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Links Between Sums Over Paths in Bernoulli's Triangles and the Fibonacci Numbers

We investigate paths in Bernoulli's triangles and derive several relations linking the partial sums of binomial coefficients to the Fibonacci numbers.

Introduction

Binomial coefficients appear in many identities, some of which are closely connected to the Fibonacci sequence [START_REF] Azarian | Fibonacci identities as binomial sums[END_REF][START_REF] Azarian | Identities involving Lucas or Fibonacci and Lucas numbers as binomial sums[END_REF]. Pascal's triangle has been explored for links to the Fibonacci sequence as well as to generalized sequences [START_REF] Hoggatt | Convolution triangles for generalized Fibonacci numbers[END_REF]. The partial sums of the binomial coefficients are less well known, although a number of identities have been found regarding sums of their powers [START_REF] Calkin | A curious binomial identity[END_REF][START_REF] Hirschhorn | Calkin's binomial identity[END_REF] and polynomials [START_REF] He | Some identities involving the partial sum of q-binomial coefficients[END_REF]. To add to the existing corpus, we review Bernoulli's second and third-order triangles for relations pertaining to sums of the binomial coefficients. We contribute several relations that link the Fibonacci numbers to binomial partial sums.

Notation, definitions and preliminary lemma

We let N * denote the positive natural numbers, i.e., {1, 2, . . .} and we let N 0 refer to N * ∪{0}. For p, q ∈ Z, p q, we let p, q denote the integers between p and q, i.e., p, q = {k ∈ Z | p k q}. For p ∈ Z we also let p + denote 1 2 (p + |p|). We let (F n ) n∈N 0 denote the Fibonacci numbers (A000045 [START_REF]The Online Encyclopedia of Integer Sequences[END_REF]). We can therefore derive the following recurrence relation:

∀n, k 1, B n,k = k q=0 n q = k q=0 n -1 q + k q=0 n -1 q -1 = k q=0 n -1 q + k-1 q=0 n -1 q , B n,k = B n-1,k + B n-1,k-1 . (1) 
We recognize the structure of Pascal's rule for the binomial coefficients with the boundary values B n,0 = 1 and B n,n = n q=0 n q = 2 n .

Definition 2. Let Bernoulli's triangle denote the triangle formed by (B n,k ) n∈N 0 ,k∈ 0,n . Bernoulli's triangle is illustrated by Figure 1. Definition 3. For n, k ∈ N 0 , let B [START_REF] Azarian | Fibonacci identities as binomial sums[END_REF] n,k = n k . Then for every m 1 we define

k
∀n, k ∈ N 0 , B [m+1] n,k = k q=0 B [m] n,q .
For m 1, let Bernoulli's mth-order triangle B [m] denote the triangle formed by the family B

[m] n,k n∈N 0 ,k∈ 0,n .

The first and second-order triangles B [1] and B [2] correspond respectively to Pascal's triangle and Bernoulli's triangle. For m 1, the elements of B [m] verify the following recurrence relation:

∀n 2, ∀k ∈ 1, n -1 , B [m] n,k = B [m] n-1,k + B [m] n-1,k-1 .
(

) 2 
The proof of Relation ( 2) is the same as that of Relation (1). The corresponding boundary

values are ∀n ∈ N 0 , ∀m 1, B [m] n,0 = 1 and ∀m 2, B [m] n,n = n q=0 B [m-1] n,q . Definition 4. In Bernoulli's mth-order triangle B [m] , for c, l ∈ Z, n 0 ∈ N 0 , k 0 ∈ 0, n 0 , let the path following direction (c, l) from (n 0 , k 0 ) denote the sequence B [m] n 0 +kl,k 0 -kc k∈N 0
(where l > 0 corresponds to increasing row numbers from n 0 , and c < 0 to increasing column numbers from k 0 ). For a given pair (n 0 , k 0 ), B

[m] n 0 +kl,k 0 -kc k∈N 0 contains a finite number of elements when either l 0, or l > 0 and c / ∈ -l, 0 .

In this work, we focus our attention on sums of elements along the two types of paths defined below.

Definition 5. Let m ∈ N * , n ∈ N 0 . (i) Let S [m]
n (c, l) denote the sum over the path following direction (c, l) (c > 0, l < 0) from (n, n), i.e.,

S [m] n (c, l) = n/c k=0 B [m] n+kl,n-kc .
We shall also use

S[m] n (c, l) = 2B [m] n,n -S [m] n (c, l) = B [m] n,n - n/c k=1 B [m] n+kl,n-kc . (ii) Let T [m]
n (c, l) denote the sum over the path following direction (c, l) (c < 0, l < 0) from (n, 0), i.e.,

T [m] n (c, l) = -n/(c+l) k=0 B [m] n+kl,-kc . Lemma 1. Let u ∈ Z N 0 and ∀n ∈ N * , v n = u n -2u n-1 . Then ∀n ∈ N 0 , u n = 2 n u 0 + n k=1 2 n-k v k .
Proof. From the definition of (v n ) n∈N * , we have

n k=1 2 n-k v k = n k=1 2 n-k (u k -2u k-1 ) = n k=1 2 n-k u k - n k=1 2 n-k+1 u k-1 = n k=1 2 n-k u k - n-1 k=0 2 n-k u k = u n -2 n u 0 .
Applying Lemma 1 to u n = F n+2 (i.e., v n = -F n-1 ) or u n = F 2n+4 (i.e., v n = F 2n+1 ) yields the following relations for n ∈ N 0 :

F n+2 = 2 n - n k=1 2 n-k F k-1 , (3) 
F 2n+4 = 3 • 2 n + n k=1 2 n-k F 2k+1 . (4) 
Note that Benjamin and Quinn have reported Relation (3) [8, Id. 10].

3 Bernoulli's second-order triangle 3.1 The path following direction (2, -1) from (n, n)

We first consider the path following direction (2, -1) from (n, n) in Bernoulli's triangle B [2] . As illustrated by Figure 2, the sequence S [START_REF] Azarian | Identities involving Lucas or Fibonacci and Lucas numbers as binomial sums[END_REF] n (2, -1)

n∈N 0 can be related to the Fibonacci sequence by S[2] n (2, -1) = F n+2 . Given that S[2] n (2, -1) = 2B n,n -S [2]
n (2, -1), we find that S n (2, -1) = 2 n+1 -F n+2 , which we formally express as Theorem 1 below. Theorem 1.

∀n ∈ N 0 , n/2 k=0 n-2k q=0 n -k q = 2 n+1 -F n+2 . (5) 
Proof. We seek to prove that ∀n ∈ N 0 , S [2] n (2, -1) = 2 n+1 -F n+2 .

We have S [START_REF] Azarian | Identities involving Lucas or Fibonacci and Lucas numbers as binomial sums[END_REF] 0 (2, -1) = 1 = 2 0+1 -F 0+2 , so the formula is valid for n = 0.

Let n ∈ N * . Then S [2] n (2, -1) -2S [2] n-1 (2, -1) = n/2 k=0 B n-k,n-2k -2 (n-1)/2 k=0 B n-1-k,n-1-2k .
Assume an even n, e.g., n = 2s. Then

S [2] n (2, -1) -2S [2] n-1 (2, -1) = s k=0 B 2s-k,2s-2k -2 s-1 k=0 B 2s-1-k,2s-1-2k = B s,0 + s-1 k=0 (B 2s-k,2s-2k -2B 2s-1-k,2s-1-2k ).
From Relation (1) and Definition 1, we have

∀p, q 1, B p,q -2B p-1,q-1 = B p-1,q -B p-1,q-1 = p -1 q . ( 6 
)
Therefore

S [2] n (2, -1) -2S [2] n-1 (2, -1) = 1 + s-1 k=0 2s -k -1 2s -2k = 1 + s-1 k=0 2s -k -1 k -1 = s-1 k=0 2s -k -2 k .
Given that ∀n ∈ N 0 ,

n/2 k=0 n -k k = F n+1 [8, Id. 4],
we have

S [2] n (2, -1) -2S [2] n-1 (2, -1) = F (2s-2)+1 = F n-1 .
The above relation, illustrated by Figure 3, can be proven for odd values of n using the same method. Applying Lemma 1 to u n = S [START_REF] Azarian | Identities involving Lucas or Fibonacci and Lucas numbers as binomial sums[END_REF] n (2, -1) and using Relation (3), we obtain ∀n ∈ N 0 , S [2] n (2, -1) 

= 2 n + n k=1 2 n-k F k-1 = 2 n+1 -F n+2 . 1 1 = 1 1 2 2 = 2 = 2 • 1 + F 0 1 3 4 5 = 4 + 1 = 2 • 2 + F 1 1 4 7 8 11 = 8 + 3 = 2 • 5 + F 2 1 
n (2, -1) -2S [2]
n-1 (2, -1), forming A027934 [START_REF]The Online Encyclopedia of Integer Sequences[END_REF].

The path following direction

(c, 1 -c) from (n, n) Definition 6. For c 2, n 1, let λ n (c) = S [2] n (c, 1 -c) -2S [2]
n-1 (c, 1 -c). The sequence (λ n (c)) n∈N * corresponds to A000930 for c = 3 (see Figure 4), A003269 for c = 4 and A003520 for c = 5 [START_REF]The Online Encyclopedia of Integer Sequences[END_REF]. We observe that (λ n (c)) n∈N * satisfies the following linear recurrence relation.

Theorem 2. ∀n ∈ 1, c -1 , λ n (c) = 0; λ c (c) = 1 and ∀n > c, λ n (c) = λ n-1 (c) + λ n-c (c).
The sequence (λ n (c)) n∈N * is a generalization the Fibonacci sequence, which corresponds to the c = 2 case (as shown above, ∀n ∈ N * , λ n (2) = F n-1 ).

Proof. Let c 2, n 1. From Definition 5, we have

λ n (c) = n/c k=0 B n+k(1-c),n-kc -2 (n-1)/c k=0 B n-1+k(1-c),n-1-kc .
We first ascertain the initial values of (λ n (c)

) n∈N * . For n < c, n/c = (n -1)/c = 0 and λ n (c) = B n,n -2B n-1,n-1 = 2 n -2 • 2 n-1 = 0. For n = c, λ c (c) = B c,c + B 1,0 -2B c-1,c-1 = 2 c + 1 -2 • 2 c-1 = 1.
We then prove the recurrence relation for n > c. We have n (3, -2) in B [2] form A099568 [START_REF]The Online Encyclopedia of Integer Sequences[END_REF] and the difference S 

λ n-1 (c) = (n-1)/c k=0 B n-1+k(1-c),n-1-kc -2 (n-2)/c k=0 B n-2+k(1-c),n-2-kc 1 1 = 1 1 2 2 = 2 = 2 • 1 + 0 1 3 4 4 = 4 = 2 • 2 + 0 1 4 7 8 9 = 8 + 1 = 2 • 4 + 1
n (3, -2) - 2S [2]
n-1 (3, -2) yields the terms of (λ n (3)) n∈N * , corresponding to A000930 [START_REF]The Online Encyclopedia of Integer Sequences[END_REF]. and

λ n-c (c) = (n-c)/c k=0 B n-c+k(1-c),n-c-kc -2 (n-c-1)/c k=0 B n-c-1+k(1-c),n-c-1-kc .
The summation upper bounds of λ n (c), λ n-1 (c) and λ n-c (c) depend on the remainder of the Euclidean division of n by c. Let n = cq + r > c with q = n/c ∈ N * , r ∈ 0, c -1 . There are three cases to consider, which are shown in Table 1.

n/c (n -1)/c (n -2)/c (n -c)/c (n -c -1)/c r = 0 q q -1 q -1 q -1 q -2 r = 1 q q q -1 q -1 q -1 1 < r < c q q q q -1 q -1
Table 1: Summation upper bounds for the various values of r = n -c n/c .

For r = 0, we have

λ n (c) = q k=0 B cq+k(1-c),cq-kc -2 q-1 k=0 B cq-1+k(1-c),cq-1-kc = B cq+q(1-c),cq-qc + q-1 k=0 B cq+k(1-c),cq-kc -2B cq-1+k(1-c),cq-1-kc ,
and Relation (6) yields

λ n (c) = B q,0 + q-1 k=0 cq -1 + k(1 -c) cq -kc = 1 + q-1 k=0 cq -1 + k(1 -c) k -1 = 1 + q-1 k=1 cq -1 + k(1 -c) k -1 .
Similarly,

λ n-1 (c) = q-1 k=0 B cq-1+k(1-c),cq-1-kc -2 q-1 k=0 B cq-2+k(1-c),cq-2-kc = q-1 k=0 cq -2 + k(1 -c) k -1 ,
and

λ n-c (c) = q-1 k=0 B cq-c+k(1-c),cq-c-kc -2 q-2 k=0 B cq-c-1+k(1-c),cq-c-1-kc = B cq-c+(q-1)(1-c),cq-c-(q-1)c B q-1,0 + q-2 k=0 (B cq-c+k(1-c),cq-c-kc -2B cq-c-1+k(1-c),cq-c-1-kc ( cq-c-1+k(1-c) cq-c-kc ) ) = 1 + q-2 k=0 cq -c -1 + k(1 -c) k -1 = 1 + q-1 k=1 cq -2 + k(1 -c) k -2 .
Therefore we have

λ n-1 (c) + λ n-c (c) = 0 + q-1 k=1 cq -2 + k(1 -c) k -1 + q-1 k=1 cq -2 + k(1 -c) k -2 + 1 = q-1 k=1 cq -1 + k(1 -c) k -1 + 1 = λ n (c).
This proves Theorem 2 for the r = 0 case. We can use the same method for r = 1 or r > 1, since only the summation upper bounds are modified in those cases.

We can write the explicit expression of λ n (c) as λ n (c) =

(n-c)/(c-1) i=0 n -c + i(1 -c) i .
We obtain, using Lemma 1, S

n (c, 1 -c) = 2 n + n k=1 [2] 
2 n-k λ k (c), which leads to the following relation.

Corollary 1. n/c k=0 n-kc q=0 n -(c -1)k q = 2 n + n k=1 2 n-k (k-c)/(c-1) i=0 k -c -(c -1)i i .
3.3 The path following direction (-1, -1) from (n, 0)

The path following direction (-1, -1) from (n, 0) has a connection to the Fibonacci sequence that appears in the difference between successive terms of T [START_REF] Azarian | Identities involving Lucas or Fibonacci and Lucas numbers as binomial sums[END_REF] n (-1, -1), as illustrated by Figure 5. Not only do we notice that

∀p 1, T [2] 2p (-1, -1) = T [2] 2p-1 (-1, -1) + F 2p+1 , but also that ∀p 1, T [2] 2p+1 (-1, -1) = T [2] 2p (-1, -1) + T [2]
2p-1 (-1, -1). Proof. To prove these two recurrence relations, we rely on Relation [START_REF] Azarian | Fibonacci identities as binomial sums[END_REF]. For odd indices, we have

∀p 1, T [2] 2p+1 (-1, -1) = p k=0 B 2p+1-k,k = B 2p+1,0 + p k=1 (B 2p-k,k-1 + B 2p-k,k ) = B 2p,0 + p k=1 B 2p-k,k + p-1 k=0 B 2p-1-k,k = p k=0 B 2p-k,k + p-1 k=0 B 2p-1-k,k = T [2] 2p (-1, -1) + T [2]
2p-1 (-1, -1).

For even indices,

∀p 1, T [2] 2p (-1, -1) = p k=0 B 2p-k,k = p k=0 k q=0 2p -k q = p k=0 k-1 q=0 2p -k q + 2p -k k = p-1 k=0 k q=0 2p -1 -k q + p k=0 2p -k k . Since ∀n ∈ N 0 , n/2 k=0 n -k k = F n+1 [8, Id. 4], we have p k=0 2p -k k = F 2p+1 . Hence, ∀p 1, T [2] 2p (-1, -1) = T [2] 2p-1 (-1, -1) + F 2p+1 .
These two relations make it possible to derive a recurrence relation that pertains only to the odd subsequence: n (-1, -1) in Bernoulli's triangle and differences from the preceding terms.

∀p 1, T [2] 2p+1 (-1, -1) -2T [2] 2p-1 (-1, -1) = F 2p+1 . 1 1 = 1 1 2 1 = 1 1 3 4 3 = 1 + 2 = 1 + F 3 1 4 7 8 4 = 1 + 3 = 3 +
Therefore, using Lemma 1 and Relation (4), we have

∀p 1, T [2] 2p+1 (-1, -1) = 2 p T [2]
1 (-1, -1)

1 + p k=1 2 p-k F 2k+1 = 2 p + F 2p+4 -3 • 2 p = F 2p+4 -2 p+1 .
We feed back the odd subsequence into the expression for the even subsequence as follows:

∀p 1, T [2] 2p (-1, -1) = T [2] 2p-1 (-1, -1) + F 2p+1 = F 2p+2 -2 p + F 2p+1 = F 2p+3 -2 p .
We have thus proven that ∀n ∈ N 0 , T [START_REF] Azarian | Identities involving Lucas or Fibonacci and Lucas numbers as binomial sums[END_REF] n (-1, -1) = F n+3 -2 (n+1)/2 , which we can rewrite as the following theorem.

Theorem 3. ∀n ∈ N 0 , n/2 k=0 k q=0 n -k q = F n+3 -2 (n+1)/2 .
Remark 1. Among the paths of Bernoulli's triangle following other directions, one can find other sequences that follow linear recurrence relations. For example, S [START_REF] Azarian | Identities involving Lucas or Fibonacci and Lucas numbers as binomial sums[END_REF] n (3, -1)

n∈N 0
corresponds to A005251 [START_REF]The Online Encyclopedia of Integer Sequences[END_REF] and S [START_REF] Azarian | Identities involving Lucas or Fibonacci and Lucas numbers as binomial sums[END_REF] n (4, -1)

n∈N 0
to A138653 [START_REF]The Online Encyclopedia of Integer Sequences[END_REF]. We believe that further sequences related to partial sums of binomial coefficients are yet to be uncovered in B [2] .

Bernoulli's third-order triangle

We now consider Bernoulli's third-order triangle B [3] (see Figure 6). From Definition 3,

∀n ∈ N 0 , k ∈ 0, n , B [3] n,k = k q=0 B n,q = k q=0 q r=0 n r .
Recall that B [START_REF] Hoggatt | Convolution triangles for generalized Fibonacci numbers[END_REF] n,0 = 1 and ∀n 2, ∀k ∈ 1, n -1 , B 4.1 The path following direction (2, -1) from (n, n)

[3] n,k = B [3] n-1,k + B [3] n-1,k-1 . Furthermore, B [3] n,n = (n + 2)2 n-1 . k 0 1
Definition 5 states that S[3] n (2, -1) = B [3] n,n - n/2 k=1 B [3]
n-k,n-2k . Figure 7 suggests the following recurrence relation:

S[3] n (2, -1) -2 S[3] n-1 (2, -1) = F n . (7) 
Proof. Let n ∈ N * . We have n (2, -1) in B [3] that illustrate Relation [START_REF]The Online Encyclopedia of Integer Sequences[END_REF].

S[3] n (2, -1) -2 S[3] n-1 (2, -1) = B [3] n,n - n/2 k=1 B [3] n-k,n-2k -2B [3] n-1,n-1 + 2 (n-1)/2 k=1 B [3] n-1-k,n-1-2k . 1 1 = 1 1 3 3 = 3 = • 1 + F 1 1 4 8 7 = 8 -1 = • 3 + F 2 1 
Firstly, B [3] n,n -2B [3] n-1,n-1 = (n + 2)2 n-1 -2(n + 1)2 n-2 = 2 n-1 .
Let us assume that n is even, e.g., n = 2s (the method is the same for odd values of n). We have

S[3] n (2, -1) -2 S[3] n-1 (2, -1) = 2 2s-1 - s k=1 B [3] 2s-k,2s-2k + 2 s-1 k=1 B [3] 2s-1-k,2s-1-2k = 2 2s-1 -B [3] s,0 1 - s-1 k=1 B [3] 2s-k,2s-2k -2B [3]
2s-1-k,2s-1-2k .

From Definition 3 and Relation (2), we have, for m 2,

∀p, q 1, B [m] p,q -2B [m] p-1,q-1 = B [m] p-1,q -B [m] p-1,q-1 = B [m-1] p-1,q , hence, S[3] n (2, -1) -2 S[3] n-1 (2, -1) = 2 2s-1 -1 - s-1 k=1 B 2s-1-k,2s-2k . Moreover, s-1 k=1 B 2s-1-k,2s-2k = s k=2 B 2s-k,2s-2k+2 = s k=2 B 2s-k,2s-2k + 2s -k 2s -2k + 1 + 2s -k 2s -2k + 2 = s k=2 B 2s-k,2s-2k + s k=2 2s -k + 1 2s -2k + 2 = S [2] 2s (2, -1) -B 2s,2s 2 2s -B 2s-1,2s-2 + s k=2 2s -k + 1 k -1 . Theorem 1 states that S [2] 2s (2, -1) = 2 2s+1 -F 2s+2 . We also have B 2s-1,2s-2 = B 2s-1,2s-1 - 2s -1 2s -1 = 2 2s-1 -1. Furthermore, s k=2 2s + 1 -k k -1 = s k=1 2s -k + 1 k -1 - 2s 0 = s-1 k=0 2s -k k -1 = s k=0 2s -k k - s s -1 = F 2s+1 -2.
Finally,

S[3] n (2, -1) -2 S[3] n-1 (2, -1) = 2 2s-1 -1 -2 2s+1 -F 2s+2 -2 2s -(2 2s-1 -1) + F 2s+1 -2 = F 2s+2 -F 2s+1 = F 2s = F n .
Lemma 1 and Relation (3) lead to an explicit expression of S [START_REF] Hoggatt | Convolution triangles for generalized Fibonacci numbers[END_REF] n (2, -1), as follows:

S[3] n (2, -1) = 2 n S[3] 0 (2, -1) + n k=1 2 n-k F k = 2 n + n+1 k=1 2 n+1-k F k-1 = 2 n + 2 n+1 -F n+3 = 3 • 2 n -F n+3 .
From the explicit form of S [START_REF] Hoggatt | Convolution triangles for generalized Fibonacci numbers[END_REF] n (2, -1), we deduce that S [START_REF] Hoggatt | Convolution triangles for generalized Fibonacci numbers[END_REF] n (2, -1) = 2B [START_REF] Hoggatt | Convolution triangles for generalized Fibonacci numbers[END_REF] n,n + F n+3 -3 • 2 n and obtain the following theorem.

Theorem 4. n/2 k=0 n-2k q=0 q r=0 n -k r = F n+3 + (n -1)2 n .

4.2

The path following direction (-1, -1) from (n, 0)

In B [3] , the path following direction (-1, -1) from (n, 0) does not appear at first glance to have any obvious connection to the Fibonacci sequence; however, the differences of consecutive terms of T [START_REF] Hoggatt | Convolution triangles for generalized Fibonacci numbers[END_REF] n (-1, -1) follow a pattern similar to T

n (-1, -1). Indeed, the odd subsequence of the difference sequence has the same behavior as in B [2] , while the even subsequence has a connection to the T [START_REF] Azarian | Identities involving Lucas or Fibonacci and Lucas numbers as binomial sums[END_REF] n (-1, -1) numbers of even n (see Figure 8). More precisely, we notice that ∀p 1, T [START_REF] Hoggatt | Convolution triangles for generalized Fibonacci numbers[END_REF] 2p (-1, -1) = T [START_REF] Hoggatt | Convolution triangles for generalized Fibonacci numbers[END_REF] 2p-1 (-1, -1) + T [START_REF] Azarian | Identities involving Lucas or Fibonacci and Lucas numbers as binomial sums[END_REF] 2p (-1, -1) and T [START_REF] Hoggatt | Convolution triangles for generalized Fibonacci numbers[END_REF] 2p+1 (-1, -1) = T [START_REF] Hoggatt | Convolution triangles for generalized Fibonacci numbers[END_REF] 2p (-1, -1) + T [START_REF] Hoggatt | Convolution triangles for generalized Fibonacci numbers[END_REF] 2p-1 (-1, -1). Proof. We prove these two relations directly at order m, using Relation (2) and proceeding as in the derivation of Theorem 3 (section 3.3). For odd terms, we have

∀m 2, ∀p 1, T [m] 2p+1 (-1, -1) = p k=0 B [m] 2p+1-k,k = B [m] 2p+1,0 + p k=1 B [m] 2p-k,k-1 + B [m] 2p-k,k = B [m] 2p,0 + p k=1 B [m] 2p-k,k + p-1 k=0 B [m] 2p-1-k,k = p k=0 B [m] 2p-k,k + p-1 k=0 B [m] 2p-1-k,k , T [m] 2p+1 (-1, -1) = T [m] 2p (-1, -1) + T [m] 2p-1 (-1, -1). ( 8 
) 1 1 = 1 1 3 1 = 1 1 4 8 4 = 1 + 3 = 1 + T [2]
2 (-1, -1) n (-1, -1) in Bernoulli's third-order triangle.

1
For even terms, ∀m

p k=0 k-1 q=0 B [m-1] 2p-k,q + B [m-1] 2p-k,k = p-1 k=0 k q=0 B [m-1] 2p-1-k,q + p k=0 B [m-1] 2p-k,k = p-1 k=0 B [m] 2p-1-k,k + T [m-1] 2p (-1, -1), T [m] 2p (-1, -1) = T [m] 2p-1 (-1, -1) + T [m-1] 2p (-1, -1). 2, ∀p 1, T [m] 2p (-1, -1) = p k=0 B [m] 2p-k,k = p k=0 k q=0 B [m-1] 2p-k,q = 
From Relations (8) and (9), we derive a general expression of T [START_REF] Hoggatt | Convolution triangles for generalized Fibonacci numbers[END_REF] n (-1, -1) for n ∈ N 0 . Isolating the odd subsequence leads to ∀p 1, T [START_REF] Hoggatt | Convolution triangles for generalized Fibonacci numbers[END_REF] 2p+1 (-1, -1) -2T [START_REF] Hoggatt | Convolution triangles for generalized Fibonacci numbers[END_REF] 2p-1 (-1, -1) = T [START_REF] Azarian | Identities involving Lucas or Fibonacci and Lucas numbers as binomial sums[END_REF] 2p (-1, -1).

Therefore, using Lemma 1 and Relation (4), we obtain

∀p 1, T [3] 2p+1 (-1, -1) = 2 p T [3] 1 (-1, -1) 1 + p k=1 2 p-k T [2] 2k (-1, -1) F 2k+3 -2 k = 2 p + p k=1 2 p-k F 2k+3 - p k=1 2 p = 2 p + F 2p+6 -2 p+3 -p2 p = F 2p+6 -(p + 7)2 p . Hence, ∀p 1, T [3] 2p (-1, -1) = T [3] 2p-1 (-1, -1) + T [2] 2p (-1, -1) = F 2p+4 -(p + 6)2 p-1 + F 2p+3 -2 p = F 2p+5 -(p + 8)2 p-1 .
Finally, we reach the following relation: ∀n ∈ N 0 , T [3] n (-1, -1)

= F n+5 -2 (n+1)/2 1 2 (n + 1)/2 + 7 2 + (-1) n 2 .
Theorem 5.

∀n ∈ N 0 , n/2 k=0 k q=0 q r=0 n -k r = F n+5 -2 p 1 2 p + 7 2 + (-1) n 2 ,
where p = (n + 1)/2 .

Remark 2. Paths in B [3] following other directions yield interesting sequences in a similar manner to those in B [2] . For example, S [START_REF] Hoggatt | Convolution triangles for generalized Fibonacci numbers[END_REF] n (3, -1) -2 S [START_REF] Hoggatt | Convolution triangles for generalized Fibonacci numbers[END_REF] n-1 (3, -1)

n∈N * corresponds to A005314 [START_REF]The Online Encyclopedia of Integer Sequences[END_REF]. Further work should be able to uncover additional sequences by following other paths in B [3] .

5 Higher-order triangles 5.1 The path following direction (-1, -1) from (n, 0)

Using Relations ( 8) and (9) for m = 4 and m = 5, we proceed as we did for T [START_REF] Hoggatt | Convolution triangles for generalized Fibonacci numbers[END_REF] n (-1, -1) to determine the sums over the path following direction (-1, -1) from (n, 0) in B [4] and B [5] .

We obtain the following identities: n (-1, -1) for m ∈ 2, 5 contain a Fibonacci term and a second term composed of the product of a power of 2 by a polynomial, which suggests a general connection between T

∀n ∈ N 0 , n/2 k=0 k q=0 q r=0 r s=0 n -k s = F n+7 -
[m] n (-1, -1) and the Fibonacci sequence. We write a general expression of T

[m] n (-1, -1) in the following theorem.

Theorem 6. ∀m ∈ N * , ∀n ∈ N 0 , n/2 i 1 =0 i 1 i 2 =0 • • • i m-1 im=0 n -i 1 i m = F n+2m-1 -2 p Q [m] (p) + (-1) n R [m] (p) , where p = n+1 2 , Q [m]
and R [m] are polynomials with coefficients in Q and of degree (m-2) + and (m -3) + respectively. Proof. We seek to prove that ∀m 1,

∀n ∈ N 0 , T [m] n (-1, -1) = F n+2m-1 -2 p Q [m] (p) + (-1) n R [m] (p) ,
where p = n+1 2 , Q [m] and R [m] are polynomials with coefficients in Q and of degree (m-2) + and (m -3) + respectively.

We proceed by induction on m. For m = 1, we have [START_REF] Benjamin | Fibonacci number, binomial coefficient, Pascal's triangle, Bernoulli's triangle[END_REF]Id. 4] ∀n ∈ N 0 , T [1] n (-1, -1)

= n/2 k=0 n -k k = F n+1 ,
which is in line with the above formulation with Q [1] = R [1] = 0. Similarly, we already have the result for m = 2 with Q [2] = 1 and R [2] = 0 from Theorem 3:

∀n ∈ N 0 , T [2] n (-1, -1) = F n+3 -2 (n+1)/2 .
Assume that the result is true for a given m 2, i.e., there exist two polynomials Q [m] and R [m] with coefficients in Q and respectively of degree (m -2) + and (m -3) + , such that

∀n ∈ N 0 , T [m] n (-1, -1) = F n+2m-1 -2 p Q [m] (p) + (-1) n R [m] (p)
, where p = n+1 2 . We will now prove the result for m + 1.

First, from Relations (8) and (9) at order m + 1, we have

∀s 1, T [m+1] 2s+1 (-1, -1) = 2T [m+1] 2s-1 (-1, -1) + T [m] 2s (-1, -1). Using Lemma 1 applied to u s = T [m+1] 2s+1 (-1, -1) (i.e., v s = T [m] 2s (-1, -1)), we obtain ∀s 1, T [m+1] 2s+1 (-1, -1) = 2 s T [m+1] 1 (-1, -1) 1 + s k=1 2 s-k T [m] 2k (-1, -1). Since T [m] 1 (-1, -1) = 1, we may write that ∀s 1, T [m+1] 2s-1 (-1, -1) = 2 s-1 + s-1 k=1 2 s-1-k T [m] 2k (-1, -1). Recall that ∀k ∈ N 0 , T [m] 2k (-1, -1) = F 2k+2m-1 -2 k Q [m] (k) + R [m] (k) . Lemma 1 applied to u s = F 2s+2m+2 (i.e., v s = F 2s+2m-1 ) yields s k=1 2 s-k F 2k+2m-1 = F 2s+2m+2 -2 s F 2m+2 , hence, s-1 k=1 2 s-1-k F 2k+2m-1 = 1 2 (F 2s+2m+2 -2 s F 2m+2 -F 2s+2m-1 ) = F 2s+2m -2 s-1 F 2m+2 .
Thus, we have

∀s 1, T [m+1] 2s-1 (-1, -1) = 2 s-1 + s-1 k=1 2 s-1-k F 2k+2m-1 -2 k Q [m] (k) + R [m] (k) = 2 s-1 + F 2s+2m -2 s-1 F 2m+2 -2 s-1 s-1 k=1 Q [m] (k) + R [m] (k) , T [m+1] 2s-1 (-1, -1) = F (2s-1)+2(m+1)-1 -2 s-1 (F 2m+2 -1 + A(s)) , (10) 
where A(X) = X-1 k=1 Q [m] (k) + R [m] (k) . For any α ∈ N 0 , the polynomial m] is of degree (m -2) + and m 2, A is of degree (m -1) + . Relation (10) gives the expression of T

X-1 k=1 k α is of degree α + 1 in X. Therefore, since Q [m] + R [
[m+1] n (-1, -1) for all odd n. We may thus retrieve the even subsequence from Relation (9) to obtain, for s 1,

T [m+1] 2s

(-1, -1) = T (-1, -1) = F 2s+2(m+1)-1 -2 s-1 F 2m+2 -1 + A(s) + 2Q [m] (s) + 2R [m] (s) .( 11)

We introduce the polynomials Q [m+1] , R [m+1] as follows:

Q [m+1] = 1 2 A + F 2m+2 -1 + Q [m] + R [m] and R [m+1] = 1 2 Q [m] + R [m] .
It is clear that

Q [m+1] , R [m+1] ∈ Q[X].
In addition, Q [m+1] is of the same degree as A, i.e., (m -1) + and R [m+1] is of the same degree as Q [m] , i.e., (m -2) + . Therefore, we can synthesize Relations (10) and (11) as follows:

T [m+1] n = F n+2(m+1)-1 -2 p Q [m+1] (p) + (-1) n R [m+1] (p) ,
where p = n+1 2 , Q [m+1] and R [m+1] are respectively ((m + 1) -2) + th and ((m + 1) -3) + th degree polynomials with coefficients in Q. This concludes the proof by induction.

Towards additional formulae

The present work has reviewed Bernoulli's second and third-order triangles and found multiple connections to the Fibonacci sequence, expressed in Theorems 1 and 3 to 5. Theorem 6 generalizes Theorems 3 to 5 to higher orders. Furthermore, Theorem 2 uncovers a relation between partial sums of binomial coefficients in Bernoulli's triangle and sequences satisfying an additive recurrence relation that generalizes the Fibonacci sequence.

The methodology followed in this article (i.e., the study of paths over Bernoulli's triangles) reveals sequences that are formed by the partial sums of binomial coefficients. More generally, these paths could yield further fruit by mapping various functions f over the elements of Bernoulli's triangles in order to study the corresponding sequences

k f (B [m]
n 0 +kl,k 0 -kc ).

Definition 1 .

 1 Let B n,k denote the sum of the first k binomial coefficients, i.e., ∀n, k ∈ N 0 , B n,k = that ∀n ∈ N 0 , ∀k 1, B n,k = B n,k-1 + n k and ∀k n, B n,k = 2 n .

Figure 1 :

 1 Figure 1: Bernoulli's triangle (A008949 [7]): the element in row n and column k corresponds to B n,k .

Figure 3 :

 3 Figure 3: Fibonacci numbers resulting from S [2]

Figure 4 :

 4 Figure 4: Instances of S [2]

Figure 5 :

 5 Figure 5: Instances of T [2]

Figure 6 :

 6 Figure 6: Bernoulli's third-order triangle (A193605 [7]): the element in row n and column k corresponds to B [3] n,k .

Figure 7 :

 7 Figure 7: Instances of S[3]n (2, -1) in B[3] that illustrate Relation[START_REF]The Online Encyclopedia of Integer Sequences[END_REF].

Figure 8 :

 8 Figure 8: Differences between successive terms of T [3]

1 ,

 1 -1) = F (2s-1)+2(m+1)-1 -2 s-1 (F 2m+2 -1 + A(s)) +F 2s+2m-1 -2 s Q [m] (s) + R [m] (s) , T [m+1] 2s
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