
HAL Id: hal-01396933
https://hal.science/hal-01396933v1

Submitted on 15 Nov 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

NoC based virtualized FPGA as cloud Services
Hiliwi Leake Kidane, El-Bay Bourennane

To cite this version:
Hiliwi Leake Kidane, El-Bay Bourennane. NoC based virtualized FPGA as cloud Services. 3rd Inter-
national Conference on Embedded Systems in Telecommunications and Instrumentation (ICESTI’16),
Badji Mokhtar Annaba University, Oct 2016, Annaba, Algeria. �hal-01396933�

https://hal.science/hal-01396933v1
https://hal.archives-ouvertes.fr


NoC based virtualized FPGA as cloud Services
Hiliwi Leake Kidane, El-Bay Bourennane

Laboratorie Le2i
Université Bourgogne Franche-Comté

21000 Dijon, France
Email:hiliwi-leake.kidane@u-bourgogne.fr, ebourenn@u-bourgogne.fr

Abstract—Web-based applications are increasingly demanding
many computationally intensive services. On the other hand,
FPGA-based hardware accelerators(HwAcc) provide good per-
formance in accelerating computationally intensive applications.
In addition, some FPGAs support a dynamic partial reconfig-
uration (DPR) techniques to virtualize and share the FPGA
underlying hardware resources in time multiplexing during run-
time to save resource and power consumption. Integrating FPGA
in a cloud environment is an indispensable way to improve
efficiency and provide acceleration services to demanding users.
More importantly, in recent years it was proved that FPGA
resources deployed in a cloud environment can be accessed
with the same OpenStack software technology used to access
virtual machines. However, the performance of the virtualized
FPGA is highly dependent on the communication medium used
to interconnect the virtualized FPGA resources and the control
manager. After analyzing the possible interconnect mediums,
we have selected Network-on-Chip (NoC) which support par-
allel communication as the efficient medium for accelerators.
Consequently , we propose a NoC based virtualized FPGA
as cloud Services. Two virtualized FPGA-based cloud service:
Hardware Accelerator as a Service(HAaaS) and Reconfigurable
Region as a Service(RRaaS) are proposed in this paper. The
NoC provides layered and parallel communication between the
virtualized regions of the FPGA and helps them to communicate
their status and exchange data through the routers connected
to them. A 2x2-mesh NoC based reconfigurable accelerators for
image analysis and matrix computation are implemented and
tested showing a promising result for more scalable systems in
cloud computing.

Index Terms—Cloud Computing; Virtualized FPGA; Hard-
ware accelerators; Network-on-Chip;

I. INTRODUCTION

Web based applications are increasingly demanding many
services which are highly resource consuming that can not
be performed locally [1]. Cloud computing minimizes these
problems by offering software, platform and infrastructure as
a service. The cloud makes it possible for a user to access
information from anywhere at any time [2]. It uses billing
mechanisms to use these resources on the basis of their
consumption, allowing on-demand model: pay-per-use [3].

On the other hand, Field programmable Gate Array (FPGA)-
based hardware accelerators(HwAcc) provide good perfor-
mance in accelerating computationally intensive applications
[4] like multimedia image analysis. In addition, some FPGAs
support a dynamic partial reconfiguration (DPR) techniques to
virtualize and share the FPGA underlying hardware resources
in time multiplexing during run-time to save resource and
power consumption.

Consequently, cloud provider can improve their computing
performance and provide accelerating service by integrating
virtualized FPGA in a cloud environment. More importantly,
in recent years, it has been demonstrated that FPGA resources
deployed in a cloud environment can be accessed with the
same Openstack software [5] technology used to access virtual
machines [6], [7], [8]. OpenStack is a cloud operating system
that controls large pools of compute, storage, and networking
resources throughout a datacenter [9].

However, communication issues could hamper the proper
operation of such method if proper communication medium
is not proposed. When the number of processors in a given
FPGAs increases, the point to point connection using the
ordinary wire or bus based communication is not efficient and
reliable. On the other hand, the Networks-on-Chip (NoCs)
have recently emerged as a promising concept to support
communication on Multi-Processor SoCs [10] due to their
scalable and layered architecture. Thus, in this paper we
propose a method that takes best of both worlds: the improved
communication features of NoCs with the adaptability on de-
mand provided by dynamically reconfigurable systems in order
to integrate the virtualized FPGA and provide its resources as
a services.

II. BACKGROUND

Before proceeding to the main contributions of this paper,
we will first provide some basic concepts and terminology.

A. Cloud Computing

Cloud computing is the provision of computing resource
from remote on-demand [16]. The cloud services are mainly
divide into three categories [2]: Software as a Service (SaaS),
Platform as a Service (PaaS), and Infrastructure as a Service
(IaaS) as shown in Fig. 1.

There are some essential characteristics to consider during
any cloud service proposal [2] [16] [3]. The first characteristic
is on-demand self service or service without human interac-
tion. The second characteristic refers to the availability of
the service over the network and accessibility by standard
client platforms. The third characteristic is related to the
resource pooling or parallelism. In other words, the service
must serve multiple clients at the same time. The other
important characteristic is rapid elasticity of the service. When
clients want to extend the resource they are using, the service
should allow them to scale it dynamically. The final and most



Fig. 1. Cloud Computing (source: wikipedia)

important characteristic is the service has to be measurable
and the control has to measure and report service usage for
payment.

B. Network-on-Chip (NoC)

1) building blocks: All NoCs have three fundamental build-
ing blocks, namely, switches (also called routers), Network
Interfaces (NIs) and links [12] as shown in Fig. 2. A Router
is responsible for the routing or directing of data based on
the protocol defined at that moment. The router contains an
arbiter, a buffer and an input-output to connect ports. Links
are the channels that connect router to router or router to NI.
NI is an intermediate between the router and the processing
element (PE) connected to the router. The network interface
(NI) is responsible for packetization and depacketization of
data traffic, in addition to the conventional interfacing [13].

Fig. 2. Network-on-Chip (NoC) based communications of PEs

2) Topology: refers to the interconnection between NoC
building blocks. The topology can be categorized as regular
and irregular based on the distribution of the routers in the
network. The regular topology also contains different varieties

like mesh, mesh tours, ring, fat tree. The performance of NoC
based communication strongly correlates with the topology
selected for implementation [14].

3) Switching: determines how the data is transferring from
one node to the other. The two common switching techniques
are packet switching and circuit switching. Circuit switching,
the link is used in a spatial division approach until the data
transmission is completed. Whereas in the packet switching
the links are used in a time division approached. Different
packets of the same data can follow different path [15].

4) Routing: refers to the algorithm in the routers which
selects an output port for the packet coming through its input
port. There are different varieties of routing algorithms which
give different results [13].

5) Flow Control: determines how network resources, such
as channel bandwidth, buffer capacity, and control state, are
allocated to a packet traversing the network [13]. An efficient
design of flow control is crucial in order to get good perfor-
mances.

C. Dynamic Partial Reconfiguration

Dynamic partial reconfiguration (DPR) is a technique that
enables to dynamically modify preselected area of the FPGA
at run-time and on demand. The DPR is not supported by
all FPGAs. The Atmel FPGA and Xilinx FPGAs are some
of the few FPGAs in the market allowing DPR. Figure 3
shows the basic premise of Partial Reconfiguration (PR). The
reconfigurable region represented by ”A” can be used to
configure and run different modes of ”A” in time multiplexing.

The general PR flow as stated in the Xilinx PR flow [11]
is as follows. The logic in the FPGA design is divided into
static logic and reconfigurable logics/modules. The static logic
does not change its functionality during reconfiguration and
it contains an embedded processor, an internal configuration
access port (ICAP), DSP and other circuitry. The embedded
processor runs the configuration management software which
controls system transition from one configuration to another
depending upon the adaptation conditions set by the applica-
tion. The ICAP is used to load/transmit the partial bitstreams
into the FPGA configuration infrastructure.

Fig. 3. Basics of Partial reconfiguration

The DPR process starts by implementing the static or top
level HDL module which includes a black box for the par-
tially reconfigurable modules and then synthesized to generate
the top level netlist. The HDL of the different modes of
the partially reconfigurable modules should be implemented



and synthesized separately to generate independent netlists.
Subsequently, both the top level and partial reconfigurable
module Netlists are imported to the PlanAhead to floorplan
the placement and mapping of the Reconfigurable regions
and reconfigurable modules. Placement restriction must be
associated to reconfigurable IPs during DPR design to define
their size, shape and position.

III. PREVIOUS WORKS

The use of virualized FPGA accelerator in datacenters for
better performance and flexibility is presented in [17], [18],
[19]. Authors in [20] presented a prototype for integrating
virtualized FPGA accelerators in the cloud using partial recon-
figuration and virtual communication. Similarly, [21] proposes
a resource virtualization solution based on run-time partial
reconfiguration to share reconfigurable resources among the
underutilized microprocessors. In addition, [6], [7], [8] pre-
sented that FPGA resources deployed in a cloud environment
can be accessed with the same Openstack software technology
used to access virtual machines.

Bharathi and Neelamegam [1] propose a Reconfigurable
Framework for Cloud Computing Architecture with three layer
called service usage, service provider and service developer.
If the demanding service from a user is not available, service
usage module requests service developer module through
service provider module to develop a new or modify existing
service to satisfy the customer application need on demand.
Reconfiguration takes place if the service is not available in the
hardware. Reconfiguration bitstreams are generated in service
developer module and transferred to the hardware with CPU
control.

Knodel and Spallek [22] present a cloud service models and
cloud hypervisor called RC3E, which integrates virtualized-
FPGA based hardware accelerators into a cloud environment.
The authors defined three types of service called RSaas,
RAaaS and BAaaS. The RSaas service provides full access to
reconfigurable resources for the user. The user can allocate a
complete physical FPGA with own implemented hardware. In
RAaaS, the FPGA is used as a simple accelerator and only the
vFPGAs or virtual reconfigurable regions of different size are
visible and accessible by the user. In the last service, BAaaS,
only available applications and services are visible to the user.
These applications and service use the virtual reconfigurable
regions of the FPGA(vFPGA) in the background to accelerate
specific applications.

Even though most of the authors provide detailed infor-
mation about the advantages of integration virtualized FPGA
for cloud computing, they all failed to give attention to the
complexity of communication requirement for data as well as
control signal communication.

IV. NOC BASED VIRTUALIZED FPGA AS CLOUD SERVICES

In this paper, we have proposed two NoC based virtualized
FPGA as service models for cloud computing called Hardware
Accelerator as a Service(HAaaS) and Reconfigurable Regions
as a Service(RRaaS). The NoC will help to easily access

the reconfigurable IPs and send signal to the control up on
completion of tasks.

The proposed virtualized FPGA (vFPGAs) as cloud services
are based on 2D-mesh Hermes NoC [24] architecture. Each
vFPGAs is connected to the nearest router through network
interface(NI). The internal structure of the NI depends on the
ports of the vFPGAs connected to it. The NI will also serve as
an isolation during reconfiguration of the vFPGAs connected
to it.

The architecture has three layers: the virualized FPGA or
reconfigurable regions, the hypervisor which contains the static
region of the FPGA and the application layer which gives
interface to the external user as shown in figure 4. The Hy-
pervisor is responsible for the management of reconfiguration
and resources and many virualized machines are installed over
a single hypervisor.

Fig. 4. Architecture of the NoC based virtualized FPGA as cloud Services

A. Hardware Accelerator as a Service(HAaaS)

In this service model, the user does not have direct access to
the virtualized FPGA. When the user requests any accelerator,
the intermediate control manager checks availability of the
requested accelerator and if it exists, it establishes connection
between accelerator and the user in the host machine. If not,
the control manager demands to reconfigure the requested
accelerator from the existing bitstream library as stated in the
flow diagram in Figure 5.

Fig. 5. Flow diagram of HAaaS



In case, the requested accelerator does not exist in the
library at all, the control manager has to reject the request
and recommends the user to use the other service RRaaS.

B. Reconfigurable Regions as a Service(RRaaS)

This services can be divided into two stages as development
and provision. First, the user get access to select one of the
available virtualized RRs based on their top-level architecture
and capacity in terms of resourses. Next, the control manager
send back the HDL template file of the selected vRR to
the user to implement the detail design. Later, the user will
send back the completed HDL implementation via Ethernet.
Finally, the control manager in the service provider will send
to the development to synthesize, and if no error, to place
it in optimal vRRs for bitstream generation. This is the
development stage. In the second stage, if the user wants to
run his user IP, the generated bitstream will be forwarded to
the bitstream library. If not the user gets only the generated
bitstream file. The detailes of the flow is given in Figure 6.

Fig. 6. Flow diagram of RRaaS

To optimize the resource utilization, the size of the virtu-
alized regions are grouped into three as small medium and
large. That means, and HDL templete file of the RR region is
suitable to the three groups. This will help the control manager
to place the user IP in optimal region.

C. Hypervisor

Normally the provision of virtualized machines has three
layers; the application layer, hypervisor and the physical
layer. The application layer in this case corresponds to the
Openstack API-agent interface software. The hypervisor in
virtualized FPGA corresponds to the static region or module
of the top level structure of the FPGA. Then, the virtualized
reconfigurable regions will be instantiated and controlled by
the hypervisor. In other words, the hypervisor is the one that
manage the virtualized FPGA resources.

V. EXPERIMENTAL RESULTS

To test the proposed algorithm, we have implemented image
analysis and mathematical manipulation modules and defined
three reconfigurable regions for virtualization in the FPGA as
shown in Figure 7.. A 2x2-mesh NoC generated from the Atlas

NoC generator [24] is used as communication medium. The
first router is directely connected to the control/hypervisor and
the rest three routers to the virtualized reconfigurable regions.
The second router is connected vRR1 where vRR1 is designed
for scalar manipulation and includes three modes; addition,
subtraction and multiplication. The third router is also con-
nected to vRR2 where this virtulized region is designed for
accelerating image processing modes: median filtering, Gray
scale and contrasting. Finally, the last router is connected to
vRR3 where vRR3 is dedicated for accelerating 8x8 matrix
addition and subtraction.

Fig. 7. 2x2 NoC based reconfigurable IPs

A performance evaluation in terms of resource utilizationa
and reconfiguration time for the virtualized reconfigurable
regions is given in Table-1. The result shows that that the
size of the bitstream is too small and generating as much as
possible of reconfigurable modules will not cost memory. The
reconfiguration time is also to small which is applicable for
real time.

TABLE I
PERFORMANCE EVALUATION

DPR
Module

Resources Utilization Bitstream
size

config.
timeLUT FF DSP BRAM

vRR1 2013 1208 12 1 17 KB 0.21 ms

vRR2 9193 7470 40 1 34 KB 0.43 ms

vRR3 5419 6121 40 8 29 KB 0.39 ms

TABLE II
RESOURCE UTILIZATION OF THE 2X2 NOC

LUT FF DSP BRAM

6117 2958 3047 6

As the services provided by a cloud computing must be
measurable, there should be continuous status communication
between the virtualized reconfigurable regions and the hyper-
visor which control and manages the resources utilization. It
also helps to replace idle accelerators by the blank bitstreams
so that power can be saved. It is observed that loading a
blank bitstream during idle time saves about 35% of the power



consumption when a real accelerator is loaded and is not
performing anything. The NoC based communication helps
the structure to have parallel communication and perform both
data and control signal communication at the same time.

VI. CONCLUSIONS

We have implemented a NoC based virtualized FPGA and
tested locally to share the FPGA resources on cloud context.
Integration of hardware accelerators in the cloud environment
helps to provide FPGA resource in a cheap price and improve
the utilization of the FPGA. Similarly, the performance of a
cloud environment will be maximized by integrating hardware
accelerator FPGA.

The NoC will provide a flixible and scalable parallel com-
munication architecture to the virtualized FPGA resources
so that both data and control signal communication can be
performed in parallel. We have presented the advantage of
integrating a NoC based reconfigurable accelerators in the
cloud computing. Two possible virtualized FPGA cloud based
service models are proposed in this paper. The first service
model, HAaaS, helps the cloud provider to give accelerating
services. Whereas the second service model, RRaaS, provides
both development and accelerating service. As a future work,
the NoC will be extended into dynamically reconfigurable and
then it will be deplyed into a server to test it via API.

REFERENCES

[1] N. Bharathi and P. Neelamegam, “A reconfigurable framework for cloud
computing architecture,” Artificial Intelligence, vol. 6, pp. 117–120,
2013.

[2] A. Huth and J. Cebula, “The Basics of Cloud
Computing,” United States Computer Emergency
Readiness Team, pp. 1–4, 2011. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/B9780124059320000074

[3] L. Schubert, K. G. Jeffery, and B. NeideckerLutz, “The Future of
Cloud Computing: Opportunities for European Cloud Computing Be-
yond 2010:-expert Group Report,” Tech. Rep. European Commission,
Information Society and Media, 2010.

[4] T. El-Ghazawi, E. El-Araby, M. Huang, K. Gaj, V. Kindratenko, and
D. Buell, “The promise of high-performance reconfigurable computing,”
Computer, vol. 41, no. 2, pp. 69–76, 2008.

[5] Openstack. [Online]. Available: http://www.openstack.org/software/
[6] A. Putnam, A. M. Caulfield, E. S. Chung, D. Chiou, K. Constantinides,

J. Demme, H. Esmaeilzadeh, J. Fowers, G. P. Gopal, J. Gray,
M. Haselman, S. Hauck, S. Heil, A. Hormati, J.-Y. Kim, S. Lanka,
J. Larus, E. Peterson, S. Pope, A. Smith, J. Thong, P. Y. Xiao,
and D. Burger, “A reconfigurable fabric for accelerating large-scale
datacenter services,” in Proceeding of the 41st Annual International
Symposium on Computer Architecuture, ser. ISCA ’14. Piscataway,
NJ, USA: IEEE Press, 2014, pp. 13–24. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2665671.2665678

[7] S. Byma, J. Steffan, H. Bannazadeh, A. Leon-Garcia, and P. Chow, “Fp-
gas in the cloud: Booting virtualized hardware accelerators with open-
stack,” in Field-Programmable Custom Computing Machines (FCCM),
2014 IEEE 22nd Annual International Symposium on, May 2014, pp.
109–116.

[8] J. Dondo Gazzano, F. Sanchez Molina, F. Rincon, and J. C. López,
“Integrating reconfigurable hardware-based grid for high performance
computing,” The Scientific World Journal, vol. 2015, 2015.

[9] Openstack, OpenStack Operations Guide. [Online]. Available:
http://docs.openstack.org/ops-guide/index.html

[10] R. Dafali, J.-P. Diguet, and M. Sevaux, “Key research issues for recon-
figurable network-on-chip,” in Reconfigurable Computing and FPGAs,
2008. ReConFig ’08. International Conference on, Dec 2008, pp. 181–
186.

[11] Xilinx, “Partial Reconfiguration User Guide,” vol. 702, 2013.
[12] D. Atienza, F. Angiolini, S. Murali, A. Pullini, L. Benini, and G. D.

Micheli, “Network-on-chip design and synthesis outlook,” Integration,
the {VLSI} Journal, vol. 41, no. 3, pp. 340 – 359, 2008.

[13] A. Agarwal, C. Iskander, and R. Shankar, “Survey of network on chip
(noc) architectures & contributions,” Journal of engineering, Computing
and Architecture, vol. 3, no. 1, pp. 21–27, 2009.

[14] P. Pande, C. Grecu, A. Ivanov, R. Saleh, and G. De Micheli, “Design,
synthesis, and test of networks on chips,” Design Test of Computers,
IEEE, vol. 22, no. 5, pp. 404–413, Sept 2005.

[15] É. Cota, A. Morais Amory, and M. Soares Lubaszewski, Reliability,
Availability and Serviceability of Networks-on-Chip. Springer, 2012.

[16] F. Alshuwaier, A. Alshwaier, and A. Areshey, “Applications of cloud
computing in education,” in Computing and Networking Technology
(ICCNT), 2012 8th International Conference on, Aug 2012, pp. 26–33.

[17] P. Francisco, “The Netezza data appliance architecture: A platform
for high performance data warehousing and analytics,” IBM Redbooks,
2011.

[18] A. Putnam, A. Caulfield, E. Chung, D. Chiou, K. Constantinides,
J. Demme, H. Esmaeilzadeh, J. Fowers, G. Gopal, J. Gray, M. Haselman,
S. Hauck, S. Heil, A. Hormati, J.-Y. Kim, S. Lanka, J. Larus, E. Peterson,
S. Pope, A. Smith, J. Thong, P. Xiao, and D. Burger, “A reconfigurable
fabric for accelerating large-scale datacenter services,” in Computer
Architecture (ISCA), 2014 ACM/IEEE 41st International Symposium on,
June 2014, pp. 13–24.

[19] J. Ouyang, S. Lin, W. Qi, Y. Wang, B. Yu, and S. Jiang, “SDA : Software-
Defined Accelerator for Large- Scale DNN Systems,” in HOT CHIPS,
2014, pp. 1–23.

[20] S. A. Fahmy, K. Vipin, and S. Shreejith, “Virtualized fpga accelerators
for efficient cloud computing,” in Cloud Computing Technology and
Science (CloudCom), 2015 IEEE 7th International Conference on, Nov
2015, pp. 430–435.

[21] E. El-Araby, I. Gonzalez, and T. El-Ghazawi, “Virtualizing and sharing
reconfigurable resources in high-performance reconfigurable computing
systems,” in High-Performance Reconfigurable Computing Technology
and Applications, 2008. HPRCTA 2008. Second International Workshop
on, Nov 2008, pp. 1–8.

[22] O. Knodel and R. Spallek, “Computing framework for dynamic integra-
tion of reconfigurable resources in a cloud,” in Digital System Design
(DSD), 2015 Euromicro Conference on, Aug 2015, pp. 337–344.

[23] H. L. Kidane, E. Bourennane, and G. Ochoa-Ruiz, “Noc based virtual-
ized accelerators for cloud computing,” in Embedded Multicore/Many-
core Systems-on-Chip (MCSoC), 2016 IEEE 10th International Sympo-
sium on, Sept 2016, pp. 133–137.

[24] F. Moraes, N. Calazans, A. Mello, L. Mller, and L. Ost, “Hermes: an
infrastructure for low area overhead packet-switching networks on chip,”

Integration, the {VLSI} Journal, vol. 38, no. 1, pp. 69 – 93, 2004.


