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Abstract—To implement abstract business processes, elemen-
tary services are selected for each abstract task. Because of
uncertainties of Quality of Service (QoS) values during execution,
services may become faulty and cause the violation of end-
to-end awaited constraints. Additionally, due to the dynamic
nature of service systems, several environment changes may
occur at run-time. In fact, services can join or leave the system
or change their offerings. To deal with possible changes and
maintain the feasibility of the selected solution, enabling dynamic
service selection during execution is essential. This is not a
trivial task especially in the presence of several constraints
and dependencies between services namely QoS and temporal
constraints. Existing approaches do not consider the specificities
of temporal properties and usually handle violations after they
have occurred. In this paper, a novel proactive dynamic service
selection approach is proposed to deal with changes during
execution while considering both QoS and temporal constraints.
Experiments show that, by using our approach, faults can be
successfully handled in a reasonable time while guaranteeing
overall constraints.

Index Terms—Dynamic Service Selection; Dynamic Service
Systems; Uncertainties; Quality of Service; Temporal Properties

I. INTRODUCTION

QoS (Quality of Service) based service selection is one of
the important features of the SOC (Service Oriented Com-
puting) paradigm. It allows to select adequate services to
build compositions so that abstract business processes can be
implemented. Service selection has gained main attention in
the literature. Several attempts proposed strategies to select
services at request time. These approaches select either the
optimal or a near-to-optimal solution to obtain an ex-ante
service composition [1], [2], [3]. During execution, the se-
lected solution may deviate from the estimated values. In fact,
since service-oriented systems are very likely to be executed
in uncertain and dynamic environments, several changes can
affect the selected services and may lead to the violation of
end-to-end global constraints. In addition to changes that can
be observed on the selected services, due to the dynamic nature
of the execution environments, several changes can occur on
the system when executing services. These changes may also
have several impacts on the selected solution.

Therefore, enabling dynamic service selection to support the
development of reliable service based processes is crucial. The
aim is to adjust the selected service combination during the
execution in response to the different changes to prevent viola-
tions that might occur. In real-world applications, QoS values

of services may depend on the time (i.e., time-dependent
QoS) [4], [5]. For instance the response time of a service
can be longer during business hours. In addition, several
temporal dependencies can exist in order to get control over
the execution of processes. These constraints and dependencies
make the dynamic service selection problem more complex.

Several selection approaches have been proposed to adapt
service compositions during execution. A popular way consists
on re-selecting all non-executed services [6], [1], [7]. This
approach can be time consuming and usually requires the
interruption of the execution which is highly undesirable.
Moreover, these approaches suffer from poor scalability due
to the consideration of all candidate services for each task.
Other proposals identify backup solutions during the initial
selection [8], [9], [10]. This is not suitable in highly dynamic
environments. Most of current approaches take adaptation
actions only for corrective purposes and do not provide
techniques to enhance the selected composition at run-time
(e.g., in response to the availability of a new better service).
Moreover, they usually delay the reaction to changes until the
failed service is executed which may lead to the inability to
find a feasible solution. Furthermore, time-dependent QoS and
temporal properties are not considered.

To overcome the limitations of existing approaches, in this
paper, we propose a dynamic time-aware service selection
approach. The proposed approach is proactive since it reacts
to changes as soon as they occur in order to prevent possible
violations at run-time. Reacting to changes at earlier stages
allows to minimize the interruption time of the execution and
to increase the likelihood of finding a feasible recovery. Our
approach caters for both service violations and environment
changes that can be observed at different stages of the ex-
ecution. In contrast to existing approaches, in this paper, in
addition to QoS offerings, we consider temporal constraints
and their dependencies. Experiments show that the proposed
approach allows to handle violations and changes successfully
in a reasonable time without deteriorating overall constraints.

The rest of the paper is organized as follows. In the
next section, we describe a motivating example. Section III
discusses related work. In Section IV, we present the selection
model. We detail our dynamic service selection approach in
Section V. In Section VI, we evaluate the performance of the
proposed approach. Finally, Section VII gives conclusions and
future work.



II. MOTIVATING SCENARIO

In this section, we provide a motivating scenario of device
manufacturing. The corresponding business process is shown
in Figure 1.

Fig. 1. The business process for the production of an electronic device

The production process starts by receiving and writing
technical reports (Al). Then, the adequate model of the
device is designed (A2). After that, the manufacturing of the
electronic and peripheral parts is executed in parallel (A3
and A4). After manufacturing the various parts, these latter
are assembled to deliver the final product (AS). Finally, the
product is tested before delivering (A6). To increase its market
share and profitability and gain control over the production
time, the enterprise sets some constraints. In our example,
we can identify the following constraints: (1) T'Dy 3: The
manufacturing of electronic parts has to finish no earlier than
one time unit and no later than 12 time units after the receipt
of the order. (2) T'D; 4: The manufacturing of peripheral
parts starts no later than 3 time units after the writing of the
technical reports. (3) T'Ds : The test of the final product has
to start no earlier than one time unit and no later than 2 time
units before the assembly of all parts.

We suppose that three global constraints are associated with
the process: (1) the cost must not exceed 68 cost units, (2) the
duration of the execution must be less than 13 time units, and
(3) the finish time of the process must not exceed 10 p.m (i.e.,
22 units of time in our example). To be implemented, each
abstract activity has a set of functionally similar concrete can-
didate services (Figure 2). Some services offer different QoS
values according to their temporal properties. For instance,
when the service Si3 is available from 9 to 13, it offers a
duration of 3 time units and a cost of 23 units (i.e., the service
instance S131). When it is available from 14 to 20, it offers
an execution duration equals to 4 with a cost of 19 units (i.e.,
the service instance Si32).

Avail Dur | Cost Avail Dur | Cost Avail | Dur | Cost
Si11 | [8,15] 4 12 [ Sy, | [12,17] | 1 10 | Sy | [13,22] | 4 12
S | [17,21] | 2 8 [Sy | [7,13] 4 12 | Sy | [8,14] 6 12
Sy | [9,13] 3 23 [ Sy | [9,12] 2 17 | Sa | [10,17] | 4 13
Si3, | [14,20] | 4 19 Sy, | [1421] | 1 15 | Sy, | [17,23] | 5 23

Avail Dur | Cost Avail Dur | Cost Avail Dur | Cost
Ses | 16,131 | 7 | 22 |Sey | 17120 | 1 | 8 [Seu | 119221 | 1 | 7
Sap | [13,23] | 9 18 [Ssy, | [15,20] | 1 14 S | 19,131 6 9
Sezy | [17,24] | 6 15 [ Ssy | [8,16] 3 20 | Sg, | [14,18] | 4 10
Sqar | [12,20] | 4 12 [ Sss; | [14,22] | 2 12 | Sesy | [8,20] 1 6

Fig. 2. Candidate services of each abstract task

To better illustrate the usefulness of the proactive service
re-selection, let’s consider the following scenarios while as-
suming that the initial selected composition of services is C'S*
= (S111, S211, Ss11, Saz1, S531, Se11)-

- Scenario 1: Suppose that during its execution, the service
So11 takes 2 time units rather than 1. In this case, the
global execution duration is not exceeded and the deadline is
respected. Suppose now that another violation occurs when the
service Sg11 is executing. This service takes 2 time units rather
than 1. In this case, the service can not offer the expected cost
and the overall deadline will be violated. Here, replacing the
service Ss31 by Ss1o after the violation of the service Sai
will result in a satisfactory solution even if the violation occurs
on the service Sg11. Thus, reacting to changes as soon as they
occur allows minimizing the interruption time while increasing
the chance to find a solution after violation.

- Scenario 2: Suppose that while executing the service S211,
the service S512 performs better with a cost equals to 10 rather
than 14. In this case, replacing the service Ss3; by the service
Ss12 will lead to a better optimality for the selected service
composition. This helps in preventing proactively the violation
of global constraints in case of future service’s deviations.

III. RELATED WORK

Depending on the time of the detection of failures and their
recovery, selection approaches at run-time can be classified
into reactive and proactive approaches. Reactive approaches
[11], [6], [1] react to changes and deal with erroneous behav-
iors after their occurrence. This might lead to undesirable ef-
fects such as the inability to find a feasible solution. Moreover,
the late reaction to changes might cause a significant inter-
ruption time during the execution of services which is highly
undesirable mainly in time-sensitive applications. To deal with
the limitations of reactive strategies, some approaches adopt a
proactive strategy. The goal is to anticipate required selection
actions prior to the occurrence of possible violations [10],
[12], [13]. The main advantage of this strategy is to increase
the likelihood of finding a possible solution while enhancing
the overall quality and avoiding the interruption of service
execution due to for instance the invocation of a faulty service.

Different techniques have been proposed to adapt service
compositions at run-time. An easy way is by triggering re-
planning actions for one or more non-executed tasks such
that all global constraints are fulfilled. Some approaches
adopt a global service re-selection to select services for all
non-executed tasks [6], [1], [7]. Usually, the same selection
algorithm, used to select the initial combination of services, is
applied while considering the values of the executed services.
Another global re-selection approach is proposed in [14] to
deal with uncertainties of response time during execution. A
Mixed Integer Programming (MIP) model is defined to adjust
the combination of services when a deviation or a violation is
observed. In this work, an optimized extended service binding
is proposed to restrict the number of services considered in
the reconfiguration phase. One issue of this work is that it
considers only one quality attribute that should be optimized.



Other works apply a partial service re-selection to re-
select only a subset of services. In [15], Lin et al. define
reconfiguration regions to adapt the selected combination of
services. In this work, a reconfiguration region is identified for
each faulty service. These regions are enlarged using a distance
measure until a satisfactory solution is found. However, to re-
select services, all potential candidate services are considered
which may lead to a costly adaptation of services. Addition-
ally, reconfiguration actions are taken only when a violation
occurs without preventing possible violations. A similar work
that adopts a partial re-selection strategy is presented in [16]
while considering only a small set of alternative services for
each task. Authors preselect two services for each business
task based on a distance measure with respect to the primary
selected services. Considering only two services may lead to
the inability to find a feasible solution in some cases based on
the already executed services. Moreover, the measures used to
select alternative services are applied locally for each abstract
task and do not consider dependencies between alternative
services of the different tasks. Service re-selection approaches
generally require the interruption of the execution and can not
handle environment changes.

Some researches resort to the use of backup solutions.
Backup solutions are identified prior to the execution of
the service composition so that, if a problem occurs, these
solutions can be used to maintain the successful execution
of services. In [8], Yu et al. propose an offline algorithm to
adapt to service changes. The proposed algorithm identifies a
secondary path from each service to the end service so that
if a service becomes faulty at run-time, the secondary path
from this service will be used to repair the combination of
services. However, only one failure can be handled which is
not appropriate in highly uncertain and dynamic environments.
Dai et al. [10] propose to switch the execution to a backup
solution. Despite the early reaction to changes, only services
that succeed the failed service are considered. However, in
some cases including also non-executed services that precede
the affected service might lead to a better solution. In these
approaches, all backup solutions are determined prior to the
execution without taking into account environment changes.
Considering static backup solutions at request time is not
a practical solution when dealing with highly uncertain and
dynamic environment and heavily constrained problems. For
instance, it may be the case when no predefined plan is feasible
even though a solution to the problem does exist.

Most of current approaches do not consider specific char-
acteristics related to the presence of temporal properties.

IV. SERVICE SELECTION SPECIFICATION

Each business process is composed by a set of abstract tasks
A={Ay,..., A,}. These tasks depend on each other by a set
of structural dependencies. In addition, business designers can
also require supplementary inter-task temporal dependencies.
These latter define constraints related to the start and the finish
time of business tasks. They express dependencies between
two directly or indirectly succeeding tasks (e.g., a task A that

has to start no earlier than v time units after the start of a
task B). We denote by 7D the set of temporal dependencies.
Each temporal dependency td;; € 7D between two tasks A;
and Ay, is denoted by td; (T P, D", DIe*) with TP is the
type of the dependency (e.g., Finish-to-Start (FS), Start-to-
Finish (SF)) and Df,zi” and D[7** denote the minimum and the
maximum duration values between A; and Ay, respectively.
For simplicity, we denote by s;; a candidate service instance
for the task A;. Each service has a quality value Q(s;;, gy)
for each quality attribute ¢, € QS (with QS denotes the set
of quality attributes) and a time span during which it offers
different QoS values (Figure 2). The start and the finish time of
each time span are denoted by t;’?}” and tg’;‘,”, respectively. For
each selection problem, a set of global constraints is required
by users. A global constraint for a QoS attribute g, is denoted
by Q(gy). For simplicity, in this paper, we consider only
negative QoS attributes (whose values need to be minimized).
The successful execution of the business process requires
that the values of selected services are compliant with all con-
straints. In this paper, we assume that a primary service combi-
nation is already identified using existing static approaches [2],
[3]. In [2], we proposed an optimal service selection approach
to select the best combination of services while considering
time-dependent QoS and temporal properties. This work has
been extended in [3] by presenting a heuristic time-aware
service selection approach to efficiently select a close-to-
optimal solution in order to deal with large selection problems.
In the following, we denote by C'S* = {s3,...,s5,...,s5} the
selected solution with s is the selected service for the task
A;. Each selected service s; has a set of quality values as
well as two temporal values which are specified considering
the set of all selected services: the estimated start time and
the estimated finish time denoted respectively by st; and ft;.
Table I presents some extra notations used through this paper.

TABLE I
NOTATIONS USED THROUGHOUT THE PAPER.
Notation Description
m The number of quality attributes
qy The y™ quality attribute with 1 < y < m
Wy The weight of g, given by the user

QA7 gy)™
QAi, g,

Minimum and maximum values of g, for the
task A;, respectively

Q(gy)™™ Minimum and maximum aggregated values
Q(gy)™*® of gy, respectively
Q(A;, qy) The value of gy of the selected service for A;
Agg The aggregation function that derives the
quality values of the composite service from
the quality values of its component services
Q(CS,qy) The value of gy of the composite service C'S
with Q(C'S, q) = Agga,e A(Q(Ai, 9))
Pd(A;) The set of immediate predecessors of the task A;

V. DYNAMIC SERVICE SELECTION APPROACH

The selection of a primary service combination is based on
estimated values [2], [3]. During execution, actual values may
deviate from the estimated ones which may cause the violation
of business and global constraints. To ensure the reliable
execution of the different business tasks while guaranteeing the



satisfaction of end-to-end global constraints, service processes
need to continuously react to varying environmental conditions
during execution. In this section, we present our dynamic
selection approach to enable service composition adaptation
each time new pertinent events arise.

A. Identifying Backup Services

To enhance the efficiency of our approach, we identify a
set of alternative services for each abstract task. Thus, a local
selection can be easily applied to substitute the failed service
by one alternative service. In contrast to existing approaches
that pre-select statically alternative services during the initial
service selection (e.g., [16], [14]), in our approach, alternative
services are dynamically identified. In fact, alternative services
identified during the initial selection may become no more
pertinent when considering the real information during execu-
tion. Thus, in our approach, we argue that alternative services
must be updated and re-identified during execution each time
a change occurs in the selected solution.

1) Execution Thresholds: To identify the most pertinent
services for each task, first, we compute maximum thresholds
that once they are exceeded, global constraints are guaranteed
to be violated. These thresholds are computed for each task
based on both QoS and temporal constraints. The main idea
is to compute the maximum allowed values for each task
while considering the values of the selected services for the
remaining tasks. For instance, if we consider the example
presented in Section II, maximum thresholds for the cost
attribute of the tasks Ay, Ao, A3, A4, As and Ag are equal
to 15, 13, 15, 15, 15 and 10, respectively, considering the
selected combination of services C'S* = (S111, S211, S311,
Si31, Ss31, S611)- Consequently, if for instance, the service
S111 of the first task changes its cost value to 16 rather
than 12, the global execution duration will be violated. To
compute maximum thresholds for the duration attribute as well
as maximum temporal thresholds (i.e., the latest start and finish
time) for each task, we propose the model from (1) to (10).

maximize Q(Ay, dur) (D
Agga,ea(Q(Ai, dur)) < Q(dur),VA; € A 2)
ft, < deadline 3)

fti < stp, VAL € A, A; € Pd(Ay) 4)
Q(A;, dur) = Q(s],dur),YA; € A,i #b (5)
st; + Q(s3, dur) = ft;,VA; € Aji #b (6)

fti+ D™ < stg, ¥ tdi(FS, D™,
st < fti+ DR, Y tdy(FS, D", D) € TD  (8)
Q(Ap, dur) € [Q(s}, dur), Q(dur)] )

sti, fti € [t5", t52°7],VA; € A (10)

m,am) e TD (7)

This model is applied for each task A, € A. Maximum
duration threshold of each task A is equal to its maximum
allowed duration value (i.e., Q(Ay, dur)). The objective func-
tion (1) allows maximizing the duration value of the task Aj.

Constraint (2) is used to guarantee that the global duration
constraint is satisfied. Here, we do not give details about
the aggregation function Agg. Further details can be found
in our previous work [17]. To guarantee the satisfaction of
the deadline, we use the Constraint (3). Constraint (4) deals
with dependencies between tasks. The duration of each task
A; € Aji # b is equal to the duration of its selected
service (Constraint (5)). Moreover, the finish time of each
task A; € A, i # b is equal to the sum of its start time and its
duration (Constraint (6)). To deal with temporal dependencies,
we use Constraints (7) and (8). For simplicity, we consider
only finish-to-start dependencies. The domain of the maximum
duration threshold of the task Aj is presented in Constraint (9).
Finally, the start and the finish time of each task should be in
the time interval of its selected service (Constraint (10)).

The set of maximum thresholds for each task A; is denoted
by TM = (TY,... T}, ..., T} 5) where Tl denotes the
maximum threshold for the attribute g,, V1 <y < m. T2 11
and T})!,, represent the maximum start and finish time of
the task A;, respectively. The latest finish time of the task
A; is equal to its finish time after applying the constraint
optimization model from (1) to (10) (i.e., ft;). Whereas, its
latest start time is equal to ft; — Q(si, dur).

In addition, we identify a set of intermediary thresholds
for each task in order to trigger selection actions before
a violation of a global constraint occurs. The aim is to
adjust the selected solution each time a deviation exceeds
one intermediary threshold so that possible violations in the
remaining non-executed tasks can be prevented. The set of
intermediary thresholds for each task A; is denoted by the
vector T = (T}, ... Tlly, <. T}, 4 ). The intermediary thresh-
old for each attribute can be computed by dividing the sum
of the value of the selected service for this attribute and its
corresponding maximum threshold by 2.

2) Alternative Services: The set of alternative services for
each task A; € A, denoted by Sgyyps, is the set of services
that satisfy all maximum thresholds. Hence, a service s;; is
considered as pertinent to be part of the alternative set, if all
its QoS values do not exceed maximum QoS thresholds and
if it can start and finish its execution without exceeding the
maximum temporal thresholds (i.e, [tmm,t’g’;‘”] [sti, fti] >
Q(s:5,dur)) with st; and ft; are the time values computed
using the model from (1) to (10). A service s;; that satisfies
all maximum thresholds of its corresponding task is denoted
by (si; sat TM). In what follows, —(s;; sat T) denotes
that at least one maximum threshold is not satisfied by the
service s;;. In our approach, alternative services are ranked
according to their distance to the maximum thresholds. The
service that has the largest distance (i.e., the largest score) to
the maximum thresholds will be best ranked. The score of
each service s;; € Sgupi, denoted by score(s;;), is computed
as follows with Tij?\f # Q(Ai, q)™", V1 <y <m,VA; € A

iW 111\/4 _Q(Sijvqy)

score(s;j;)



B. Handling Changes at Run-time

Changes can be divided into two categories: changes in the
services of the selected solution (i.e., s; € C'S*) and changes
in the environment (i.e., an addition of a new service, a
deletion or a modification in the values of a candidate service).

1) Handling Changes in the Selected Solution: Algorithm 1
details our approach to handle changes in the selected services.
If a deviation does not exceed the intermediary thresholds,
it does not affect the selected solution (lines 4 and 5). If
the deviation is between the intermediary and the maximum
thresholds (line 6), our approach proceeds as follows: first,
maximum thresholds and the set of alternative services are
updated for each non-executed task considering the values of
the already executed services (lines 7 and 8) where A,,. denote
the set of non-executed tasks. We note that when updating
temporal thresholds, the start and the finish time of the already
executed services are considered in the model from (1) to
(10). Moreover, the set of supplementary services is updated
by identifying the new alternative services based on the new
values of maximum thresholds and by computing the score of
each service based on equation (11). Then, if there is at least
one alternative service that has a score greater than that of the
selected service, it will be considered in the selected solution
(lines from 9 to 11) where s} denotes the first alternative
service. The aim of this step is to avoid the accumulation
of deviations during execution in order to prevent possible
violations. If a deviation exceeds at least one maximum
threshold or the selected service is no more available (line
12), then, the selected solution is no more satisfactory. In
this case, all maximum thresholds and alternative services are
updated for all non executed tasks (lines 13 and 14). If at
least there is one service in the set of alternative services for
a non-executed task, the selected service of this task will be
substituted by the first alternative service (lines from 15 to
20). We note that the computation of thresholds and backup
services can be applied in parallel for all tasks since they
are independent from one task to another. In case no solution
is found, the region-based service selection is applied (lines
21 and 22). This step is detailed in the next section. In all
cases, if the selected solution is modified, all thresholds and
alternative services will be updated (lines 23 and 24). It is
worth noting that in our approach, if a violation that exceeds
at least one intermediary threshold occurs in a selected but not
yet executed service, we simply replace the selected service
by the first alternative service (in case this latter has a better
score). Steps in lines from 6 to 22 are applied only if the
violation occurs in a service currently in execution.

2) Handling Changes in the Environment: Algorithm 2 de-
tails how we deal with environment changes during execution.
If a service s;; is added for a task A; or a candidate service
changes its values, then, if it satisfies all maximum thresholds,
it will be added to Sgyp; (lines from 3 to 5). If its score is
better than that of the selected service, it will be selected in
CS* (lines from 6 to 8). If an alternative service is no more
available, it will be removed from Sg,,p; (lines 9 and 10).

Algorithm 1 Handling Changes in the Selected Solution

1: Input: The service violation
Output: The new solution C'S* and alternative services
Sol =)
if (s§ sat T) then
Sol = CS*
if —(s5 sat T}) and (s sat TM) then
for each A; € A, do
update(TM | Ssupi)
if score(s}) > score(s{) then
CS* = 08"\ {si} U{sl}
Sol = CS*
12: if —(s$ sat TM) or s¢ is no available then
13:  for each A; € A,,. do
14: update(TM Ssupi)
15:  while Sol =0 and i <n do
16: if Sgupi # () then

R A

—_
—_ o

17: CS*=C8*\ {si} U {sl}

18: Sol = CS*

19: else

20: 1=1+1

21:  if Sol = () then

22: Sol + regionBasedServiceSelection()

23: if Sol # () then
2. update(T], TM , Ssypi)

Algorithm 2 Handling Changes in the Environment

1: Input: The environment change

2: Output: The new solution C'S*™ and alternative services
3: if Addition or modification of a service s;; then

4 if (s;; sat TM) then

5 update(Ssyp;)

6 if score(s}) > score(s{) then

7: CS* =08\ {si} U {sl}

8 update(T!, TM | Ssupi)

9: if Deletion of a service s;; then

10: SSupi = SSupi \ {Sij}

C. Region-based Service Re-selection

To avoid considering all non-executed services, we identify
re-selection regions. The main idea is to include a small
number of non-executed services in each region (hereafter
denoted by R) and then, expand the region until a solution
is found. The identification of regions is based on [15]. The
selection problem is formulated as a constraint optimization
model (Constraints from (12) to (22)). The objective function
(12) allows selecting the best solution. Only the set of alter-
native services before violation is considered in each region.
To guarantee that only one service will be selected for each
task, we add Constraint (14) with a;; = 1 if the service s;; is
selected and O otherwise. In addition, to avoid searching for
the corresponding global constraints for each region, we apply
the selection algorithm for all tasks while assigning to each
task that does not belong to R, the originally selected service



before the violation (Constraints (15) and (16)). To guarantee
the satisfaction of global constraints, we add Constraint (17).
The start and finish time of each non-executed task belong to
the time span of its selected service (Constraints from (18) to
(20)). The start and the finish time of each executed task are
equal to the time of its already executed service. Constraint
(21) identifies the domain of the time interval of each task
in R. The start and the finish time of a non-executed task
that does not belong to the selection region should belong to
the time span of its already selected service (Constraint (22)).
Finally, Constraint (23) guarantees that the overall deadline
is satisfied. To handle structural and temporal dependencies
between tasks, Constraints (4), (7) and (8) can be used.

Q(‘Jy)maw - Q(CS, Qy)

m
maximize E Wy *

, (12)
2 Qg = Qg™
Q(CS,qy) = Aggaeal Y aij*Q(sij,qy)),Vay € QS
Si; ESSupi
(13)
> ay=1,Y4; € Aa;; €{0,1} (14)
Sij ESsupi
aij =1,VA; ¢ R,si; = s} (15)
a” = O,VAZ ¢ R, sij 75 Sf (16)
Q(CS, qy) < Qlgy),Vay € QS 17
> *17" < st VA; € Ane (18)
Si; ESsupi
st; < Z Qij * (t;r;aa: — Q(Sij, dur)),VAi € Aye (19)
8i; ESsupi
fti = st; + Z i * Q(si5,dur),VA; € Ape  (20)
Sij eSSupz
sty ft; € [minsijGSSum{tZ:"},maxsijegSupi{tZZf“;
(21)
Sti, ftl € [t;’;in,tzawLVAi ¢ R, Al S Ane (22)
ft, < deadline (23)

VI. PERFORMANCE EVALUATION

In this section, we evaluate the performance of the proposed
approach by studying its time complexity and analyzing ex-
perimental results based on simulation studies.

A. Complexity evaluation

The complexity of our approach is mainly affected by the
complexity of the local selection (lines from 12 to 20 in
Algorithm 1) and the region-based selection steps.

- Local service selection: The time complexity of the local
selection stage depends on the complexity of the following
steps: (i) computing thresholds, (ii) updating the set of alter-
native services and (iii) locally selecting new services. The
computation of thresholds is independent on the number of
services per tasks and the number of business tasks, since
QoS and temporal thresholds for all tasks can be computed

in parallel. Thus, the complexity of this step is O(no) with
no denotes the operation number of equation resolution of
the proposed model. The updating of the set of alternative
services consists on selecting and computing the scores of the
services that satisfy the new thresholds which has a complexity
of O(s) (with s is the number of alternative services per
task) and the ranking of the new set of alternative services
which has a complexity equals to O(ns) in the best case and
O(ns x log(ns)) in the worst case with ns is the number of
the new alternative services. For simplicity, we assume that the
number of alternative services is the same for all tasks. The
local selection has a complexity of O(1) in the best case (i.e.,
the first non-executed task has a non empty set of alternative
services) and a complexity of O(e) in the worst case (i.e., only
the last non-executed task has a non empty set of services) with
e denotes the number of non-executed tasks (i.e., ¢ =| Ape |).
Thus, the complexity of the local selection phase is equal to
O(no+s+nsxlog(ns) +e) = O(ns*log(ns)) in the worst
case.

- Region based service selection: The complexity of this
step is equal to O(27*%) with r is the number of tasks in the
selection region R. More specifically, it is equal to O(2%*%)
in the best case (i.e., in case when a solution to the selection
problem is found when only two non-executed tasks are
included in R) and is equal to O(2°*¥) in the worst case (i.e.,
all non-executed tasks are included in R).

In conclusion, in the worst case, the complexity of our
approach is equal to O(ns * log(ns)) when a solution is
found based on local selection and is equal to O(2°*¢) when
a solution is found using the region based selection approach.

B. Experimental Results

To evaluate the performance of our approach, we conduct
|,VA; € Rexperlments using a complex business process composed of 10
abstract tasks. The structure of the process is generated ran-
domly. The number of candidate services and QoS constraints
is fixed to 500 and 5, respectively. Constraint optimization
models are implemented using the constraint solver Choco'.

Fig. 3. Progress of the electronic device production business process

We have developed a simulation tool to perform the different
test cases. This tool implements the proposed approach and
manages faults and changes during execution. It also allows

Thttp://www.emn.fr/z-info/choco-solver/
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Fig. 5. Performance

visualizing the execution progress of the different tasks as well
as the different changes that might occur at run-time. Figure
3 shows a screenshot of the tool where the execution of the
process presented in Section II is depicted. We can see that a
change occurs in task A3 (task in red) during the execution of
the task A; (task in green). We study the performance of our
approach in terms of the computation time, the optimality and
the success rate comparing to the global approach in which a
selection from scratch for all unexecuted tasks is applied [1].

First, we compare the computation time of the two ap-
proaches in the case of a deletion or a violation of a selected
but not yet executed service (Figure 4(a)) and a deletion or
a violation of a service currently in execution (Figure 4(b)).
In these two cases, we suppose that the violation exceeds the
maximum thresholds and thus a re-selection is mandatory to
guarantee the satisfaction of global constraints. In Figure 4(a),
we assume that the violation or the deletion of the selected
service occurs after two tasks from the one being executed
(e.g., while executing the first task, the violation occurs on
the third task). Experiments reveal that the computation time
of our approach is negligible compared to that of the global
approach. This is mainly due to the fact that in our approach,
a solution can be found based on local re-selection. However,
the global approach delays the reaction to changes until the
execution of the failed service. We note that unlike the global
approach, our approach does not cause the interruption of the
execution since the selection actions are taken as soon as the
change occurs in parallel to the execution. In Figure 4(b), when
the interruption of execution is required, our approach has a
very small interruption time even when the change occurs

in terms of optimality

at earlier stages. In fact, in some cases, our approach can
find a solution based on local selection. Moreover, selecting
services only for a specific region while considering a set
of alternative services for each task allows enhancing the
performance of our approach since it decreases the number of
possible combinations that have to be compared. Experiments
also show that the computation time of both approaches
decreases when the position of the executed task get closer to
the end of the process. This is due to the fact that the number
of tasks that are considered in the selection process becomes
smaller and the number of possible solutions decreases.

To evaluate the gain of utility of our approach, we compare
its optimality with that of the global approach (Figures 5). The
optimality of each approach is computed by dividing the utility
value (equation (12)) of the obtained solution after changes
by the utility value of the primary combination of services.
As can be seen in Figure 5(a), our approach reaches better
optimality in all cases since it allows early reaction to changes.
Figure 5(b) indicates that in the case where the erroneous
behavior is observed in the service currently in execution,
our approach can produce a satisfactory optimality. Here, the
global approach has better optimality since it considers all
possible combinations of services in contrast to our approach
that can find a solution by local selection.

Figure 6 (a) depicts the computation time in response to
the number of changes which are added randomly at run-time.
These changes include the addition, the modification and the
deletion of alternative services as well as deviations in the
selected services. All deviations are assumed to be less than the
maximum thresholds. The positions of changes and deviations
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are generated randomly. Results show that although the com-
putation time of the global approach is almost negligible when
the number of changes is very small, it increases by increasing
the number of changes. In contrast, the computation time of
our approach is very small in most cases. This is explained
by the fact that the global approach usually does not react to
changes if the global constraints are not violated. If a global
violation occurs, the execution is interrupted until a solution
is found and usually a re-selection for all the non-executed
portion of the business process is required which can be time
consuming. However, our approach takes selection actions and
enhance the selected solution even before the occurrence of
a global violation. Figure 6 (b) indicates that our approach
has better success rate since it reacts to changes as soon as
they occur which increases the likelihood to find a solution.
Whereas, when using the global approach, it might be the
case where no solution is found after a global violation. This
is due to the fact of delaying the reaction to changes after the
execution of the failed service.

VII. CONCLUSION

In this paper, we proposed a dynamic service selection
approach to support the development of reliable business
processes. The goal is to tackle uncertainties and dynamic
environments during execution. To do so, a set of thresholds
is identified for each task to characterize the pertinence to
trigger dynamic selection actions. To enhance the efficiency
of our approach, we identify a set of alternative services
for each task. Our approach differs from existing ones by
the fact that thresholds and alternative services are updated
during execution based on the values of the already executed
services. Moreover, reactions to changes are made as soon
as they occur in order to avoid execution interruption and
increase the likelihood of finding a satisfactory solution. To
reduce the complexity of the proposed approach, a local
service selection is applied. Moreover, we propose a region
based service selection approach to avoid re-selecting all non-
executed services. Unlike existing work, our approach allows
not only dealing with run-time deviations, but also it enables
to enhance the selected service composition. Moreover, our
approach considers time-dependent QoS associated with tem-
poral constraints. To study the effectiveness of our approach,
we implemented a simulation tool. The experiments show that

our approach performs well in most cases by finding feasible
solutions in a reasonable time with a satisfactory optimality. As
a future work, we aim to extend the proposed approach to deal
with several changes at the same time and propose strategies
to handle potential conflicts between recovery actions. In
addition, we intend to further compare our approach with other
existing approaches based for example on backup solutions.
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