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1. Introduction

The computation of Nash Equilibria (NE) in games
has been investigated of many papers. The most
general result is in [2] and says that the problem of
computing NE is PPAD complete.
Potential games have been introduced in [7] and
have proven very useful, especially in the context
of routing games, first mentioned in [1] and ex-
haustively studied ever since, in the transporta-
tion as well as computer science litterature, see for
example [6]. For potential games, efficient poly-
nomial time algorithms exist in symmetric cases
(see [4]). However, the same paper shows that the
computation of NE for general potential games
is PLS complete. The Best Response Algorithm
(BRA) is probably the most popular algorithm that
converges to a pure Nash equilibrium (NE) in po-
tential games [5]. However, its complexity has at-
tracted surprisingly little attention.
In this paper, we analyze the performance of BRA
over a potential game with N players, each with
A possible actions. We show that on average, the
Best Response Algorithm takes log(N)+eγ (γ is the
Euler constant) effectives steps and makes eγAN
comparisons before finding a NE.
These numbers say that BRA is very efficient on
average to compute NE, even if this is a PLS com-
plete problem. Our analysis is based on two ingre-
dients, one is the construction of an approximation
of the behavior of BRA, where each state is exa-
mined at most once and the second is the use of
a continuous space discrete time Markov chain to
analyze the average complexity.

2. Best Response Algorithm and Potential games

We consider a game with a finite number N of
players and a finite strategy space for each player,
each of size A, and the corresponding utility func-
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tions. The game G
def
= G(N ,A, u) will be a tuple

consisting of
– a finite set of players N = {1, . . . ,N} ;
– a finite set Ak of actions (or pure strategies) for

each player k ∈ N ; The set of action profiles or

states of the game is A def
=
∏
kAk ;

– the players’ payoff functions uk : A→ R.
We define the classical best response correspondence
brk(x) as the set of all actions that maximizes the
payoff for player k under profile x :

brk(x)
def
=

{
argmax
α∈Ak

uk(α; x−k)

}
. (1)

A Nash equilibrium (NE) is a fixed point of the cor-
respondence, i.e. a profile x∗ such that x∗k ∈ brk(x∗)
for every player k.

Definition 1 (Potential games) A game is a poten-
tial game [5] if it admits a function (called the po-
tential) Φ : A → R such that for any player k and
any unilateral deviation of k from action α to α ′,
uk(α, x−k)−uk(α

′, x−k) = Φ(α, x−k)−Φ(α ′, x−k).

We consider a version of Best Response Algorithm
(BRA) where the next player is selected according
to a round robin pattern. Other patterns can also
be considered using the same approach and can be
shown to have a similar behavior.

Algorithm 1: Best Response Algorithm (BRA)
Input :
Game utilities (ui(·)),
Initial state (x(0)),
Infinite seq. of players R = (1, 2, . . . , N, 1, . . . ).

foreach player k ∈ K do
stopk := false

repeat
Pick next player k := Rt+1
Select new action αk := brk(x(t))
stopk := 1{αk=xk(t)} ;
xk(t+ 1) := αk ;

until stop1 ∧ stop2 ∧ · · ·∧ stopN;

A famous result first proved in [5] states that for
any potential game G, Algorithm 1 converges in
finite time to a Nash Equilibrium of G.

3. Complexity

Let us consider three complexity measures (related
to each other) : TBRA is the number of iterations



(or the number of times that the function br was
called) before BRA reaches a Nash equilibrium.
The total number of comparisons is denotedCBRA.
One should expect that CBRA ≈ (A − 1)TBRA. Fi-
nally, the number of different states visited by BRA
is denoted MBRA. Of course, MBRA 6 TBRA. The
proofs of Theorems 1 and 2 are not provided due
to lack of space. They are available in a research
report [3].

Theorem 1 In the worst case, under round robin revi-
sions, TBRA = NAN−1.

3.1. Randomization
In the following we will analyze the average com-
plexity of BRA.
We randomize over all the potential games over
which BRA is used. Since the behavior of BRA only
depends on the potential function, we randomize
directly over the potential Φ. The natural rando-
mization is to consider all possible total orderings
of the set {Φ(x), x ∈ A} (there are (AN)! of them)
and pick one uniformly. This is equivalent to pick
iid potentials in all states, uniformly distributed in
[0, 1].

3.2. Markovian Analysis
We will be analyzing the intersection-free approxi-
mation of the behavior of BRA (where no state is
visited twice) whose behavior is asymptotically the
same as BRA.
Let y be the potential of the current state x : (y def

=
Φ(x)). If k−1 players have already played best res-
ponse without changing the state, then the evolu-
tion at the next step of BRA is as follows. The k-th
player computes its best response. This player has

a
def
= A − 1 new actions whose potential must be

compared with the current potential (y). With pro-
bability ya none of the new actions beat the current
choice. The state remains at y and it is the turn of
the k+1-st player to try its best response. With pro-
bability 1 − ya, one of the new actions is the best
response. The current state moves to a new state
with a larger potential and the number of players
for which the new state is a best response is set
back to 1.
This says that the couple (Yt, Kt) is a Markov
chain, where Yt is the potential at step t, in [0, 1]
and Kt is the current number of players whose
best response did not change the current state (in
{1, 2, . . . , N}). Its transitions are :

P
(
(Y, K)t+1 = (y, k+ 1)

∣∣∣∣(Y, K)t = (y, k)

)
= ya,

and, if z > y,

P
(
(Y, K)t+1 ∈ ([z, 1], 1)

∣∣∣∣(Y, K)t = (y, k)

)
= 1− za.

Let C(y, k) be the average number of comparisons
required to reach a NE, starting in a state with
potential y where k players have played without
changing their action. The forward equation for
C(y, k) is :

C(y, k) =ya(C(y, k+ 1) + a)

+

∫1
y

aua−1(C(u, 1) + a)du,

with the boundary conditions C(1, 1) = a(N − 1)
and C(y,N) = 0.
Solving these equations leads to the following pro-
position (quantities MBRA and TBRA are analyzed
similarly).

Theorem 2 The average number of moves in BRA ve-
rifies EMBRA 6 log(N) + eγ +O(1/N).
The average number of comparisons verifies
ECBRA 6 eγ(A− 1)N+ o(AN)
and the average number of steps verifies
ETBRA 6 eγN+ o(N).
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