
HAL Id: hal-01396981
https://hal.science/hal-01396981

Submitted on 8 Feb 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Heuristic Based Time-Aware Service Selection Approach
Ikbel Guidara, Nawal Guermouche, Tarak Chaari, Saïd Tazi, Mohamed Jmaiel

To cite this version:
Ikbel Guidara, Nawal Guermouche, Tarak Chaari, Saïd Tazi, Mohamed Jmaiel. Heuristic Based Time-
Aware Service Selection Approach. International Conference on Web Services, Jun 2015, New York,
United States. �10.1109/ICWS.2015.19�. �hal-01396981�

https://hal.science/hal-01396981
https://hal.archives-ouvertes.fr


Heuristic based Time-aware Service Selection
Approach

Ikbel Guidara1,2,3, Nawal Guermouche1,2
1CNRS, LAAS, 7 avenue du colonel Roche

F-31400 Toulouse, France
2Univ de Toulouse, UT1, INSA, LAAS

F-31400 Toulouse, France
{iguidara, nguermou}@laas.fr

Tarak Chaari3, Said Tazi1,2 and Mohamed Jmaiel3
3ReDCAD Laboratory, University of Sfax

National Engineering School of Sfax
B.P. 1173, 3038 Sfax, Tunisia

tarak.chaari@redcad.org, tazi@laas.fr
mohamed.jmaiel@enis.rnu.tn

Abstract—QoS-based service selection is one of the important
requirements in Service Oriented Computing (SOC). A chal-
lenging task towards this purpose is the selection of the best
combination of services that fulfils user’s requirements while
meeting quality of service (QoS) constraints. This challenge
becomes more complex when dealing with time-dependent QoS
values and temporal properties. Indeed, during the selection,
mutual dependencies between the different temporal constraints
may arise so that the selection of each service may influence
or be influenced by the selection of other services. On other
side, to find the best solution, all potential combinations must
be compared. However, the number of these combinations may
be very high, which can present a barrier for enabling effective
service selection. In this paper, we present a heuristic based time-
aware service selection approach to efficiently select a close-to-
optimal combination of services. First, pruning techniques are
adopted to reduce the search space. Second, a novel heuristic
approach is proposed based on service clustering, constraints
decomposition and local selection while considering both QoS
and temporal constraints. Finally, experiments which confirm the
feasibility and effectiveness of the proposed approach in terms
of its timeliness and optimality, are conducted.

Index Terms—Service selection; Heuristic; Time-dependent
QoS; Constraints decomposition; Clustering; Pruning;

I. INTRODUCTION

Service-Oriented Computing (SOC) has emerged as a
promising concept to integrate and compose atomic services
for fulfilling complex tasks which can be specified as abstract
processes. One of the key requirements in service composition
is to ensure that the selected combination of services meets
global quality of service (QoS) constraints. During the selec-
tion process, candidate services are evaluated in terms of both
functional and QoS properties. As a large number of services
can have similar functionality to realize the awaited abstract
tasks, a specific issue that emerges is which services should
be selected to form the optimal solution meeting end-user’s
global QoS constraints.

QoS-aware service selection becomes even more challeng-
ing when dealing with time-dependent QoS values (i.e., the
offered QoS can change during time) and temporal constraints.
In fact, in real world scenarios, QoS values of candidate
services are not static and can change over time. For instance,
the cost of a service can be higher in business hours. Moreover,

temporal properties and dependencies between services can
be specified at the abstract business level. For example, the
business designer can require that the duration between the
start times of two tasks should be less than a specific threshold.

Considering temporal properties when selecting the best
solution brings two specific problems. First, as candidate
services can have different QoS with respect to the execution
time, each service can be considered as offering more than
one instance. Hence, the number of service combinations that
have to be compared becomes larger and then, the selection
process requires more time to find the best solution. The
second issue is that when dealing with temporal properties,
the selection of one service can influence or be influenced by
the selection of another service. These dependencies make the
selection problem heavily constrained and thus, more complex
to resolve.

Several selection approaches have been proposed in the
literature. Global selection which enumerates and compares
all the possible solutions is proven to be NP-hard [1], [2].
This is not practical in real-world applications when a solution
has to be selected in a reasonable time. Some works adopt
heuristic strategies to enhance the performance of the selection
process [3], [4], [5]. These approaches are usually based
on the decomposition of global QoS constraints into local
ones. However, they are not appropriate when handling time-
dependent QoS values. In fact, selecting the best service of
each task based on local QoS constraints can not guarantee
that temporal constraints will be satisfied. Despite several
works dealing with the service selection problem, most of the
selection approaches consider static QoS values and do not
deal with temporal properties.

In this paper, we propose a novel heuristic approach to select
a near-to-optimal solution while considering QoS and temporal
constraints. First, pruning techniques are applied to reduce
the number of candidate services that have to be considered
in the selection process. After that, we detail our heuristic
approach that allows selecting a close-to-optimal solution (i.e.,
combination of services) that satisfies global constraints and
maximizes overall utility. The proposed approach is based
on clustering and constraints decomposition techniques and
local selection while dealing with temporal properties. Our



experiments revealed that our heuristic approach performs
better than existing selection approaches and reaches solutions
at least as good as the optimal solution.

The paper is structured as follows. In Section II, we specify
the selection problem. In Section III, we give an overview of
our pruning approach based on QoS and temporal constraints.
In Section IV, we detail our heuristic selection approach. In
Section V, we evaluate the proposed approach through exper-
imental results. Finally, Section VI illustrates some existing
works and Section VII concludes the paper.

II. SERVICE SELECTION PROBLEM

Service selection problem we are interested in can be de-
scribed as follows: given an abstract business process in which
complex structural and temporal constraints are specified, and
a set of candidate services which offers time-dependent QoS,
our goal is to select a close-to-optimal combination of services
that meets global user’s requirements while satisfying business
constraints.

1) Constraints Specification: A composed service is usu-
ally specified as an abstract business process. Each business
process is composed by a set of activities or abstract tasks
A = {A1, ..., An} which depend on each other by a set
of structural dependencies that can follow different patterns
including sequential, parallel, choice and loop patterns [6].
In addition to structural constraints, business designers can
also require supplementary intra and inter-task temporal con-
straints at the business level in order to increase their market
share and profitability. Temporal constraints define constraints
related to the start and the finish time of business tasks. They
can be associated to a given business task (e.g., a task that must
start no earlier than a time point T ) or to express dependencies
between two directly or indirectly succeeding tasks (e.g., a task
A that has to start no earlier than v time units after the start
of a task B).

Besides business constraints, global constraints are required
by users in order to select the best combination of services.
A global constraint for a QoS attribute qy is denoted by
Q(qy). Hereafter, we denote by QS the set of QoS attributes.
These latter can be classified into: negative attributes (which
values need to be minimized) and positive attributes (which
values need to be maximized). For simplicity, in this paper, we
consider only negative QoS attributes since positive attributes
can be transformed into negative ones by multiplying their
values by -1.

2) Timed Service Instances: Each component abstract busi-
ness task Ai ∈ A, has a set of concrete candidate services that
can implement it (i.e., a service class). The set of candidate
services, denoted by Si, of each business task Ai contains
services with the same functionality but with different QoS
values. As stated previously, in this paper, we consider time-
dependent QoS values. Thus, each candidate service Sij ∈ Si
can present several timed instances with respect to the different
time span during which it offers different QoS values. Each
service instance Sijk is characterized by a time span Tijk and
a quality value Q(Sijk, qy) for each quality attribute qy ∈ QS.

We denote by Tij the set of time intervals of the service Sij .
The start and the finish times of each time span Tijk ∈ Tij
are denoted by tmin

ijk and tmax
ijk respectively. Table I presents

some extra notations used through this paper.

TABLE I
NOTATIONS USED THROUGHOUT THE PAPER.

Notation Description
m The number of quality attributes
qy The yth quality attribute with 1 ≤ y ≤ m
Wy The weight of qy given by the user
Q(Ai, qy)

min Minimum and maximum values of qy of the
Q(Ai, qy)

max task Ai respectively
Q(qy)min, Q(qy)max Minimum and maximum aggregated values

of qy respectively
Q(Ai, qy) The value of qy of the selected service of Ai

Agg The aggregation function that derives the
quality values of the composite service from
the quality values of its component services

Q(CS, qy) The value of qy of the composite service CS
with Q(CS, q) = AggAi∈A(Q(Ai, q))

Pd(Ai) The set of predecessors of the task Ai

III. OVERVIEW OF OUR PRUNING APPROACH

The aim of the pruning process is to select the most adequate
services while guaranteeing that the optimal solution can still
be found. This is based on a set of local thresholds such that
the unsatisfaction of one of these thresholds by a candidate
service guarantees the unsatisfaction of the global constraints.
In other words, if a service instance violates at least one local
threshold, all possible combinations of services that include it
will violate global constraints. Consequently, it can be pruned
from the set of candidate services to narrow the search space.

To better illustrate our idea, we consider the example in
Figure 1. In this example, we suppose that the business process
has two sequential abstract tasks A1 and A2 and that there are
two QoS attributes: the cost and the execution time. Global
QoS constraints are defined as follows: Q(cost) ≤ 5 and
Q(time) ≤ 6. To compute local thresholds, first, we identify
minimum values of the QoS attributes for both tasks. In
this example: Q(A1, cost)

min = 2, Q(A2, cost)
min = 1,

Q(A1, time)min = 1 and Q(A2, time)min = 2. Based
on these values and on the global QoS constraints, we can
compute local QoS thresholds for each quality attribute of both
tasks (presented by the dashed lines in Figure 1). For instance,
as the cost is an additive attribute and since the minimum cost
value of the task A2 is equal to 1 in the best case, all services
with a cost greater than 4 of the task A1 can not be part of a
feasible solution. In fact, if one of these services is selected,
the global cost constraint will be violated even if the service
with the minimum cost value of the second task is selected.
Thus, all services in the grey area will be eliminated. By the
same way, we can define the remainder thresholds.

Besides QoS thresholds, temporal thresholds can also be
defined to prune services according to their time availability
based on the deadline of the overall process. Nevertheless,
computing these thresholds is a very hard task when han-
dling complex business structures including several structural



Fig. 1. Preselected services based on our pruning approach

patterns and dealing with different QoS categories such as
additional, multiplicative, average and min-max operators. In
addition, intra and inter-task temporal constraints have to
be considered when measuring local thresholds. This is not
trivial since some constraints may be overlapped or included
in each others. To overcome these issues, in [6] and [7],
we have proposed a set of constraint optimization models to
compute local thresholds while dealing with complex business
structures and several local and inter-task constraints. To avoid
discarding any service that might be part of a feasible solution,
local thresholds of each task are relaxed as much as possible.
For more details we refer reader to [6] and [7].

IV. HEURISTIC SELECTION APPROACH

In this section, we present our heuristic approach while
considering time-dependent QoS values. The proposed ap-
proach proceeds through four phases: A. service clustering,
B. selection of the best centroids, C. deadline decomposition,
and D. local selection. Hereafter, we present each step.

A. Service Clustering

In the literature, some works proposed decomposition tech-
niques to decompose global constraints to local ones [3], [4],
[5]. Nevertheless, these approaches deal with QoS values of
each candidate service independently and do not consider
correlations between them. To cope with this issue, we propose
a clustering based approach to compute local QoS constraints
while dealing with dependencies between QoS values of each
candidate service.

The clustering phase is performed locally for each abstract
task in the business process. It aims to classify candidate
services of each abstract business task into a set of clusters
(i.e., QoS levels) according to their QoS values. Each cluster
contains services that have approximately similar QoS values.
The purpose of this classification is to define the most im-
portant cluster for each task with respect to the number of
its candidate services and their QoS values. To do so, we use
clustering techniques in particular the K-means algorithm [8].

1) K-means algorithm overview: The K-means algorithm
is commonly used to automatically partition a data set into
a fixed number of groups (i.e., clusters). The main idea of
this algorithm is to define a centroid for each group and
then, associate each data point to the appropriate centroid
(i.e., the centroid that has the shortest distance with the data
point according to multiple parameters). For instance, suppose

a data point xi which is characterized by a set of values
defined by the vector 〈Q(xi, q1), Q(xi, q2), ..., Q(xi, qm)〉 and
a centroid c = 〈Q(c, q1), Q(c, q2), ..., Q(c, qm)〉, thus, the
Euclidean distance between xi and c can be defined as follows:

D(xi, c) =

√√√√ m∑
y=1

(Q(c, qy)−Q(xi, qy))2 (1)

The values of the centroids are then updated by computing
the average of the values of all their associated data points for
each parameter. The clustering and the updating steps can be
repeated until there is no changes in the values of the centroids
or until a stop criteria is reached (e.g., convergence threshold,
maximum number of iterations).

2) Classification of services: In our approach, we use K-
means clustering to associate services into a set of QoS
levels. Each candidate service is considered as a data point
which is characterized by its QoS values denoted by Sijk =
〈Q(Sijk, q1), Q(Sijk, q2), ..., Q(Sijk, qm)〉. Furthermore, each
vector of QoS levels is considered as a centroid. In this step,
the range of each quality attribute qy ∈ QS is partitioned into
a set of K discrete quality levels for each abstract task where
K is a constant number strictly greater than 1. We suppose
that the number of levels (i.e., K) is fixed by domain experts
and can be different from one task to another according to the
values of its candidate services. In the following, we denote
by QLz

iy the QoS value of the attribute qy of the zth level for
the task Ai with 1 ≤ z ≤ K and 1 ≤ y ≤ m. To speed up the
classification algorithm, we compute the initial values of QoS
levels as follows:

QLz
iy = Q(Ai, qy)

min+
z − 1

K − 1
∗(Q(Ai, qy)

max−Q(Ai, qy)
min)

(2)
Hence, based on the values of QoS levels, the initial

set of centroids can be defined. Let’s denote by QLi =
〈QL1

i , QL2
i , ..., QLK

i 〉 the set of centroids of the task Ai with
QLz

i = 〈QLz
i1, QLz

i2, ..., QLz
im〉 denotes the zth centroid of

Ai for each 1 ≤ z ≤ K. Once all centroids are defined, we
assign each candidate service to the closest centroid using the
Euclidean distance (as defined in 1).

B. Local QoS constraints specification
This phase aims to compute local QoS constraints for each

business task based on the set of centroids. It is based on
two main steps: centroid utilities and the selection of the best
centroids.

1) Centroid utilities: To compute local QoS constraints,
first, we assign each centroid QLz

i an utility value (i.e.,
U(QLz

i )) between 0 and 1 which estimates the benefit of using
the QoS values of this centroid as local QoS constraints. The
utility value of each centroid is computed as follows:

U(QLz
i ) = Uq(QLz

i ) ∗
r(QLz

i )

l
,∀Ai ∈ A,∀1 ≤ z ≤ K (3)

Where:

Uq(QLz
i ) =

m∑
y=1

Wy ∗
Q(Ai, qy)

max −QLz
iy

Q(Ai, qy)max −Q(Ai, qy)min
(4)



The first part (i.e., Uq(QLz
i )) specifies the utility of the

centroid based on its QoS values. The second (i.e.,
r(QLz

i )

l
)

allows giving better utility value to the centroid that has more
candidate services where r(QLz

i ) is the number of candidate
services of the centroid QLz

i and l is the total number of
services of the task Ai.

2) The selection of the best centroids: The second step
allows the identification of the best centroid of each business
task. QoS values of the selected centroids will be considered
as local QoS constraints in the selection process. We propose
a constraint optimization model to find the best centroids such
that all global QoS constraints are satisfied. To select only one
centroid for each task, we use a binary decision variable xz

i

for each centroid such that xz
i = 1 if the centroid QLz

i is
selected for the abstract task Ai and xz

i = 0 otherwise which
is expressed in Constraint (5).

K∑
z=1

xz
i = 1,∀Ai ∈ A, xz

i ∈ {0, 1} (5)

The goal of the objective function (6) is to maximize the
utility value of the set of the selected centroids in order to
reduce the number of discarded services.

maximize
∑
Ai∈A

K∑
z=1

U(QLz
i ) ∗ xz

i (6)

To guarantee that the QoS values of the selected centroids
ensure that the global QoS constraints will be satisfied, we
add Constraint (7). In this paper, we do not give any details
about the aggregation function. More details about this func-
tion while considering several QoS categories and complex
business structures can be found in our previous work [6].

AggAi∈A (
∑
Ai∈A

K∑
z=1

QLz
iy ∗ xz

i ) ≤ Q(qy),∀1 ≤ y ≤ m (7)

Additionally, the selected centroids must ensure that the
overall deadline is fulfilled. To do so, we add Constraint (8)
which guarantees that the sum of the minimum start time of
the first task and the aggregated duration value of the selected
centroids satisfies the required deadline. In this constraint, st0
indicates the minimum start time of the first business task
where st0 = min{tmin

0jk },∀S0j ∈ S0 and y refers to the
execution duration attribute.

st0 +AggAi∈A (
∑
Ai∈A

K∑
z=1

QLz
iy ∗ xz

i ) ≤ deadline (8)

C. Deadline Decomposition

Unlike existing works [3], [5] which handle static QoS
values, specifying local QoS constraints does not guarantee
that all services which satisfy these constraints can collaborate
when considering time-dependent QoS values. For instance,
suppose that the business process has two abstract tasks A1

and A2 which will be executed in sequence with A1 precedes
A2. Let’s denote by S1 and S2 the best services that satisfy all

local QoS constraints of the two tasks A1 and A2 respectively.
Suppose now that the service S2 is available in a time span
before that of the service S1. In this case, the two services
can not be part of a feasible solution even though they satisfy
all local QoS constraints.

To this end, temporal properties have to be considered also
to identify local temporal constraints that have to be satisfied
by the selected services to guarantee that all selected services
can collaborate together. To do so, we identify four variables
for each task: earliest start time estm, earliest finish time
eftm, latest start time lstM and latest finish time lftM . The
values of these variables are defined based on the minimum
and the maximum duration values of each task and should
guarantee that all intra and inter-task temporal constraints are
satisfied and the overall deadline is respected.

To better illustrate our idea, let’s take the example presented
in Figure 2. In this example, we consider two abstract business
tasks. For each task, we compute the largest time intervals
based on both minimum and maximum duration values as
well as the minimum start time and maximum finish time of
its candidate services. In this example, we suppose that the
deadline is equal to 38 time units. The local temporal values
of each task are depicted in Figure 2.

Fig. 2. Example of deadline decomposition

The specification of the local temporal constraints of each
activity is not a trivial task when handling several temporal
constraints and complex business structures. To deal with this,
time intervals are identified based on constraint optimization
model. This model can be applied in parallel for each task
Ai ∈ A. The objective function (9) allows maximizing the
value of lftMi while minimizing the value of estmi .

maximize lftMi − estmi (9)

To specify the dependencies between the start and the finish
time of each task, we add Constraints (10) and (11). Here,
we consider that the difference between estmi and eftmi is
equal to the minimum duration value for the task Ai (i.e.,
Q(Ai, dur)

min) whereas the difference between lstMi and
lftMi is equal to the duration of the selected centroid for
the task Ai (i.e., QLz

iy) which is considered as the maximum
duration value of Ai, with z refers to the selected centroid of
the task Ai and y refers to the duration attribute.

eftmi = estmi +Q(Ai, dur)
min,∀Ai ∈ A (10)

lftMi = lstMi +QLz
iy,∀Ai ∈ A (11)



To satisfy precedence dependencies, we add Con-
straints (12) and (13). For simplicity, here we consider basic
business structures.

eftmi ≤ estmj ,∀Aj ∈ A, Ai ∈ Pd(Aj) (12)

lftMi ≤ lstMj ,∀Aj ∈ A, Ai ∈ Pd(Aj) (13)

Besides, to guarantee that the overall deadline is fulfilled,
we add Constraint (14).

lftMn ≤ deadline (14)

Finally, Constraints (15) and (16) deal with temporal con-
straints. For simplicity, in this model, we only consider end-
to-start inter-task temporal constraints. Here, we denote by
tdij(ES,Dmin

ij , Dmax
ij ) the temporal dependency between the

end of the task Ai and the start of the task Aj (i.e., ES),
with Dmin

ij and Dmax
ij denote the minimum and the maximum

durations between the start and the finish times respectively.
Thus, ∀ tdij(ES,Dmin

ij , Dmax
ij ) ∈ T D with T D is the set

of inter-task temporal dependencies, the following constraints
have to be satisfied:

eftmi +Dmin
ij ≤ estmj ≤ eftmi +Dmax

ij (15)

lftMi +Dmin
ij ≤ lstMj ≤ lftMi +Dmax

ij (16)

The start and finish times of each task will be considered
as local temporal constraints and thus, used in the next step
to find a candidate service for each abstract task.

D. Local Selection

After defining local QoS and temporal constraints, the last
step of our approach is to select a close-to-optimal solution.
The local selection is to find the best service of each business
task such that all local QoS and temporal constraints are
fulfilled. The best service is the service that has the best utility
value amongst all the candidate services of the corresponding
service class. This phase is made through a simple selection
algorithm which can be applied in parallel for each task. The
selection process is presented in Algorithm 1.

Algorithm 1 Service Selection Algorithm
1: for each Sij ∈ Si do
2: for each Tijk ∈ Tij do
3: ComputeUtility(Sijk)
4: RankServices(Ai)
5: for each Sij ∈ Si do
6: for each Tijk ∈ Tij do
7: for each q ∈ QS do
8: if Q(Sijk, q) ≥ QL(Ai, q) then
9: break

10: if tmin
ijk ≤ lstMi and tmax

ijk ≥ eftmi then
11: SelectService(Sijk)
12: DefineTimeIntervals(Sijk)
13: break

First, we rank candidate services of each business task
according to their utilities (lines 1 to 4). The utility of each

service is quantified by the utility function declared in (17).

U(Sijk) =

m∑
y=1

Wy ∗
Q(Ai, qy)

max −Q(Sijk, qy)

Q(qy)max −Q(qy)min
(17)

For each task, we select the candidate service with the
best utility and that meets all local QoS (lines 5 to 9) and
temporal (lines 10 to 11) constraints of its corresponding
task. Local QoS constraints are considered as upper bounds
for QoS values of the different candidate services. To deal
with temporal constraints, a candidate service is selected if
it can start before the lstM and finish after the eftm of
its corresponding task. Here, we note that the time span
of each service instance covers its execution duration (i.e.,
tmax
ijk − tmin

ijk ≥ Q(Sijk, dur)). For each selected service, we
identify the time spans in which it can start and finish so that
it can collaborate with other selected services (line 12). To do
so, we add the following constraints:

max(tmin
ijk , estmi ) ≤ sti ≤ lstMi (18)

eftmi ≤ fti ≤ min(tmax
ijk , lftMi ) (19)

With sti and fti are the start and the finish time of the
selected service of the task Ai. Hence, if these two constraints
are satisfied, we can guarantee that the selected services can
form a feasible solution. The start time of each service is then
defined at run time with respect to the Constraints (18) and
(19) and the start and the finish times of its precedent services.
In the following, we demonstrate that the selected services
based on local QoS and temporal selection can collaborate
with each other while satisfying all constraints.

Lemma: If all the selected services satisfy local QoS
constraints and time spans (identified by the deadline decom-
position step) and guarantee Constraints (18) and (19), these
services can collaborate with each other and all local and
global constraints are fulfilled.

Proof. First, since all selected services fulfil all local QoS
constraints, global QoS constraints will be satisfied according
to (7). In other hand, suppose that the selected service of
the first task (i.e., Ai ∈ A) meets Constraints (18) and
(19), consequently, three cases arise: (a) If sti = estmi ,
then fti = eftmi if the selected service has the minimum
duration value and fti ≤ lftMi otherwise since sti ≤ lstMi .
Therefore, the service that will implement the successor task
(i.e., Aj with Ai ∈ Pd(Aj)) can verify estmj ≤ stj ≤ lstMj
according to (12) and (13) and hence, it also satisfies its local
temporal constraints. (b) If sti = lstMi , then, fti ≤ lftMi
if the selected service has the minimum duration value and
fti = lftMi otherwise. Hence, in the worst case (i.e., the
duration of the selected service is equal to the duration of the
selected centroid for the task Ai), the successor service can
start in its allowed time span. (c) If estmi < sti < lstMi , then,
eftmi < fti < lftMi which also guarantee that the remaining
selected services will meet their local temporal constraints. We
note that in all cases, intra and inter-task temporal constraints
and the overall deadline are satisfied since they are considered



in the deadline decomposition phase (Constraints from (14)
to (16)). Moreover, the maximum durations of the selected
services guarantee the overall deadline according to (8).

V. PERFORMANCE EVALUATION

In this section, we evaluate the performance of the proposed
approach by studying its time complexity and analyzing ex-
perimental results based on simulation studies.

A. Complexity evaluation

In this subsection, we analyze the complexity of the differ-
ent phases of the proposed approach.

1. Service clustering: This phase includes the specification
of the centroids and the classification of services. First, for
each task, the number of computed levels is K for each QoS
attribute. Hence, the complexity of the first step is O(n∗K∗m)
with n is the number of business tasks, m is the number of
QoS attributes and K is the number of centroids. Since the
classification of services can be done in parallel for all tasks,
the complexity of this step is O(l ∗K ∗m ∗ it) with l is the
number of services per task and it is the number of iterations.
Our experiments show that the maximum number of required
iterations is 2. Hence, the complexity of the service clustering
phase is O(n ∗K ∗m+ l ∗K ∗m ∗ 2).

2. Local QoS constraints specification: The number of
decision variables of the constraint optimization model to find
the best local QoS constraints (i.e., the best centroids) is n∗K.
Consequently, the complexity of this phase is O(2n∗K).

3. Deadline decomposition: This step relies on the use of
four variables (earliest start, earliest finish, latest start, and
latest finish times) and it can be applied in parallel for all
tasks. The complexity of this step is O(4 ∗no) with no is the
operation number of equation resolution.

4. Local selection: The best service of each task can be
selected locally with a complexity of O(l).

Based on the above analysis, the overall complexity of our
approach is: O(n ∗ K ∗ m + l ∗ K ∗ m ∗ 2 + 2n∗K + 4 ∗
no + l) = O(2n∗K). Therefore, the time complexity of the
proposed approach is dominated by the local QoS constraints
specification phase whose complexity does not depend on the
number of candidate services which enhances its scalability.
Let us now compare our approach with existing works [9], [3],
[2], [1]. If K < h with h is the number of promising services
per task in [9], our approach achieves better performance than
this work which does not deal with time-dependent QoS and
temporal constraints. Furthermore, if K << m∗d with d is the
number of QoS levels in [3] and K << l, we can ensure that
the size of our model is much smaller than those of the models
proposed in [3], [2], [1] even though these works consider only
static QoS values.

B. Experimental Results

Experiments have been performed on a laptop with a 32 bit
Intel Core 2.20 GHz CPU and 4GB RAM and ubuntu 14.04
as operating system. To implement our approach, we used

the constraint solver Choco1. To evaluate the effectiveness
of our approach, we study its performance in terms of the
computation time and the optimality comparing to the global
optimization approach (global approach for short) in which the
optimal solution is selected. We compare the results of the dif-
ferent tests in four cases: the global approach that searches the
optimal solution without pruning (GWO), the global approach
with pruning (GW), our heuristic approach without pruning
(HWO) and the heuristic approach with pruning (HW). In all
cases, the number of temporal constraints is fixed to 3.

First, we analyze the computation time of the different test
cases in terms of candidate services per task and the number
of business tasks (Figure 3).

Fig. 3. Performance of the selection approach in terms of the computation
time

Figure 3(a) shows the computation time of the different ap-
proaches. The number of business tasks and global constraints
is fixed to 5 and 4 respectively. The number of centroids
varies between 3 and 7. QoS attributes service instances
were generated for a time horizon with 150 time points and
distributed in the range between 1 and 100. The results indicate
that the computation time of the heuristic approach is very
small comparing to the global approach with and without
pruning. In addition, the computation time is smaller when
applying our pruning techniques before the selection process.
This is explained by the fact that the number of services is
reduced when applying our pruning approach. In addition, the
domains of the QoS values of the centroids are more smaller
due to the consideration of local thresholds. Hence, a near-to-
optimal solution can be found more quickly. In our previous
work [6], we demonstrated that the computation time of the
pruning process is equal to 23 ms in the worst case. This
is an expected result since the computation of the different
QoS and temporal local thresholds can be applied in parallel.
Experiments also show that although the computation time
increases exponentially when the number of services rises in
the global approaches, it is relatively stable in our approach.
However, the computation time increases slowly when the
number of centroids increases. This is obvious since the time
of the local QoS constraints specification phase increases
along with the number of centroids. Figure 3(b) shows the
computation time of the selection approaches when the number
of tasks varies between 5 and 10 and the number of global
constraints is fixed to 4 with 200 candidate services for each

1http://www.emn.fr/z-info/choco-solver/



task. Again, experiments show that our approach outperforms
the other approaches. In fact, the computation time of our
approach increases very slowly along with the number of tasks.

Furthermore, we studied the optimality of the proposed
approach with respect to the number of services and business
tasks (Figure 4).

Fig. 4. Evaluation of the optimality of the selection approach

To evaluate the optimality of our approach, we compare the
utility value of the obtained solution with the utility value of
the optimal solution of the global approach. The utility value
of the composite service is computed as follows:

U(CS) =

m∑
y=1

Wy ∗
Q(qy)

max −Q(CS, qy)

Q(qy)max −Q(qy)min
(20)

Figure 4(a) shows that by increasing the number of cen-
troids, the optimality of the selected solution increases as
well. However, if the number of centroids increases more
than necessary, the optimality does not change in most cases
and can decrease in some cases. This is due to the fact that
when the number of centroids is very high, the classification
of services is no more efficient since candidate services will
be distributed in a very large set of QoS levels which can
affect the utility values of the selected centroids. Moreover,
the optimality of the heuristic approach with pruning is better
than the optimality of the approach without pruning. This is
due to the fact that the computed centroids are more accurate
after the pruning process. Additionally, Figure 4(b) also shows
that our approach can produce a satisfying optimality (i.e.,
more than 97 %) in most cases. Again, applying our pruning
techniques before the selection process allows reaching better
results since the selection algorithm is applied on the set of the
most significant services. Moreover, in contrast to the selection
approach without pruning which can reach a reasonable opti-
mality when increasing the number of centroids, the heuristic
approach with pruning can obtain better optimality even when
the number of centroids is very small. This is because when
considering all candidate services, several inadequate instances
can affect the values and the utilities of the centroids.

We can conclude that in all test cases, our approach can
achieve a satisfactory optimality with a very small computation
time. However, there is a significant trade-off between the
number of the centroids and the computation time and the
optimality of the proposed approach. In fact, when the number
of centroids increases, the computation time of the selection
process increases and the optimality increases as well and

inversely. Hence, the choice of the number of centroids is
of great importance. It should not be very high to reduce
the computation time and find an efficient classification of
services. Additionally, it should not be very small so that
we can find the most adequate centroids and thus, a close-
to-optimal solution. Results also show the advantage of the
pruning process before the selection phase. In fact, although
the pruning step can increase the computation time, this latter
is still very negligible compared to the time of the selection
approach without pruning. This is mainly due to the fact that
local thresholds of the pruning process can be computed in
parallel for all tasks and for each QoS attribute [6] in contrast
to the local QoS constraints that can not be computed in
parallel and that requires more computation time when no
pruning techniques are applied. Thus, the pruning process
allows: (i) reducing the computation time of the selection
process and (ii) achieving more accurate results with a very
small number of centroids.

VI. RELATED WORK

Several selection algorithms have been proposed in the liter-
ature to select services for abstract business tasks. Some works
aim at searching for the optimal combination of services using
exhaustive algorithms such as linear programming techniques,
constraint satisfaction models and global planning [1], [2],
[10]. These methods have a high computation time, thus, they
are only suitable for small problems. Other approaches are
based on evolutionary algorithms to select a near-to-optimal
solution more efficiently than exact methods such as immune
and genetic algorithms [11], [12]. In these strategies, services
are usually selected randomly unlike our approach in which
services are selected based on their utility values which can
enhance the performance of the selection process. All these
approaches do not provide techniques to reduce the search
space and can not deal with temporal properties.

Other alternatives propose pruning strategies to reduce the
number of candidate services to be considered. Some works
prune services while guaranteeing that the optimal solution
still be found [6], [7], [13]. Although they enhance the effi-
ciency of the selection algorithm, they are limited in complex
selection problems where the number of services is very
huge. Other proposals propose pruning techniques to select
a near-to-optimal solution. The most adopted technique is the
decomposition of global constraints to local ones [3], [4], [5].
Local optimization is then applied to select the best service
for each abstract task.

Several methods have been proposed to compute local QoS
constraints based on global ones. Alrifai et al. [3] use a mixed
integer programming model to compute local constraints of
each task based on a set of QoS levels for each QoS attribute.
In [4], Sun et al., introduce a QoS decomposition approach
based on the mean and the standard deviation of each QoS
attribute while considering several composition structures.
Another approach is proposed in [5] to define local constraints
using genetic algorithm. The main drawback of these works is
that they extract local QoS levels of static quality values while



dealing with QoS attributes independently. Hence, possible
dependencies and correlations between QoS attributes of every
candidate service are not considered. This can not effectively
represent the quality levels of candidate services and may lead
to a very restrictive decomposition strategy that can not be
satisfied by any combination of candidate services even though
a solution to the selection problem does exist. To cope with
this limitation, our approach adopts clustering algorithm to
select local constraints while considering correlations between
quality attributes of each service. In addition, in contrast to
our approach, these works do not provide pruning strategies
before the decomposition phase which can negatively affect
the values of local constraints.

K-means algorithms have been applied in several application
domains such as data mining and image segmentation. Re-
cently, some works use K-means clustering in service selection
problems. In [14], Ben Mabrouk et al. use K-means algorithm
to classify services according to their QoS values. Clusters
are used to compute the utility of each candidate service in
order to rank services according to their utilities. A search tree
is then applied to select the best combination of services by
checking services in an ordered way. The proposed solution
is computationally expensive since it does not consider local
constraints and local selection of services. Furthermore, this
work can not deal with time-dependent QoS values.

Some works deal with temporal properties in the service
selection problem. In [15], Liang et al. use genetic algorithm to
select services under temporal constraints while dealing with
static QoS values. In [16], Wagner et al. propose a multi-
objective optimization based approach while considering time-
dependent QoS values. The proposed approach selects the
best combination of services as well as the start and finish
time of each service according to the QoS values at each
time period. In [17], Klopper et al. take into consideration
time-dependent QoS values when selecting the best service
instances. In this work, authors suppose that all QoS attributes
are monotonically decreasing. Moreover, both works [16] and
[17] do not consider temporal constraints at the business level
and do not provide any search space reduction techniques
prior to the selection process. Time decomposition has been
considered in [18] to deal with scheduling problems. In this
work, Yu et al. propose a deadline decomposition approach
to decompose the global deadline into sub-deadlines based on
the minimum duration values. However, in this work, authors
rely on a greedy decomposition method that may discard
several interesting solutions. To overcome this limitation, in
our approach, we compute the largest time interval in which
each selected service can collaborate with other services.

VII. CONCLUSION

In this paper, a heuristic time-aware service selection ap-
proach has been proposed. Unlike existing works, the proposed
approach deals with time-dependent QoS values and temporal
properties. First, inadequate services are discarded based on
QoS and time pruning techniques to reduce the search space.
After that, we define a novel approach that combines the use of

local QoS and temporal constraints with local selection. Local
QoS constraints are identified based on K-means clustering
algorithm and constraint optimization models. To deal with
temporal properties, we proposed a deadline decomposition
approach. Finally, a local selection is applied to select a
close-to-optimal solution with a linear complexity algorithm.
The results of the experimental evaluation show a significant
performance gain with our approach in comparison to global
optimization-based approaches while still obtaining a very
close-to-optimal solutions. In the future, we plan to extend
the proposed approach to deal with run time service selection
and reselection while considering run-time violations and
environment changes. We also aim to consider dependencies
between QoS values of the different candidate services in the
pruning and the selection processes and deal with real-world
data and different distributions of services.

REFERENCES

[1] L. Zeng, B. Benatallah, A. H. H. Ngu, M. Dumas, J. Kalagnanam, and
H. Chang, “Qos-aware middleware for web services composition,” IEEE
Trans. Software Eng., vol. 30, no. 5, pp. 311–327, 2004.

[2] D. Ardagna and B. Pernici, “Adaptive service composition in flexible
processes,” IEEE Trans. Software Eng., vol. 33, pp. 369–384, 2007.

[3] M. Alrifai and T. Risse, “Combining global optimization with local
selection for efficient qos-aware service composition,” in WWW, 2009,
pp. 881–890.

[4] S. X. Sun and J. Zhao, “A decomposition-based approach for service
composition with global qos guarantees,” Inf. Sci., vol. 199, pp. 138–
153, 2012.

[5] F. Mardukhi, N. Nematbakhsh, K. Zamanifar, and A. Barati, “Qos
decomposition for service composition using genetic algorithm,” Appl.
Soft Comput., vol. 13, pp. 3409–3421, 2013.

[6] I. Guidara, N. Guermouche, T. Chaari, M. Jmaiel, and S. Tazi, “Time-
dependent qos aware best service combination selection,” Int. J. Web
Service Res., vol. 12, 2015. (to appear).

[7] I. Guidara, N. Guermouche, T. Chaari, S. Tazi, and M. Jmaiel, “Pruning
based service selection approach under qos and temporal constraints,”
in ICWS, 2014, pp. 9–16.

[8] S. P. Lloyd, “Least squares quantization in PCM,” IEEE Transactions
on Information Theory, vol. 28, no. 2, pp. 129–136, 1982.

[9] L. Qi, Y. Tang, W. Dou, and J. Chen, “Combining local optimization and
enumeration for qos-aware web service composition,” in ICWS, 2010,
pp. 34–41.

[10] A. B. Hassine, S. Matsubara, and T. Ishida, “A constraint-based approach
to horizontal web service composition,” in International Semantic Web
Conference, 2006, pp. 130–143.

[11] G. Canfora, M. D. Penta, R. Esposito, and M. L. Villani, “An approach
for qos-aware service composition based on genetic algorithms,” in
GECCO, 2005, pp. 1069–1075.

[12] J. Xu and S. Reiff-Marganiec, “Towards heuristic web services compo-
sition using immune algorithm.” in ICWS. IEEE Computer Society,
2008, pp. 238–245.

[13] L. Barakat, S. Miles, I. Poernomo, and M. Luck, “Efficient multi-
granularity service composition,” in ICWS, 2011, pp. 227–234.

[14] N. B. Mabrouk, S. Beauche, E. Kuznetsova, N. Georgantas, and V. Is-
sarny, “Qos-aware service composition in dynamic service oriented
environments,” in Middleware, 2009, pp. 123–142.

[15] H. Liang, Y. Du, and S. Li, “An improved genetic algorithm for service
selection under temporal constraints in cloud computing,” in WISE (2),
2013, pp. 309–318.

[16] F. Wagner, A. Klein, B. Klöpper, F. Ishikawa, and S. Honiden, “Multi-
objective service composition with time- and input-dependent qos,” in
ICWS, 2012, pp. 234–241.

[17] B. Klöpper, F. Ishikawa, and S. Honiden, “Service composition with
pareto-optimality of time-dependent qos attributes,” in ICSOC, 2010,
pp. 635–640.

[18] J. Yu, R. Buyya, and C. Tham, “Cost-based scheduling of scientific
workflow application on utility grids,” in e-Science 2005, 2005, pp. 140–
147.


