {i}, the
channel output Y, of the LD-IC-NOF in (12) for any
channel use n € {1,2,...,N} is a g-dimensional vec-

tor, with ¢ in (11), that can be written as the concate-
nation of three vectors: ? Qn, and iG> L€,

Yo = (V1o ¥T

,m?

i,n,
an) , as shown in Figure 10.

More specifically, the vector ?m contains the bits that are
above the noise level in the feedback link from receiver 7 to
transmitter 7. Then,

dim ?Z—,n:min (%ii, max (ﬁ)”, Nij) ) ) (59a)

The vector 71Gn contains the bits that are below the noise
level in the feedback link from receiver ¢ to transmitter ¢. Then,

dim 7i’g,n:(max (W”,HU) — %”>+ (59b)

The vector ?an = (0,...,0) is included for dimensional
matching with the model in (13). Then,

H <7i7”>:H(7i,Q,na ?um 72Gn)
:H(?i,n, ?i,G,n)

<dimY,, +dimY;cn. (59¢)

The dimension of 71"“ satisfies dim 7”1 =q.
Using this notation, the proof continues as follows.

Proof of (15b): First, consider nj; < ﬁn, i.e., vector
X pn exists and vector X; p, does not exist. From the
assumption that the message index W; is i.i.d. following a
uniform distribution over the set W;, the following holds for
any k € {1,2,...,N}:

NR;=H (W;)

9w, w;))
®)
<I (Wi ¥, YW, + No(N)

—H (Y., Y,[W,) + N&(N)
;iH&WﬁMV7M1vQM%
X, jm) + N6(N)
H

(X ¥l X ) + N6(N)

=NH (Xix)+ N§(N),
N(dlmXZCk+dlmX1pk)+N(5( ) (60)
where, (a) follows from the fact that W, and W5 are inde-
pendent; (b) follows from Fano’s inequality; and (c) follows
from the fact that X, = f](") (I/Vj7 j,(l:n—l))-
Second, consider the case in which nj; > ﬁ” In this case
the vector X; p,, does not exist and the vector X ; p , exists.
From the assumption that the message index W, is i.i.d.
following a uniform distribution over the set W;, hence the

following holds for any k € {1,2,...,N}:
NR;,=H (W,)
(a)
=H (W;|W;)

()



[
T

(Y. ¥, W) + No()
(71n;?jn|wja7z (1in— 1)a?3 (1:n—1)»

H
jm) + NO(N)
H

C

[¢jz

3
Il
-

/N
M= ¥

(Xz Cn;Xi CFJ-;ruXi,DFm) + N(S(N)

2&

ZH( i,Cyn zDF,n) + NO(N)

:NH(Xi,c,k,Xi,DF,k) + NO(N),

<N(dimXi,C7k+dimX¢7DF,k) + NO(N). (61)

Then, (60) and (61) can be expressed as one inequality in the
asymptotic regime, as follows:

R;<dim X ¢, +dim X; pj +dim X; prg, (62)

which holds for any k € {1,2,...,N}.

Plugging (54a), (54b), and (55a) in (62), and after some trivial

manipulations, the following holds:

Rigmin (max(ﬁii, n]‘i) , max (ﬁiia %jj — (ﬁjj —nji)+ )) .
(63)

This completes the proof of (15b).

Proof of (15d): From the assumption that the message indices

W1 and Wy are i.i.d. following a uniform distribution over

the sets VW, and W, respectively, the following holds for any
ke{l,2,...,N}:

N (Ry+ Ry) = H (W1) + H (W>)
(Wi P, V) + 1 (W ¥, V) 4+ No()
<H(Y\) -8 (Y.W) - H (X200, Y1, X))
+H <72) —H (?2|W2) - H (X1,c|W2,y2;X2>
+NS(N)
—H (71> - H(?1|Wl) - H<X2,CaX1,U‘W17?1aX1>
+H (Ys) - H (Yaws)
—H (X 1.0, Xo0|Wa, ¥, X2) + NS(N)
=H (Y1) + [I (X0, X1,05W1, Y1)
—H (X0, X10) | + H (V)
+[1 (X o Xows We, ¥a) — H (X 1,0, X20)]
—H (Vi) - H (Yo Ws) + NS(N)
Y (V11X 10, X20) - H (X100 X20[Y))
+H (Yol Xac, X10) — H (Xa0, X10[Y2)
+1 (XQ,CHXLU;Wla?l) +I(X1,C,X2,U§W2a?2>
—H (Yo 1) — 1 (Vs Ws) + N§(N)

<H (?1|X1,07X2,U> +H (72|X2,C7X1,U>
H (X X0 W, Y1) + 1 (X1 0, Xo s Wa, Ya)
—H (Yuwy) - H (Yo Ws) + No(N)

<H(Y\|X10,Xow) + H (Yo Xo0, X10)
+I <X2,CaX1,U7W2»?2§W1;?1>
I (X0 Xow, W1, Y 1502, V)
—H (YoWs) + N6(N)

—H (Y| X 10, Xo0) + H (Yo Xo0, X10)
+I (Wz;W1,?1> +1 <X2,C>X1,U7?2§W17Y1|W2>
+1 (W We, Vo) + 1 (X100 X, ¥as o, Vo i)
—H (Y w1) - H (Y Ws) + No(NV)

Yy (71|X1,C7X2,U> +H (72|X2,C7X1,U>
+H (W) + H (Y1 [W) — H (W1 We)

—u (Y. m)

H (Y 1[Wo, W1) + H (Xo0, X10, Yol Wa) + H (W)
1 (YalWa) — H(WaolWy) — H (Yo Wy, W)
+H (Xl,C;X2,U»y1‘W1) — (?1|W1) — (?2|W2)
+NS(N)

<H (?1|X1,C7X2,U> +H (?2|X2,C7X1,U>
+H (X2,C,X1,U,<?2\W2) +H (Xl,CvXQ,U7?1|W1>
+No(N)
N
=> {H (?1,n|X1,CaX2,Ua?1,(1:n71)>
n=1
+H (?2,n|X2,C;X1,Ua?2,(1:n—1))
+H(X2,C,n7 X1.Um, ?2,n|W23 Xo.0,(1m—-1)
X1,U,(1:n—1),<172,(1:n—1))
+H(X1,C,n7 X2.Um, ?1,n|W1, X1,0,(1m-1)

Xo.U,(1in—1) ?1,(1:%1))} + N§(N)

N
(i)z |:H (717n|X17C, X2,U’ 7L,(l:'nfl))
n=1

+H (72,n|X2,C;Xl,Uv?Q,(l:n—l))
+H (Xz,c,n, X1,0m, <172,n|VV2, Xo.0,(1m—-1)
Xl,U,(l:n—1)7?2,(1:71—1)7X2,(1:n))
+H<X1,c,n, Xo.Um, <171,n|VV1, X1,0,(1m-1)
X2 U,(1:n—1)» ?1,(1:71—1)7 Xl,(l:n)):| + N(;(N)
X
<Z { ( 1n|X1,C,n7X2,U,n>

n=1

+H (?27n|X2,C,m Xl,U,n)
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Fig. 11.

Vector X; 7, in different combination of interference regimes.
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+H (XQ Umn,

X1Un, ?2,71
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+
=

Xon)
X1,) | +No(N)

N
(1=
=
la
Yy
5/
+
=
o
Yy
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3
Il
—

+ o+
SRS

(e)
H(X1pr)+H (Xopr)+H(X1,0x)

?2,k|X2,kaXl7U7k) +H (X20)
?1,k|X1,k7X27U7k)} + N§(N),

é
+ o+
SRS

I
=

(X1,pk) + H (X2 pk) +H(X1,uk)
Xi.cm ks X1,0F k| X2k X1,uk) + H(X2uk)
X2,CF1,kaX2,DF,k|X1,k7X2,U,k)] + NG&(N)

(X1pk)+H (Xopr)+H(X1,uk)
(X1,crk X106 X1,uk) + H(X2uk)
(X2,CF1,I€’X2,DF,k|X2,U,k):| + NO(N),

dim X17p7k + dim X27P7k + dim Xl,U,k

/N
+ + = + +
S I 2 2 g

<N

—

+
+ ( dim (X1,¢p,.k, X1,pF k) — dim Xl,U,k)

+dim X5y + ( dim (Xo.cr .k, X2,DF k)

+
. dimXQ,U,k) ] + N§(N). (64)

where, (a) follows from Fano’s inequality; (b) follows from the
fact that H(Y) — H(X) = H(Y|X) — H(X|Y); (c) follows
from the fact that H (X s,c, X0, Yl Wi, Wy, ¥ ) = 05 (@)

follows from the fact that X; , = f-(”) (Wi, ?i,(lmq)); and

(e) follows from the fact that conditioning reduces the entropy.

Plugging (54b), (56), and (58) in (64) and after some trivial

20

Xl,U,n

Xoumn {

manipulations, the following holds in the asymptotic regime:

Ri+R2 < max ( (711 — 7”L12)Jr , N21,
1 — (max (713, m5) = 10) ")
+ max ((722 —no1) " s,

oy — (max (792, n21) — %22)+)- (65)

This completes the proof of (15d).

Proof of (15¢): From the assumption that the message indices
W; and W; are ii.d. following a uniform distribution over
the sets W; and W; respectively, for all i € {1,2}, with j €
{1,2} \ {4}, the following holds for any k € {1,2,...,N}:

N(2R; +R;) =2H (W;) + H (W;)
(WP V) + 1 (W ¥ VW)
+1(W;: ¥, Y,) + No(N)
Y (¥)-u(Yw) -8 (YW, Y))
+H (YW, Y,) + 8 (Y,) - H (Y, W, Y,)
+NS(N)
—H(Y) -1 (Y W) - H(X,0.X,p/W,,Y,)
+H (71|Wj§j)
+H (Y,) - H(Xi0, Xo0/W;, ¥;) + N3(N)
<H (?1) - H (?AWZ-) - H (Xj,c,Xi,U|Wi7Yi)

+H (YW, Y) + B (Y)) - H(X.cW;. Y))

<H (?1) - H (?AWZ) + [1 (Xj,Cin,UQWi,?i)
~H (X0, Xo0)] + H (Yo, X0l Y)
+H (Y,) ~ H(X.clW;. Y;) + N3()



=H ?J —H(?|W) [I <Xj C,XiUQW%?l)

—H (X0, Xo0) | + H (Y0, ¥, X0

+H (Y,) + N3(N)
<H ?1) H (VW) + [1 (X0, Xo05 W3, Y5
H(X;c, zU)}ﬁLH(? \Wg,?szc)
+H (¥, X0, X0 ) + NS(N)
Yg (¥ z)— (?|W»)+I(ch, X,0: W, Y))

+H (YW, ¥, Xoo) + H (Y |X 0. Xu0)
+NS(N)

(%) n(Fw)
(X0 X oo, W3, ¥ W, Y)
+H <72|W37?],X1,C> + H (7.7|Xj,C7Xi7U>
+No(N)

Du(Y.) -1 (Yw, w,,)
+H (Xj,CaXi,U»?ﬂWj) + H (?ﬂWj,?j,Xi,C)
+H <7j\Xj,c,Xi,U) + N3(N)

gH(?l) +H(Xj,C,Xi,U7?j|Wj>
+H (YW, Y, Xoc) + H (V)X 0. Xo0)
+N§(N)

N

<> {H (7
n=1
Xj,C',(l:n—l)vXi,U,(l:n—1)7?j,(lzn—l))
+H <?i,n|Wj7?j7Xi,C?7i,(1:TL71))

+H <7j,n|Xj,C7 Xi}U7 7j,(l:nfl)):|
+NJ(N)
N
- [H (?
n=1
Xj,C,(l:n—l)’XiaUa(L"—l)’?17(11”—1)’Xja(1:n))
+H (7i,n|Wj,?j,Xi,c,71-,(1:,1_1),Xj,<1;n>)
+H <7j,n|Xj,c, X, v, 7j,(1:n71)):|
+NS(N)
N
n=1
+H <?j’n|ijn,Xi,U,n) +H (?i,n‘Xi,C,nanA,n)
+H (Y5l X Xiwn) | + N6(V)
gN[H (7i,k) +H(X;vr) +H (?J’,k

17”) —+ H(Xj,c,n,, Xi,U,TH ?]7H|WJ7

17”) + H(Xj,c,ny Xi,U,TH ?],H|WJ7

1,n) +H (Xi,U,n|Xj,n)

+H (Xipp) + H (X k) | + NO(N)

j,k:7Xi,U,k)

21

_N [H (Yir) + H (Xiun)
+H (Xi.cr, 0, Xipre Xivk) + H (X pr)
+H (Xjpx) | + NO(N),

<N {dim ?i,k + dim ?i,G,k +dim X vk

+ (dim (Xi,CFj,ka Xz‘,DF,k) — dim Xi:U:k)Jr
+dim X; p -‘rdiij,p’k} +N5(N), (66)

where, (a) follows from Fano’s inequality; (b) follows from
the fact that H < iIWi, Wj> = 0; (c) follows from the
fact that H(Y|X) = H(X,Y) — H(X); and (d) follows from
the fact that H(ij, Xivu, Y,;|W;, W;, ?,) =0.
Plugging (54b), (56), (58), (59a), and (59b) in (66) and
after some trivial manipulations, the following holds in the
asymptotic regime:

2R;+R; < )*
4+ max ( (ﬁjj — TLji)+ s Mgy

75 — (max (7 55,m5) = 7 55) " ) ©7

max (ﬁ“, lei) —+ (ﬁ” — Tlij

This completes the proof of (15¢e).

APPENDIX C
PROOF OF THEOREM 3

The outer bounds (29a) and (29c) correspond to the outer
bounds of the case of perfect channel-output feedback derived
in [3]. The bounds (29b), (29d) and (29e) correspond to
new outer bounds. Before presenting the proof, consider the
parameter h; iy, with ¢ € {1,2} and j € {1,2} \ {3}, defined
as follows:

0 if (S1,;V S24V S3;)

hiiv — g if (Sas v S5.), ©8)
J

where, the events S ;, S2,4, S3,i, Sa,4, and S5 ; are defined in
(24). Consider also the following signals:

Xicn=v/INR;; Xin + Z jn and (69)
Xivm=hjiv Xim+ Z jms (70)

where, X; ,, and 73»,” are the channel input of transmitter ¢
and the noise observed at receiver j during a given channel
use n € {1,2,...,N}, as described by (2). The following
lemma is instrumental in the present proof of Theorem 3.

Lemma 1: For all i € {1,2}, with j € {1,2} \ {i}, the
following holds:

h (Y, w;)

I(XiC7Xj U,?i,Wi;?j,Wj) <

+Z[

3
—Elog (27‘&'6)}. (71)

Xicn)+h (?i,np{i,m Xj,U,n>

Proof: The proof of Lemma 1 is presented in this ap-
pendix. [ ]
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Fig. 12.
bound on R1 + Ra; and (¢) Model used to calculate the outer bound on 2R; + R»

Proof of (29b): From the assumption that the message index
W; is i.i.d. following a uniform distribution over the set W;,
the following holds for any k € {1,2,...,N}:

NRi = H (W)
=H (W;|W;)

L1 (W ¥ VW) + No()

N
<Z|: <?Z’n7?‘]n|wjv7 ,(1in—1) ? 7,(Lin—1)>»

n=

X)) = h (Zin) ~1(Z,) |+ va(w)
3 b (7 Fonl1) = (Z) =1 (7]

+NS(N)
=N [h(Vin, Yl X,0) — log (2me)] + N&(N), (72)

[

where (a) follows from Fano’s inequality (see Figure 12a).
From (72), the following holds in the asymptotic regime:
by,;(p) + 1) (bm +(1- P2)>

+1> .(73)
This completes the proof of (29b).
Proof of (29d): From the assumption that the message indices
W1 and Wy are i.i.d. following a uniform distribution over

the sets VW, and W, respectively, the following holds for any
ke{l,2,...,N}:

ngh (?i,ka yjﬁﬂXjﬁ) — log (271’6)

g% log <b37i + 1)
1 (bi’”’ +ba;(p) + 1) SNR;
+§10g (

N (R1 + R2) = H (Wy) + H (Ws)
Yy (Wi Y0 Y1) + 1 (Wa: ¥, V) + NO(V)
—n(Y) +h(ZY)) - n(Yiw)
n (YU YL X)) 40 (Ys) + 0 (2,]Y)

—h (YalWa) — b (Yo We, Yo, X5) + NS(N)

Genie-Aided G-IC-NOF models for channel use n. (a) Model used to calculate the outer bound on Rp; (b) Model used to calculate the outer

<h (Y1) +1(Z:) ~n(Yam)
(Xl Y1, X0) + 1 (Y2) + 1 (2,)
“h (YaWs) = h (X1clWa, ¥a, X2) + NS(N)

(1) (¥

—h(Xsc, ZoWi Y1, X))

h(? WY1 X1 Xac) +h (Ys)

( 2|W2) (Xl,c,71\W2,?2,X2>

(Z.Wa, Y3, X2, X 1.0) + Nlog (2me)

5(N)
=h (Y1) —h(Y.m)
“h

(Xz.co X100, Y1, X))

+h (ZaW, ¥ 1. X0, X0 0) + 1 (Ys)

(Yol Wa) = h (X 10, Xou|Wa, ¥, X)
+h (21 We, Yo, X0, X1.¢) + N log (2re)
+N&(N)

=h (?1> —h (?1|W1>+ [I (Xz,c, X103 Wy, Y1)
—h(Xa0, X10) | + 1 (V2) = h (Va02)
+[1 <X1,07X2,U§W2a?2) —h(X1.0, X20)]
+h (21 We, Yo, X0, X 1.¢)
+h (Z2W1, Y1, X1, Xo.c) + N log (2re)
+N&(N)

<h (V1) —h (Vamn)+[1(
—h (X2, XI,U)} +h (72)
+[1 (X0 Xows W, Y)

1 (X0, X1,0/¥) —h (Xo.0, X1.0[¥2, X1, X ) |

[0 (X106, Xo0[P1) =h (X100 Xo,0[ V1, Xa, X1 ) |

+h (21 Wa, Y5, X2, X 1.0)

+h (72|W1, ?1,X1,X2,c> + Nlog (2me) + NO(N)

+

—h
+h
+N

X2,CaX1,U§W17?1)
— 1 (Yolw2)

~ (X1 Xap)]



Uh (V11X 10 Xo0) — h (Vi)
+ (X X101, Y1) + 1 (Yl Xoo X10)
“h (YoWe) +1(X1oo Xowi We, Ys)
(2, 2oY 0. X1, Xo) — 1 (25, 2,|¥ 1, X2, X))
+h (21 W2, Y2, X0, X1 )
+h (221, Y1, X1, X5.0) + Nlog (2me) + N3(N)

<h (Y1X 1, Xo0) —h (Y1I01)
+I (Xz,c, X103 Wi, ?1> +h (?2|X2,C>X1,U>
—h (?2|W2> +1 (XI,C7X27U; Wa, ?2>
+N log (2me) + N6(N)
<h <?1\X1,C,X2,U> —h <?1|W1)
+1 <X2 c, X1 U,W27?2;W1,?1>
+h (? | X 2.0, X1 U) (?2|W2>
<X1,C7X2,UaW17?1§W27?2>
+N log (2me) + N6(N)

N
59 [h (V11X 00, X0, ¥ )

n=1

+h (X1,un|X2.0m) +h (?2,n|X2,n7 X1.0m)
+h (?2,n|X2,c, Xl,U?Z(l:n—l))

0 (Xopal X1.0n) + (V10| X1 0 Xo 00
—3log (2776)] + Nlog (2me) + N§(N)

N
< Z |:h/ (?1,n|X1,C,n; XQ,U,n) +h (Xl,U,n|X2,C,n)
n=1

+h (?27n|X27n7 Xl,U,n> +h (?Q,anQ}C,n; Xl,U,n)
+h (XaunlX10m) + 1 (Y 10| X1 Xa00)
—3log (27‘1’6)} + Nlog (2me) + N§(N)

:N[h (?1,k|X1,C,k,X2,U,k) +h( %)
+h (?2,k|X2,k; Xl,U,k) +h (72,k|X2,C,k, Xl,U,Ie)
+h (XolXnew) +h (Vial X Xoon)

—3log (2776)} + Nlog (2me) + N§(N),

(74)

where (a) follows from Fano’s inequality (see Figure 12b);
(b) follows from the fact that h( ,) —h(X,c,X,v) +

W(Xie X,0lY) = h(YiXie. X,0): (© fol-
the fact that h(?i\Wj,?j,Xj,Xi,(,‘) -
h(z,iﬂﬁ,xi,){j) < 0; and (d) follows from
Lemma 1.

From (74), the following holds in the asymptotic regime for
any k€ {1,2,...,N}:

lows from

Ri+Rs <

h (?1,k|X1,C,k,X2,U,k) +h( k)

23

+h <?2,k|X2,k7 Xl,U,k) +h <?2,k‘X2,C,k7 Xl,U,k)
+h (Xo,vk|X1,0%) +h (Yl,kp{l,k» X2,U,k)
—2log (2me)

g% log (det (Var (71,/67 X17C7k, XQ)U)]g)))

1
—3 log (INR42 + 1)

—5 log (det (Var (‘XQ’]€7 Xl,U,k‘)))

+% log (det (Var (72,1“ Xo,0,k; XLUJC)))

1
—3 log (INRg; + 1)

2 (
(

1
+§ log (det (Var (yl,k,Xl,kaXQ,U,k>))
1
) log (det (Var (X1, X2,u.x))) + log (2me) , (75)

where, for all 4 € {1,2}, with j € {1,2} \ {¢} the following
holds for any k € {1,2,...,N}:

det (Vaf (?j,kv X0k Xi,U,k-)) = Sﬁj +INR;j; + b2, ¢
72hji U INR]z + (1 — 2) (INRl]INRﬂ

B0 (SNR; + INRy;) — 20y 0 INRy/INR, )

+2p\/ﬁ (VINRji — hjiv) (76a)
det (Var (V0. Xj0 Xowa) ) = 1+ hr (1 97)
ﬁ (1= %) (h2, 1 — 2hys,u0/INRy; + INRy;) -
(SNR; + 2p\/SNR,INR,;; + INRy; +1)
(76b)
det(Var (X; 5, X; 1)) = 14 (1 — p?) b3, . (76¢)

The expressions in (76) depend on Sy ;, S2;, S3, S, and
Ss,; via the parameter hj; 7 in (68). Hence, the following cases
are identified:

Case 1: (5172 V 5272 V 55,2) N (51,1 \Y 5271 V 5571). From (68),
it follows that hi2 y = 0 and ha1,y = 0. Therefore, plugging
the expression (76) into (75) yields (26a).

Case 2: (Sl 2V SQ 2V 55 2) (53 1V 5471). From (68), it
follows that hip.y = 0 and hoy,y = INR”INRm . Therefore,
plugging the expression (76) into (75) ylelds (26b)

Case 3: (Sg 2V Sy 2) (51 1V SQ 1V 55 1) From (68), it
follows that hig y = %M and hg1,y = 0. Therefore,
plugging the expression (76) into (75) yields (26c).

Case 4: (S52V S42)A(S3,1VSs1). From (68), it follows that
hig,u = %& and ho v = INR”INRM . Therefore,
plugging the expression (76) into (75) ylelds (26d)

This completes the proof of (29d).

Proof of (29¢): From the assumption that the message indices
W; and W; are i.i.d. following a uniform distribution over
the sets W; and W; respectively, for all ¢ € {1,2}, with j €



{1,2}\ {3}, the following holds for any k € {1,2,..., N}

N (2Ri+ R;) = 2H (W) + H (W;)

(a)

H(Wi) + H (Wi|W;) + H (W;)

(W YY) +1(WsY. Y, W)

+I<W Y, Y,) + Now)

<H(P)n(Z)

+h (?ﬂwj) —h (?j\wiywj) +1 (Wi;7ileyj)
—h (?jle) —h (7j|Wj, i‘)

+h (7]) +h (<ZJ)
+NG(N)

1 (¥ - (Faw)

<h(Y:) - n(Yw;) -

<?1|Wi> —h <?i|Wi7 ?z)

- h(71|W17?17X’L)
—h (?ﬂWi,Wj) +1 (Wi; ?i|Wja ?J) +h (7J>

—h (YW, ¥, X,) + Nlog (2me) + N3(N)

W(Y W, Y, X))

+I(WZ,? |W],? )+ (Y))

>+Nlog(27re) + NG&(N)

n (¥,

()1 <? ) -
+1 (WY ow,, ¥,) +
—h(XiclW, Y, X))
—n(¥:) - n(Yw) -
+h (
+h (
FNS(N

(d

+
>
Ni

E )
P ()

\

+h(Z, W, Y, X, X,

' (Y) - n(Yiw) -
§1Wi ?mXuX]gc) +I(Wi§7i|Wj’?j)

( ]C‘Wh?i,Xi)
n(¥))
+ Nlog (2me) + N&(N)

(X0, 2w, Y, X))

)= h
Z,W. Y X0 X,0) +1(Wa Yo, Y,)
Y,

), ( ic|W;, Y )+Nlog(27re)
)

n(Xio XiolWe Vi, X)

W,, Y, X,) + Nlog (2re) + N&(N)

5.0 X ulWi, ?J

h(X
)
i)

Xic/W;,Y;) + Nlog (2me) + N3(N)

=h

at

at
(Wi ¥ X W, Y,) + 0 (V)
= (

(

Y.) - n(Yiwi) -

+h (7j|Wi7?iaXian,C

( j,CaXi,UWVia?i)
+h (YW, Y, X0)

)
—h (71, Xi,C|Wiv Wj, ?J) +h <7J)

+Nlog (2me) + N§(N

h(¥) - n (V) -

)

h(Xj,CaXi,U|Wia?i>

+h (2, W, Yo X0, X,0) +h (YW, Y X0

—h (1_}¢7Xi,c|WiaWja ?j,XiaXJ) +h (?ﬂ)

+N log (2me) + N4 (

N)
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—n (Y)) =0 (VW) = h (X0, X0 W, Y
+h (2, W, Yo X0, X0) +h (YW, Y X 0)
—h (2, 7,7|Wi, Wi, ?iji,XJ) +h (77)
+N log (2me) + N6(N)

Cn(F)) — h(Faws) - h (X0, X0l V)
+h (?Z‘W], yj,X@@) +h (71) + NlOg (27‘(6)
+NS(N)

<h (7¢) —h (?AWZ) +1 <Xj,c, X W, ?z>
—h(X,c,Xiv)+h <?1|Wj7 ?j, ch) +h <?J>
+h (X0, X,0[¥;) + Nlog (2me) + N3(N)

@y, (17 ) h (?lez) +1 (Xj,CaXi,U§ Ww?z>
+h (YW, Y, Xoe) + 1 (Y1 X 0. Xo0)
+N log (2me) + NJ(N)

< h (7l) - h (?AWZ) + 1 <Xj’c, Xi,U; Wj, ?J‘; Wi, ?z>
+h (YW, Y, Xoe) + 1 (Y1 X 0. Xo0)
+N log (2me) + NJ(N)

(h)

N
<h (77,> + Z {h (Xs,unlXjom)+h (vj,n‘Xj,ny Xi,U,n)

n=1
—g log (27’1’6)} +h (?AW], ?j, Xi,C’)
+h (Y,1X 0. X10) + Nlog (2me) + N3(N)
; N
(<)h (77,> + Z {h (XivnlXjon) +h (?j,n\X;‘,n, Xi,U,n)

n=1
3
_5 log (271'6)} +h <7i|Xi,07Xj> +h (?j|vac, Xi,U)
+Nlog (2me) + N§(N)

N
< Z |:h (71,71) + h (XiA,U,n|Xj,C,n) + h <?j,n|Xj,n7 Xi,U,n)
n=1

—% log (27¢) + h (¥ 0| Xicons X
th (7j,n|Xj,c,m Xi,U,n)} + Nlog (2me) + NO(N)
= N[ (Vir) +h XivrlXon) + b (Vi rl X Xirrs)
—g log (2¢) + h (¥ 41| Xi oo, X
+h (Y 501X Xiwa ) + 21og (2me) + 5(N)] . an

where, (a) follows from the fact that W; and Ws
are mutually independent; (b) follows from Fano’s in-
equality (see Figure 12c); (c) follows from (2) and
(69); (d) follows from (70); (e) follows from (4) and
the fact that conditioning reduces the entropy; (f) fol-
lows from the fact that h(zj\Wj,?i,Xi,Xj,c) —
W(ZZ, Wi, W, Y 1, X, X ;) < 0 (2) follows from the
fact that b (V) — h (X ;0. Xo0) + h (X0, Xow[¥) =
h(?j\ijc,XiyU); (h) follows from Lemma 1; and (i)



follows from the fact that conditioning reduces the entropy.

From (77), the following holds in the asymptotic regime for
any k € {1,2,...N}:

2R, +R;

N

h <7zk> +h(Xukl X0k
?j,kp(j,ka Xi,U,k) +h (7i,k|Xi,C,ka Xj,k)

7Jk|

(s NE; + 2p/SN INR”—i—INR”+1>
og

+h

/N

1
Ok Xi Uk) —3 log (27e)

N)\»—A 4?—
S

N

_|_

log (det (Var (X, 1, Xs k)
~ /%) (SNE, + INRy;))

— p?) INR;)

+
[l S R O »—‘w\'—'

)

_|_§10g (det (Var (7;‘@ Xj.ck Xi@k) >>

+21og (2re) . (78)

The outer bound on (78) depends on Sy ;, S ;, S35, S4,4, and
Ss; via the parameter hj; 7 in (68). Hence, as in the previous
part, the following cases are identified:

Case 1: (S1;VS2,;V.S5 ;). From (68), it follows that h; ;7 = 0.
Therefore, plugging the expressions (76) into (78) yields (27a).
Case 2: (S3; V S4;). From (68), it follows that hj;, y =

[INR;INR;; . . .
g, Therefore, plugging the expressions (76) into

(78) yields (27b).
This completes the proof of (29¢) and the proof of Theorem 3.

A. Proof of Lemma 1

Lemma 1 is proved as follows:

[(Xie, X0 YW Y, W)

=1 (Wz, Y, W) 4 (X X0, Y Y, W5 W)

WY W) = h (Y, Wi W) + b (X e, X0, YW
—h(Xie, X0 YW W, Y )

=n (Y, w,) = n (YW, W) + b (Xion X0, Yo W5)
—h(Xie, X0 YW W, Y)

—h (Y, W) + b (Xie, X0, Y W)
—h(Xie, X0 Y0 V50 W)

=h (§7j|Wj) +XN:

n=1

Xi.c,(1in=1), X 4,U,(1:n=1)> ?i,(lzn—l)a Xi,(l:n))

h(X'L',C,n, Xj,U,’rLa ?i,n|W’L’a

25
—h (Xi,C,na XU ?i,na ?j,n Wi, W, X0, (1:n—1)>

XU, (1in—1)s ?i,(m—n, ?j,(l:n—l), X (1:n) Xj,(l:n))]

gh(?j|wj)+ZN:

n=1

*h(?j,n; ?i,n; ?i,na ?j,n|Wia Wja Xi,C,(l:n—1)7

Xj,U,(l:nfl)v ?i,(lznfl)a ?j,(lznfl)v Xi,(l:n)7 Xj,(l:n))]

N

=h (?ﬂWj) +Y

n=1

+h( 7 Un‘X'L ny Xz C n) + h(?i,n‘Xi,ny Xi,C,n7 Xj,U,n)
—h (7]‘,71) —h (71,71) - h(?i,m ?J’,nlw w.

Xi,C,(l:n—1)7 Xj,U,(l:n—l)a ?i,(l:n—lﬁ ?j,(lzn—l)a

Xi,(l:n)a Xj,(l:n)a ?j,na 7z,n)‘|
N
<h(Y,w)+ 3

n=1

+h(yi,n|Xi,n7 Xj,U,n) —h (Zvn) —h (7”)

~ ~
*h(Zi,n; Zj.,n|Wi7 Wja Xi,C,(l:n—l), Xj,U,(l:n—l)a

Xj,(lrn)7 7.7‘,717 7“1)1

o)
n)—h (Z..)
~0(Zin) = 1(Z;.)

N

=h (Y,1W;) + Z

h (Xi,C,m Xj.0.m, ?i’" |X1n)

h (Xi,C,n ‘Xz,n)

h(?j7n|X1—_’n) + h(Xj,U,n\Xi,C,n)

?i,(lznfl)v ?j,(lznfl)a Xi,(l:n)7

o 70+ 5

n=1

+h(?z,n|Xz ns X

n(X0,

jUn|XzCn)

+h (?i,n|Xz L X ) N % IOg (2W6>] ’

— —
where (a) follows from the fact that Z;, and Z ;, are inde-
pendent of Wi, W;, X ¢ (1:n-1)» X u,(1:p-1)> Y i,(1:n—1)>
vj,(l:nfl)s Xi,(l:n)s Xj,(l:n)s s and
This completes the proof of Lemma 1.

APPENDIX D
PROOF OF THEOREM 4

This appendix presents a proof of the Theorem 4. The gap,
denoted by 6, between the sets Cq_rc—nor and Cq_1c_noF
(Definition 2) is approximated as follows:

Sar O3m, O3m,
o= mas (31, 0, 5", 5 B ).

(79)



where,

o, = min (s1,1(0), 2,1 (), 3,1 (p') ) — min (az,1(p),

a1 (p, p1)+as2(p, p1), ar1+as2(p, 1) +asz(p, ul))7
(80a)

0r, = min <H1,2(p')7 k2,2(p"), k3,2(p") ) — min (a272(P),

as,1(p, p2)+as2(p, p2), as1(p, p2)+aa1(p, p2) +a1,2) ;
(80b)

bare = min (1a(p), k5 (), () ) = min (az,1(p) + a1z,
ai,1 + azz2(p),
az,1(p, p2) +ary +az2(p, 1) + ar2(p, pr, p2),
az,1(p, p2) + as,1(p, p2) + az2(p, p1) + as 2(p, p1),

az1(p, p2) + ara(p, p, po) +as2(p, pa) + a1,2)7 (80¢)

d3r,= K7,1(p) — min (a271(,0) +a11+ asz2(p, 1)

+az2(p, 1, p2), as,1(p, p2) + ai1 + az1(p, 1, p2)
+2a32(p, p1) + as2(p, 1), a2,1(p) + a1 + az2(p, 1)

+asa(p.m)). (30d)

3R, = Kr,2(p") — min (as,l(p, p2) + as1(p, p2) + az2(p)
+a1,2,a3,1(p, p2) + az1(p, 1, p2) + az.2(p) + a2,
2a3,1(p, 12) + as1(p, p2) + as2(p, 1) + a12

+ara(p s iz) ). (80¢)

where, p' € [0,1] and (p, 1, p2) € [0, (1 — max (
i) ] % [0.1) x [0, 1.

Note that §r, and g, represent the gap between the active
achievable single-rate bound and the active converse single-
rate bound; Jo represents the gap between the active achiev-
able sum-rate bound and the active converse sum-rate bound;
and, d3r, and d3p, represent the gap between the active
achievable weighted sum-rate bound and the active converse
weighted sum-rate bound.

It is important to highlight that, as suggested in [3], [6], and
[8], the gap between C_jc_nop and Co_1c_NOF can be
calculated more precisely. However, the choice in (79) eases
the calculations at the expense of less precision. Note also
that whether the bounds are active (achievable or converse) in
either of the equalities in (80) depend on the exact values of
Sﬁl, Sﬁg, INRq2, INRoq, ml, and %2. Hence a key
point in order to find the gap between the achievable region
and the converse region is to choose a convenient coding
scheme for the achievable region, i.e., the values of p, 11, and
L2, according to the definitions in (80) for all 7 € {1,2}. This
particular coding scheme is chosen such that the expressions
in (80) become simpler to upper bound at the expense of a
looser outer bound. This particular coding scheme is different
for each interference regime. The following describes all the
key cases and the corresponding coding schemes.

Case 1: INR;s > SNR; and INRy; > Sﬁg. This case
corresponds to the scenario in which both transmitter-receiver

_1
INR12’

26

pairs are in high interference regime (HIR). Three subcases
follow considering the SNR in the feedback links.

Case 1.1: SNRy < SNR; and SNR; < SNR,. In this case
the coding scheme is: p =0, u; = 0 and po = 0.

Case 1.2: SNRy, > SNR; and SNR; > SNR,. In this case
the coding scheme is: p =0, u; = 1, and py = 1.

Case 1.3: SNRy, < SNR; and SNR; > SNR,. In this case
the coding scheme is: p =0, ;3 =0, and pe = 1.

Case 2: INR1» < Sﬁl and INRy; < Sﬁg. This case
corresponds to the scenario in which both transmitter-receiver
pairs are in low interference regime (LIR). There are twelve
subcases that must be studied separately.

In the following four subcases, the achievability scheme pres-
ented above is used considering the following coding scheme:
p=0,u; =0,and pus =0.

Case 2.1: %1 < INRoy, %2 < INRq2, INR12INRy; >
SNEl and INR;2INR5; > SNRos.

Case 2.2: ml g INRQl, mleRzl < Sﬁg,
INR5INRy;, > SNR, and INR;»INR,; < SNRs.
Case 23: SNR;INRi» < SNE;, SNR, . <
INR2INR3; < SNR; and INR;2INRo; > Sﬁg.
Case 24: SNRyINR1» < SNEi, SNRoINRy < SNR,
INR2INR3; < SNR; and INR;2INRy; < Sﬁg.

In the following four subcases, the achievability scheme

presented above is used considering the following coding
INR§1§NR2
(INRglfl)(INR,21§NR2+SNﬁ2

INR;2,

scheme: p = 0,

B INRZ,SNR,

- (INR1271)(INR12m1+Sﬁ1)
Case 2.5: SNR; > INRy;, SNRy > INRya, INR1oINRy; >
SNigl and INnglNRgl > SN 2.

Case 2.6 SNR, > INRy., SNRoINRy . > SNR,,
INR12INRy, > SNE; and INR;2INRy; < SNE».
Case 2.7: SNR;INR;; > SNK;, SNR, >
INR12INRy; < SNR; and INR;»INRy; > SNR».
Case 2.8: SNR;INR;2 > SNR;, m{QINRgl > SﬁQ,
INR12INRo; < SNE; and INR;2INRy; < SNE».

In the following four subcases, the achievability scheme pres-
ented above is used considering the following coding scheme:
INR2,8NR;
(INR1z—1) (INR12SNR, +5NR, )
Case 2.9: SNR; > INRy1, SNRy < INRy2, INR1oINRy; >

SNﬁl and INR;5INRy; > SNRo.

Case 2.10: SNR; > INRy;, SNRyINRy . < SNK,
INR;2INRy; > SNR; and INR;5INRy; < SNR».

Case 2.11: SNR;INR;» > SNR;. SNRy . < INRy,
INR;2INRy; < SNE; and INR;3INRy; > SNR».

Case 2.12: SNR,INRy» > SNR;, SNRyINRy < SNK.,
INR;2INRy; < SN, and INR;5INRy; < SNE».

Case 3: INR1y, > Sﬁl and INRy; < Sﬁg. This case
corresponds to the scenario in which transmitter-receiver pair
1 is in HIR and transmitter-receiver pair 2 is in LIR. There
are four subcases that must be studied separately.

In the following two subcases, the achievability scheme pres-
ented above is used considering the following coding scheme:
p=0,u; =0,and pus =0.

Case 3.1: SNRy < INRy5 and INR;oINRy; > SNK,.

), and

M2

INR12,

p=0,p1=0,and pg =



Case 3.2: SNRoINRy; < SNK, and INR1oINRs; < SNE.
In the following two subcases, the achievability scheme pres-
ented above is used considering the following coding scheme:
p=0, 1 =1, and pus =0.

Case 3.3: SNR» > INRy5 and INR;5INRy; > SNK,.

Case 3.4: SNR,INRy; > SNK, and INR;5INRy; < SNE,.

The following is the calculation of the gap J in Case 1.1.

1) Calculation of dg,. From (80a) and considering the cor-
responding coding scheme for the achievable region
(p =0, pp =0 and pg = 0), it follows that

o, <min (1,1(p'), 2,1 (0)), g1 ()
— min ((16,1(0, 0), a1+ 04472(07 0)), (81)

where the exact value of p’ is chosen to provide at least
an outer bound for (81).
Note that in this case:

K11(p ')zllog (b1 1(p ')—1—1)

log( 1+2V SN 1INR12+INR12+1)

()
< log <2ﬁ1 + 2INRj2 + 1)

2
%log(ﬁ1+INR12+1)+%, (82a)
o ()= 3 Tog (1+ bua (0') + B o(4)
%log (SNE, + INRy: + 1), (82b)
1L+
L4 g(ﬁg (ba1(p') + bsa(p )+1)+1>
2 (b1,2(1)+1) (ba,1(p')+1)

(gélog (Sﬁl + 1>
1 %2 (Sﬁl + INRo; + ].)

+lo +1
2% (SNR2+INR21+1)(SNR1+1)
SNR (SNﬁ +INRg; +1
E i 2 >+SN§1+1
2 SNRs + INRo; + 1
(82¢)

where (a) follows from the fact that 0 < p’ < 1; (b)
follows from the fact that

(\/ SNR, — \/INRu)Q > 0; (83)

and (c) follows from the fact that x31(p") is a mono-
tonically decreasing function of p'.
Note also that the achievable bound a; 1 +a4,2(0,0) can
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be lower bounded as follows:

SN,

INRy;

1 1
a1+as2(0,0)=5lo ( )+2log(INR21+1)

WV

l\J\Hl\DMﬁ[\DM—t N | =

1
1 Zlog (TNRy, ) —
Og(INR21 >+2 Og( R21>

IOg ﬁl + 21NR21) -1

\%

(SN
log (ﬁl + INRg; + INR21) -
(

log (SNR, + INRy, +1) = 1. (84)

From (81), (82) and (84), assuming that
a1+ a4,2(0,0) < ag1(0,0), it follows that

o, <mnin (k1,1(0'), R2.1() K3.1(0) = (a1 1,20, 0)

<ko1(p") — (al,l + a472(070))
<1 (85)

Now, assuming that ag1(0,0) < a11 + a4,2(0,0), the
following holds:

dRr, <min (m,l(p’), k2,1(p"), H3,1(p)) — a6,1(0,0). (86)

To calculate an upper bound for (86), the following cases
are considered:

Case 1.1.1: SN ﬁl > INRy; A SN ﬁQ < INRq9;

Case 1.1.2: SNﬁl < INRg; A SN ﬁz > INR;9; and
Case 1.1.3: SN ﬁl < INRs; A SN ﬁg < INRqs.

In Case 1.1.1, from (82) and (86), it follows that

Or, <k2,1(p") — a6,1(0,0)

g% log (Sﬁl + INRg; + 1> — %log (Sﬁl + 2)

1
3
g%log (Sﬁl +Sﬁ1 + 1) — %log (ml + 2)
1
3
<1. 387)

In Case 1.1.2, from (82) and (86), it follows that
R, <r31(p') — ag,1(0,0)

%2 (Sﬁl +INRg; Jrl)

SNR, + INRy; + 1
—%log (Sﬁl +2) + %
<%log (m%g erl + 1) — %log (ml + 2)

+SNR, 41

<

log

DO =

1
3
%1 (Sﬁ1+m1+l)—%log(8ﬁ1+2)
1
3
<l (88)



In Case 1.1.3 two_additional cases are considered:
Case 1.1.3.1: Sﬁl > SNRs; and

Case 1.1.3.2: sﬁl < Sﬁz.

In Case 1.1.3.1, from (82) and (86), it follows that

dr, <ks,1(p") — a6,1(0,0)

mig (Sﬁl +INRo; —|—1)

<Liog +SNR, +1
2 SNRs + INRg; + 1
1 1
:% log (Sﬁl + 1)
+1 ) m@ (Sﬁ1 + INRo; + 1) 1
— 10,
2 % (sﬁ2+INR21+1) (SNR1+1)

—%log (Sﬁl —|—2) +%

1 N IN IN IN
<log(s ﬁ1( Ro; + INRg; + R21)+1>

INR,, SNE,

3
=_. 89
: (89)
In Case 1.1.3.2, from (82) and (86), it follows that

Or, <r3,1(p") — a6,1(0,0)

Io MQ (SﬁquINRQlJrl)
0og

1
2 SNRj + INRy; + 1
1 1
fﬁlog (Sﬁl + 2) + B
g% log (%2 + Sﬁl + 1) — %log (sﬁl + 2)

+SNR, +1

<

1
T3
<% log (SNfi1 + SNE, + 1) - %log (SNﬁ1 +2)
4L
2
<1. (90)

Then, from (85), (87), (88), (89), and (90), it follows
that in Case 1.1:

3
531\5. 91

The same procedure holds to calculate 0, and it yields:

3
Ora <. 92)

2) Calculation of 3. From (80c) and considering the cor-
responding coding scheme for the achievable region
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(p=0, p1 =0 and py = 0), it follows that
ai,1 + az2(0),as5,1(0,0) + as2(0, 0))

<min ( a(p")k5(p') ) — min (a2,1(0) + a1,

ar1 + az.2(0), as.1 0,0)—|—a572(0,0)). 93)
Note that
11 ) o+
= log (1 ’ Zlog (b 1
ka(p') 5 log +1+b52(p,) + 5 log 12(0") +
1 b41(p’)) < , )
<=log (1 ) Zlog (b 1
5 0g< +b572(p,) + 5 log 1,2(p") +
1 SNE, 1 ( ) )
7510g (1+INR21) +§log bi2(p) +1
D) INRy,
1
+3 log (2SNﬁ2 + 2INRy; + 1) 7
< Log (14 N
S % INRy,

+% log <Sﬁ2 + INRo; + 1) + %

<110 2+SN !
S0 INRa;

1 1

+3 log (SNﬁ2 +1INRg; +1) + 5 (94a)
=1 10g (14 2a2l0) > 3108 () 1)
2 1—|—b51p
<L (1+b42 ) = (b )+1)
S5 g b51 2 11

1 L

=—log (1 = 1)
20g<+INR12> i b“ )+
(i1
gf

2 ( INR12)

1

+3 log (25N §1+21NR12+1)

o )

INR;2
1 1
t5 log (m1 +INRq2 + 1) +3

<1log<2+ SN 2)

2

+% log (SNE, + INRy5 + 1) + % (94b)

where (h) follows from the fact that

(\/ SNR, — \/INR21)2 > 0; (95)




and (i) follows from the fact that

(\/ SNR; — \/INR12)2 > 0. (96)

From (93) and (94), assuming that ag1(0) + a12 <

min (am + a22(0), a5,1(0,0) + a52(0,0 ) it follows
that

Jop<min (54(p’)7 55(p’)) — (012’1(0) + CLLQ)

<ks(p') — <a2 1(0) + aLZ)

log (24 2N NE,
8 INRys

log (SNE, + INRy + 1) +
(Hl + INR 5 + 1)

0g<SN 2 +2)+1

1
<=
2

+
N | =

—

N = M\HI\DM—‘

INR2

3
5 7

From (93) and (94), assuming that a1 1 + a22(0) <

min (ag)l(O) + a1,2, Cl571(07 0) + a5)2(0, 0)), it follows
that

dop<min (54(0,)7 /@5([)/)) - (01,1 + a2,2(0))
<ka(p') — (Cll 1+ a2 2(0))

<dos (24 SN, )

2 INRs;
1 1
5 (ﬂz + INRo; + 1) + 5
% g (SNK; + INRgy + 1)
L SNR,
3
5 (98)

Now, assume that a5 1(0,0)+a5,2(0,0) < min(ag,;(0)+
ai,2,a1,1 + a2,2(0)). In this case, the following holds:
523<min(ﬁ4(p'), ng,(p’)) - (am(o, 0)-+as.2(0, 0)). (99)

To calculate an upper bound for (99), the cases 1.1.1 -
1.1.3 defined above are analyzed hereunder.
In Case 1.1.1, a51(0,0) + a52(0,0) can be lower
bounded as follows:

SN ﬁ

INRy;

1 (sﬁ
—|~210g

as, 1(0 O) + as, 2(0 O) 1 ( +INR12+].>

INRyy +INRo; + 1) 1

>_log (INRjs +1) — 1. (100)

DN =

From (94), (99), and (100), it follows that
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dar<min (k4(p’), /@5([)’)) — <a571(07 0)+as 2(0, 0))

<ks(p') — (a5,1(0, 0) 4 as,2(0, O)>

ilog<2+ Sﬁz ) —l—% log (Sﬁl—l—INRu—H)

INR2

1 1

1
—log(2+1)+ B log INR2 + INR4o + 1)

VA
DN =

1 3
——log (IN 1 —
5 og (INRi2 +1) + 5
log (3) + 2. (101)

In Case 1.1.2, a51(0,0) + a52(0,0) can be lower
bounded as follows:

SNEE,

1
as,1 (0, 0) +a572(0, 0)2510 (INR2

+INR;2 +1)

1 SNﬁ
I IN 1
-|~2 o <INR12 +INRg; + >
1
2§ log(INRg; +1) — 1. (102)
From (94), (99), and (102), it follows that
J2r<min (/<;4(p’), K5 (p’)) - (a511(0, 0)+as2(0, O))

<kalp) — (a571(0,0) + a5,2(0,0))

1 SNﬁ 1
2log(Q—l— ! >+210g‘SN§2+INR21+1)

INRo

1 1
t573 log (INRg; +1) +1
1

1
— log (2 + 1) + 5 IOg (INR21 + INRoy; + 1)

[\

1 3
75 log (INR21 + ].) + 5

log (3) + 2. (103)

N =

In Case 1.1.3, from (94), (99), and (100), it follows that

Sar<anin (w4 (p'). 15 () = (a5.1 (0, 0) +a5.2(0,0))
<rs(p) ~ (a31(0,0) + a5.2(0,0))

1 SNﬁg 1

<=log(2 —1 SNﬁ INR 1

20g<+INR12>+2 og( 1+ 12+ )
1 1

+§ ~3 log (INR12 +1) + 1

1 1

<§ log(2+1) + 3 log (INRy2 + INRj2 + 1)

1 3

75 log (INR12 + 1) + 5

1

3 log (3) + 2. (104)



Then, from (97), (98), (101), (103), and (104), it follows
that in Case 1.1:

1
3) Calculation of d3r,. From (80d) and considering the

corresponding coding scheme for the achievable region
(p=0, pp =0 and ps = 0), it follows that

d3p, <k71(p")— (a1,1 +a7,1(0,0,0)+as2(0, 0)) .(106)

The sum a1 1 + a7,1(0,0,0) + a5 2(0,0) can be lower
bounded as follows:
+ 2>

a1,1+a7,1(07 07 O) + as,2 (07 O)

) INRy;

1 ( SNT,
log

+% log (sﬁ1 +INRyp +1)

+110 SNE,
2 %%\ INRy,
1 <SNﬁ1

>-1
2 %6\ INRy,

N W

+ INRo; + 1) —

+2> +% log (Sﬁl +INRy2+1)

1 3
—|—§ log (INRg; + 1) — 5

—. (107)
If the term k71 (p’) is active in the converse region, this
can be upper bounded by the sum 11(p’) + ka(p'),
which corresponds to the sum of the single rate and
sum-rate outer bounds respectively, and this can be upper
bounded as follows:

rra(p)<ria(p') + ra(p’)

1 1
SilogQSNﬁl +INR12+1) +§log (2 +

INR2;

)

% log (sTfi2 +INRg; +1) +1

)

1 1
<= -
< 21og(SNﬁ1+INR12+1) +5log (2 + N

1
+§ log (INRg; +INRg; + 1) + 1

)

1 1
<-log(SNE; +INRy5+1)+=log 2
Slog (SNRy +INRyp+1) 42 og( + INRos

3

2
From (106), (107) and (108), it follows that in Case 1.1:

)

1
+5 log (INRy, + 1) + (108)

INRo;

SN,

) 31
+35 log (INRy1 +1) 45— log (INR21 +2>

1 1
03R, <§10g1SN§1 +INR12+1) + §log (2 +

1 1
—glog(SNﬁﬁINRnH) —5log(INRg1 +1)

.3
2

=3. (109)
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The same procedure holds in the calculation of d3, and
it yields:
03R, <3. (110)

Therefore, in Case 1.1, from (79), (92), (91), (105),
(109) and (110) it follows that

O2r O3R, O3R,
2737 3

d=max (531,(532, > < g (111)

This completes the calculation of the gap in Casel.1. Applying
the same procedure to all the other cases listed above yields
that § < 4.4 bits.
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