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1 Introduction

Potential games have been introduced in [6] and have proven very useful, especially in the
context of routing games, first mentioned in [1] and exhaustively studied ever since, in the
transportation as well as computer science litterature, see for example [3,5,8] and for distributed
optimization (see for example [7]).

The Best Response Algorithm (BRA) is probably the most popular algorithm that converges
to a pure Nash equilibrium (NE) in potential games [4]. However, its efficiency (speed of
convergence) has attracted surprisingly little attention.

In this paper, we analyze the performance of BRA used over a potential game with N players,
each with A possible actions, and we provide answers to the following questions.

1. How many steps does the Best Response Algorithm take before it stops in a Nash Equi-
librium?

2. A related question is how many comparisons are done during the execution of BRA?

In a nutshell, the answers to these questions are respectively,
1. less than log(N) + eγ on average (γ is the Euler constant) ;
2. eγAN on average.
These numbers say that BRA is a very efficient distributed algorithm to compute NE. Our

analysis is based on two ingredients, one is the construction of an approximation of the behavior
of BRA, where each state is examined at most once and the second is the use of a continuous-
state space-discrete-time Markov chain to analyze the average complexity.

2 Best Response Algorithm and Potential games

We consider a game with a finite number N of players and a finite strategy space for each
player, each of size A, and the corresponding utility functions.
G

def= G(N ,A, u) will be a tuple consisting of
– a finite set of players N = {1, . . . , N} ;
– a finite set Ak of actions (or pure strategies) for each player k ∈ N ; The set of actions
profiles or states of the game is A def=

∏
kAk ;

– the players’ payoff functions uk : A → R.
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We define the classical best response correspondence brk(x) as the set of all actions that
maximizes the payoff for player k under profile x :

brk(x) def=
{
argmax
α∈Ak

uk(α;x−k)
}
. (1)

A Nash equilibrium (NE) is a fixed point of the correspondence, i.e. a profile x∗ such that
x∗k ∈ brk(x∗) for every player k.

Iteratively playing a best response may not converge in general. We consider here the specific
class of potential games for which convergence is ensured.

Définition 1 (Potential games) A game is a potential game [4] if it admits a function
(called the potential) Φ : A → R such that for any player k and any unilateral deviation of k
from action profile x to x′, uk(x)− uk(x′) = Φ(x)− Φ(x′).

We consider a general version of Best Response Algorithm (BRA) where the next player is
selected according to a revision sequence (Rt)t∈N. We assume that this sequence of players is
weakly fair : each players appears infinitely often in the sequence. The revision sequence can be
deterministic (for example, Round-Robbin) or random (for example, the next player is chosen
according to a probability distribution ρ (the revision law) : ∀k ∈ N ,P(selected player = k) =
ρk). In that case, we assume that the probability of choosing any player k is strictly positive
(∀k ∈ N , ρk > 0). This insures that the revision sequence is weakly fair almost surely.
Algorithm 1: Best Response Algorithm (BRA)
Input :
Game utilities (ui(·)),
Initial state (x(0)),
Infinite revision sequence R = (Rt)t∈N of players.

foreach player k ∈ K do
stopk := false

repeat
Pick next player k := Rt+1
Select new action αk := brk(x(t))
stopk := 1{αk=xk(t)} ;
xk(t+ 1) := αk ;

until stop1 ∧ stop2 ∧ · · · ∧ stopN ;
A famous result first proved in [4] states that for any potential gameG, Algorithm 1 converges

in finite time (a.s.) to a Nash Equilibrium of G.

3 Complexity
In this section, we analyse the time complexity of BRA. More precisely, we consider three

measures (related to each other). The most important quantity is TBRA, the number of ite-
rations (or the number of times that the function br was called) before BRA reaches a Nash
equilibrium. A related measure is the total number of comparisons used (denoted CBRA). One
should expect that CBRA ≈ (A−1)TBRA. Finally, another interesting quantity is the number of
different states visited by BRA. This is the same (up to one) as the number of moves (denoted
MBRA) taken by BRA before convergence to a NE. Of course, MBRA 6 TBRA. The proofs of
the propositions 1 and 2 are not provided due to lack of space. They are available in a research
report [2].

In the worst case, for random weakly fair revision sequences R, TBRA is unbounded because
the revision sequence R can be arbitrarily bad : one player might appear too few times to
guarantee convergence in any bounded time. Indeed, the weak fairness assumption is too weak



to prevent unbounded gaps between the turns of one player). Even when this is not the case,
for example when R is a round-robin sequence, the time for convergence can still be very large,
as shown in the following proposition.

Proposition 1 In the worst case, under round robin revisions, TBRA = NAN−1.

The worst case complexity does not say much about the typical behavior of BRA. In the
following we will analyze its average complexity when the revision sequence is round-robin.
Other revision sequences behave similarly (up to a multiplicative factor).

3.1 Randomization

In the following we will randomize over the potential game over which BRA is used. Since
the behavior of BRA only depends on the potential function, we randomize directly over the
potential Φ. The natural randomization is to consider all possible total orderings of the set
{Φ(x), x ∈ A} (there are (AN )! of them) and pick one uniformly. This is equivalent to pick iid
potentials in all states, uniformly distributed in [0, 1].

3.2 Markovian Analysis

We will be analysing the intersection-free approximation of the behavior of BRA (where no
state is visited twice) whose behavior is asymptotically the same as BRA.

Let y be the potential of the current state x : (y def= Φ(x)). If k − 1 players have already
played best response without changing the profile, then the evolution at the next step of BRA
is as follows. The k-th player computes its best response. This player has a def= A − 1 new
actions whose potential must be compared with the current potential (y). With probability ya
none of the new actions beat the current choice. The state remains at y and it is the turn of
the k + 1-st player to try its best response. With probability 1 − ya, one of the new actions
is the best response. The current state moves to a new state with a larger potential and the
number of players for which the new state is a best response is set back to 1. More precisely,
with probability 1− za the potential moves from y to a value larger than z.

This says that the couple (Y (t), K(t)) is a Markov chain, where Y (t) is the potential at step
t, in [0, 1] and K(t) is the current number of players whose best response did not change the
current state (in {1, 2, . . . , N}). Its transitions are :

P
(

(Y (t+ 1), K(t+ 1)) = (y, k + 1)
∣∣∣∣(Y (t), K(t)) = (y, k)

)
= ya,

and, if z > y,

P
(

(Y (t+ 1), K(t+ 1)) ∈ ([z, 1], 1)
∣∣∣∣(Y (t), K(t)) = (y, k)

)
= 1− za.

Now, letM(y, k) be the average number of moves of BRA before convergence when the current
potential equals y and k players have played without changing their action, at potential y.

The quantity M(y, k) satisfies the forward heat equation of the Markov chain :

M(y, k) = yaM(y, k + 1) +
∫ 1

y
aua−1(M(u, 1) + 1)du.

Let us also consider the average number of comparisons made by BRA under the intersection-
free assumption. Let C(y, k) be the average number of comparisons starting in a state with
potential y and k players have played without changing their action. The forward equation for
C(y, k) is :

C(y, k) = ya(C(y, k + 1) + a) +
∫ 1

y
aua−1(C(u, 1) + a)du,

with the boundary conditions C(1, 1) = a(N − 1) and C(y,N) = 0.
Solving these equations leads to the following proposition.



Proposition 2 The average number of moves in BRA before convergence can be bounded :
EMBRA 6 log(N) + eγ +O(1/N), and this bound is tight, up to an additive constant.
The average number of comparisons made during an execution of BRA is asymptotycally

ECBRA = eγ(A− 1)(N − 1) + o(A).
The average number of steps is ETBRA = eγ(N − 1) + o(1).

3.3 Numerical experiments

The following figures correspond to simulations on games, all with A = 30. The number of
players N ranges from 0 to 250. These games have potentials chosen uniformly in [0, 1]. For
each value of N , algorithm BRA is run 5000 times. the errorbars correspond to confidence
interval at 95%.
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(a) Average number of moves.
The best fit function is log(N) + 1.09
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(b) Average number of steps before reaching the NE.
The predicted value is (eγ − 1)N .

FIG. 1 – Simulation results for Round-Robin BRA

As one can see in Figure 1a the average number of moves for BRA with Round-Robin
approaches logN + 1.09, while Theorem 2 predicts that it should be of the form logN + Cte,
with Cte 6 eγ ≈ 1.7. As predicted by Theorem 2, Figure 1b shows that the number of
comparisons is eγ(A − 1)N , with a very tight confidence interval. This provides numerical
evidence that the variance is small (and the distribution is not spread).
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